Supplementary Information for

Aggregation-Enhanced Emission in Tetraphenylpyrazine-Based

Luminogens: Theoretical Modulation and Experimental Validation

Guangshuai Gong, ${ }^{a}$ Haozhong Wu, ${ }^{b}$ Tian Zhang, ${ }^{* a}$ Zhiming Wang, ${ }^{* b}$ Xinjin Li ${ }^{a}$ and Yujun Xie ${ }^{c}$
${ }^{a}$ School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China. E-mail: tzhang@sdut.edu.cn
${ }^{b}$ AIE institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China. E-mail: wangzhiming@scut.edu.cn
${ }^{c}$ Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.

1. Syntheses and characterizations

Chart S1 Synthetic routes to TPP-4CF ${ }_{3}$.
2-hydroxy-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (2): 4-(trifluoromethyl)benzaldehyde $\mathbf{1}$ (40 mmol, 6.94 g) and NHC (3-benzyl-4-methyl-5-(2-hydroxyethyl)thiazole-3-ium chloride) (4 mmol, 1.08 g) were added into two-neck bottle under nitrogen. After then, a mixed solvent system of triethylamine ($1.65 \mathrm{~mL}, 12 \mathrm{mmol}$) and ethanol (32 mL) was injected into the bottle and the mixture was refluxed overnight under nitrogen atmosphere. After cooling to room temperature, the mixture was poured into water and extracted with dichloromethane three times and the combined organic layers were washed with brine, and then dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography. White powder was obtained in the yield of $80 \%{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 197.2,141.5,135.4,134.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=24.9 \mathrm{~Hz}\right), 129.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.0 \mathrm{~Hz}\right), 128.6$, 127.4. $125.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 125.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 123.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=216.3 \mathrm{~Hz}\right) 122.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $217.5 \mathrm{~Hz}), 75.2 \mathrm{ppm}$.

2,3,5,6-tetrakis(4-(trifluoromethyl)phenyl)pyrazine (TPP-4CF $\mathbf{3}_{3}$: $\mathbf{2}$ (3.48 g, 10 mmol), $\mathrm{CeCl}_{3} 7 \mathrm{H}_{2} \mathrm{O}$ ($0.37 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}(1.77 \mathrm{~g}, 23 \mathrm{mmol})$ were dissolved in ethanol $(25 \mathrm{~mL})$ at two-neck bottle and the mixture was stirring at $80^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the mixture was poured into water and extracted with dichloromethane three times and the combined organic layers were washed with brine, and then dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography. Yellow powder was obtained in the yield of $58 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 8 \mathrm{H}), 7.65(\mathrm{~d}, J=$
$8.2 \mathrm{~Hz}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 147.3,140.4,130.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right), 129.5$, $124.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 123.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=273.4 \mathrm{~Hz}\right) \mathrm{ppm}$.

2. ESP Explanations

In PRZ, average ESP value of carbon atoms in the pyrazine core is $-0.56(-0.10) \mathrm{kcal} / \mathrm{mol}$ in solid (solution). In TPP, those values in the pyrazine core and phenyl rings are -5.37 (-5.74) $\mathrm{kcal} / \mathrm{mol}$ and $-15.70(-14.65) \mathrm{kcal} / \mathrm{mol}$ in solid (solution), respectively. The more negative ESP values in the pyrazine core for TPP compared to PRZ imply that the electron-rich phenyl rings introduce electronic conjugated effect to the electron-deficient pyrazine core. In TPP-4CF ${ }_{3}$, above values are $11.29(13.46) \mathrm{kcal} / \mathrm{mol}$ and $0.85(2.80) \mathrm{kcal} / \mathrm{mol}$ in solid (solution). These results indicate that addition of the electron-withdrawing CF_{3} groups to TPP peripheries can nearly equally increase the ESP values of the pyrazine core and phenyl rings by $\sim 17 \mathrm{kcal} / \mathrm{mol}$, but the difference between phenyls and pyrazine is still $\sim 10 \mathrm{kcal} / \mathrm{mol}$. The electronic conjugated effect of phenyls to pyrazine is not modified. Substitution with electron-donating OCH_{3} groups can respectively decrease the ESP values of pyrazine and phenyls to $-12.28(-14.78) \mathrm{kcal} / \mathrm{mol}$ and $-17.49(-17.02) \mathrm{kcal} / \mathrm{mol}$ in solid (solution), which demonstrates increased electron density of the whole TPP skeleton and superior electronic conjugation merit of TPP- $4 \mathrm{OCH}_{3}$ to the others.

Chart S2 Molecular structures of TPP and its derivatives with the labeled atom index.
（a）安安安安

（b）
故

Fig．S1 Setup of the QM／MM models for PRZ（a），TPP（b）and TPP－4OCH 3 （c），respectively．
(a)
Dimer 1

Fig. S2 Transition characteristics and proportions for dimers within $\sim 10 \AA$ of the QM centroid in TPP $-4 \mathrm{OCH}_{3}$ aggregates.

Fig. S3 Normalized PL spectra of TPP and its derivatives in THF solution (10 $\mu \mathrm{M}$) (a) and crystal $(E x=310 \mathrm{~nm})(b)$.

Fig. S4 Relevant intermolecular interactions for dimers of Fig. 2 in TPP aggregates.

Fig. S5 Molecular packing structures within $\sim 10 \AA$ of the QM centroid (a) and relevant intermolecular interactions (b) in TPP-4CF ${ }_{3}$ aggregates.
(a)
(b)

Fig. S6 Molecular packing structures within $\sim 10 \AA$ of the QM centroid (a) and relevant intermolecular interactions (b) in TPP-4OCH 3 aggregates.

Fig. S7 Calculated (cal., a, c, e) and experimental (exp., b, d, f) UV-Vis absorption spectra for TPP and its derivatives in THF solution and crystal.

Fig. S8 Involved molecular orbitals in the energy levels, charge density distributions, transition proportions and oscillator strengths for PRZ, TPP and its derivatives at the S_{1}-optimized geometries in solution.
(a)

$H_{c t}=2.519 \AA$

(b)

Fig. S9 NTO characters and transition proportions for PRZ, TPP and its derivatives at the $\mathrm{S}_{1}-$ optimized geometries in solution (a). Centroids of holes (red region) and electrons (blue region) of the corresponding transition at the optimized structures, with the labels of holes/electrons centers (red/blue point) and two indexes ($D_{\mathrm{h}, \mathrm{e}}$ and H_{CT}) (b).
(a)

PRZ

TPP-4OCH 3
ESP (kcal/mol)
(b)

x	0.00
y	0.00
z	-0.65
Total $=0.65$	

x 0.00
z $\quad 1.09$
Total $=5.89$

x -0.04

x 4.83
y 5.49
z 0.00
Total = 7.31
EDM (Debye)

Fig. S10 ESP isosurfaces of electron density (a) and EDM values (b) for PRZ, TPP and its derivatives at the S_{1}-optimized geometries in solution.

Fig. S11 Gas-phase transition properties for TPP with molecular structure maintaining S_{1}-optimized geometry in solution and solid, respectively.

Fig. S12 Demonstration of molecular motion by twisting the pyrazine ring of TPP and individual PRZ alongside the $\mathrm{N}_{1}-\mathrm{N}_{2}$ linked axis.

Fig. S13 Relaxation energy λ_{j} of each normal mode for TPP-4CF ${ }_{3}$ (a) and TPP-4OCH ${ }_{3}$ (b) in solution.

Fig. S14 Diagonal elements $R_{k k}$ of the electronic coupling matrix $R_{k l}$ versus mode frequency ω_{j} for TPP derivatives in solution (black) and solid (red).

Table S1 Calculated emission wavelengths (in nm) by using different functionals based on the S_{1-} optimized geometries at the level of PBE0/6-31G(d), as well as the experimental data (exp.) for TPP and its derivatives in solution and solid.

Solution	HF\%	TPP	TPP-4CF $_{3}$	TPP-4OCH
exp.	-	390^{a}	400^{a}	433^{a}
CAM-B3LYP	-	384	417	433
M062X	54	383	414	430
BMK	42	391	421	439
PBE0	25	418	448	472
B3LYP	20	431	461	487
Solid				
exp.	-	398^{b}	392^{b}	435^{b}
CAM-B3LYP	-	392	386	367
M062X	54	402	396	364
BMK	42	409	403	376
PBE0	25	434	429	414
B3LYP	20	445	441	430

${ }^{a}$ In THF solution. ${ }^{b}$ In crystal.

Table S2 Selected dihedral angles (in deg) for PRZ in solution and solid. $\mathrm{S}_{0} / \mathrm{S}_{1}$ and Δ represent the geometric parameters extracted from the optimized $\mathrm{S}_{0} / \mathrm{S}_{1}$ states and the modifications between the two states, respectively.

		S_{0}	S_{1}	Δ	S_{0}	S_{1}	Δ
		Solution				Solid	
PRZ	5-	0.07	0.01	0.06	0.14	-0.09	0.23
	6-	-0.07	-0.01	0.06	-0.14	0.10	0.24

Table S3 Calculated configuration proportion $\alpha_{\mathrm{n}} \%$ of occupied frontier orbitals for S_{1} states based on natural atomic orbital (NAO) method in solid.

PRZ			TPP-4OCH ${ }_{3}$		
$\alpha_{\mathrm{n}} \%=60.70 \% * 99.06 \%=60.13 \%$			$\alpha_{\mathrm{n}} \%=0.49 \%$ * $(90.15 \%+4.40 \%)=0.46 \%$		
Basis	Atom	$\alpha_{n}{ }^{i}$	Basis	Atom	$\alpha_{n}{ }^{i}$
P_{Y}	1(N)	30.34\%	P_{Y}	1(N)	0.24\%
P_{Y}	2(N)	30.36\%	P_{Y}	2(N)	0.25\%
TPP					
$\alpha_{\mathrm{n}} \%=51.81 \% * 50.90 \%+4.57 \% * 43.58 \%=28.36 \%$					
HOMO-1			HOMO		
Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$	Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$
P_{Y}	1(N)	26.87\%	P_{Y}	1(N)	2.34\%
P_{Y}	2(N)	24.94\%	P_{Y}	2(N)	2.23\%
TPP-4CF3					
$\alpha_{\mathrm{n}} \%=50.63 \% * 49.07 \%+5.42 \% * 43.52 \%=27.20 \%$					
HOMO-1			HOMO		
Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$	Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$
P_{Y}	1(N)	22.81\%	P_{Y}	1(N)	4.91\%
P_{Y}	2(N)	27.82\%	P_{Y}	2(N)	0.52\%

Table S4 Calculated configuration proportions $\alpha_{\pi} \%, \alpha_{\sigma} \%$ and $\alpha_{n} \%$ of occupied frontier orbitals for S_{1} states based on NAO method in solid.

Solid	$\alpha_{\mathrm{n}} \%$	$\alpha_{\sigma} \%$	$\alpha_{\pi} \%$
PRZ	60.13%	37.56%	0.00%
TPP	28.36%	24.79%	40.37%
TPP-4CF $_{3}$	27.20%	23.01%	41.49%
TPP-4OCH $_{3}$	0.46%	13.84%	79.75%

Table S5 Calculated configuration proportion $\alpha_{\mathrm{n}} \%$ of occupied frontier orbitals for S_{1} states based on NAO method in solution.

PRZ			TPP-4OCH ${ }_{3}$		
$\alpha_{\mathrm{n}} \%=61.10 \% * 99.02 \%=60.49 \%$			$\alpha_{\mathrm{n}} \%=0.59 \%$ * $95.38 \%=0.56 \%$		
Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$	Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$
P_{Y}	1(N)	30.55\%	P_{Y}	1(N)	0.29\%
P_{Y}	2(N)	30.55\%	P_{Y}	2(N)	0.29\%
TPP			TPP-4CF 3		
$\alpha_{\mathrm{n}} \%=0.00 \% * 95.74 \%=0.00 \%$			$\alpha_{\mathrm{n}} \%=0.85 \%$ * $96.50 \%=0.82 \%$		
Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$	Basis	Atom	$\alpha_{\mathrm{n}}{ }^{i}$
P_{Y}	1(N)	0.00\%	P_{Y}	1(N)	0.42\%
P_{Y}	2(N)	0.00\%	P_{Y}	2(N)	0.42\%

Table S6 Calculated configuration proportions $\alpha_{\pi} \%, \alpha_{\sigma} \%$ and $\alpha_{n} \%$ of occupied frontier orbitals for S_{1} states based on NAO method in solution.

Solution	$\alpha_{\mathrm{n}} \%$	$\alpha_{0} \%$	$\alpha_{\pi} \%$
PRZ	60.49%	37.18%	0.00%
TPP	0.00%	13.86%	81.44%
TPP-4CF	3	0.82%	18.06%
TPP-4OCH $_{3}$	0.56%	18.06%	76.13%

Table S7 Average ESP values ($\mathrm{kcal} / \mathrm{mol}$) on the local surface of carbon atoms for PRZ, TPP and its derivatives in solid. The mean values of total carbon atoms in a single ring are given in bold. Average of pyrazine core and four phenyl rings are shown in red and blue, respectively.

Labels	PRZ	TPP	TPP-4CF $_{3}$	TPP-4OCH
Pyrazine core	$\mathbf{- 0 . 5 6}$	$\mathbf{- 5 . 3 7}$	$\mathbf{1 1 . 2 9}$	$-\mathbf{1 2 . 2 8}$
C3	-0.74	-5.40	11.67	-12.92
C4	-0.36	-5.14	12.36	-12.61
C5	-0.73	-5.80	9.38	-11.19
C6	-0.42	-5.13	11.75	-12.41
Phenyl rings		$\mathbf{- 1 5 . 7 0}$	$\mathbf{0 . 8 5}$	$-\mathbf{1 7 . 4 9}$
ring 1	$\mathbf{- 1 5 . 3 3}$	$\mathbf{1 . 7 3}$	$-\mathbf{1 7 . 5 1}$	
C7	-15.84	4.57	-20.61	
C8	-16.86	1.45	-19.97	
C10	-14.24	0.24	-15.39	
C12	-13.40	0.96	-12.42	
C14	-15.34	0.50	-17.90	
C16	-16.30	2.65	-18.80	
ring 2	$-\mathbf{1 5 . 6 1}$	$\mathbf{2 . 0 5}$	$-\mathbf{1 8 . 5 2}$	
C18	-21.70	0.52	-23.40	
C19	-16.30	2.41	-19.81	
C21	-13.58	4.21	-16.63	
C23	-12.30	3.44	-13.64	
C25	-11.82	1.99	-17.17	
C27		-17.99	-0.30	-20.48
ring 3	$-\mathbf{1 5 . 4 4}$	$\mathbf{- 0 . 1 4}$	$-\mathbf{1 6 . 7 3}$	
C29	-16.16	-1.46	-21.59	
C30	-17.20	0.56	-19.74	
C32	-14.72	0.98	-14.18	
C34	-13.32	1.05	-10.96	
C36	-15.07	-0.35	-15.01	
C38	-16.14	-1.63	-18.91	
ring 4	$-\mathbf{1 6 . 4 2}$	$\mathbf{- 0 . 2 3}$	$-\mathbf{1 7 . 2 1}$	
C40	-22.11	-2.72	-24.78	
C41	-17.38	-0.48	-19.36	
C43	-14.64	1.21	-12.38	
C45	-12.99	1.56	-9.69	
C47	-12.63	-0.12	-16.23	
C49	-18.78	-0.82	-20.81	

Table S8 Average ESP values ($\mathrm{kcal} / \mathrm{mol}$) on the local surface of carbon atoms for PRZ, TPP and its derivatives in solution. The mean values of total carbon atoms in a single ring are given in bold. Average of pyrazine core and four phenyl rings are shown in red and blue, respectively.

Labels	PRZ	TPP	$\mathrm{TPP}^{2}-4 \mathrm{CF}_{3}$	TPP-4OCH
Pyrazine core	$\mathbf{- 0 . 1 0}$	$\mathbf{- 5 . 7 4}$	$\mathbf{1 3 . 4 6}$	$\mathbf{- 1 4 . 7 8}$
C3	-0.07	-5.75	13.48	-14.20
C4	-0.11	-5.71	13.45	-15.33
C5	-0.14	-5.77	13.50	-14.21
C6	-0.08	-5.72	13.41	-15.37
Phenyl rings		$\mathbf{- 1 4 . 6 5}$	$\mathbf{2 . 8 0}$	$\mathbf{- 1 7 . 0 2}$
ring 1		$\mathbf{- 1 3 . 7 1}$	$\mathbf{2 . 8 1}$	$-\mathbf{1 6 . 0 0}$
C7	-15.60	5.03	-19.53	
C8	-14.95	3.25	-17.02	
C10	-13.31	1.30	-13.25	
C12	-11.87	1.74	-11.34	
C14	-12.00	2.50	-16.21	
C16	-14.52	3.05	-18.65	
ring 2	$-\mathbf{1 3 . 6 9}$	$\mathbf{2 . 8 0}$	$-\mathbf{1 8 . 0 3}$	
C18	-15.43	5.02	-22.29	
C19	-14.61	3.06	-19.05	
C21	-11.96	2.46	-14.74	
C23	-11.88	1.76	-13.40	
C25	-13.32	1.30	-18.52	
C27		-14.95	3.23	-20.17
ring 3	$-\mathbf{1 5 . 5 8}$	$\mathbf{2 . 8 1}$	$-\mathbf{1 6 . 0 1}$	
C29	-19.84	5.02	-19.60	
C30	-16.34	3.23	-17.06	
C32	-13.98	1.31	-13.22	
C34	-13.10	1.79	-11.23	
C36	-13.51	2.46	-16.23	
C38	-16.71	3.07	-18.74	
ring 4	$-\mathbf{1 5 . 6 1}$	$\mathbf{2 . 7 9}$	$-\mathbf{1 8 . 0 4}$	
C40	-20.05	4.99	-22.28	
C41	-16.70	3.05	-19.10	
C43	-13.49	2.47	-14.72	
C45	-13.07	1.70	-13.40	
C47	-13.99	1.32	-18.54	
C49	-16.38	3.24	-20.22	

Table S9 Rotation magnitude of four phenyls and the configuration proportion $\alpha_{\mathrm{n}} \%$ of occupied frontier orbitals for TPP in gas phase.

TPP				
$1-$	-10.00	-20.00	-30.00	-40.00
$2-$	-10.00	-20.00	-30.00	-40.00
$3-$	10.00	20.00	30.00	40.00
$4-$	10.00	20.00	30.00	40.00
$\alpha_{n} \%$	4.12%	18.24%	30.78%	35.64%

Table S10 Twisting degree of the pyrazine ring and the configuration proportion $\alpha_{\mathrm{n}} \%$ of occupied frontier orbitals for TPP and PRZ in gas phase.

α / β	0°	2.5°	5°	7.5°	10°	12.5°	15°
TPP							
$\alpha_{\mathrm{n}} \%$	29.00%	28.45%	26.10%	22.16%	17.09%	11.86%	7.71%
PRZ							
$\alpha_{\mathrm{n}} \%$	60.51%	60.14%	59.02%	56.70%	53.16%	51.62%	49.00%

Table S11 Relaxation energies (meV) of low-frequency modes ($\lambda_{\mathrm{LF}},<200 \mathrm{~cm}^{-1}$), mid-frequency modes ($\lambda_{\mathrm{MF}}, 200-1400 \mathrm{~cm}^{-1}$) and high-frequency modes ($\lambda_{\mathrm{HF}}, 1400-1800 \mathrm{~cm}^{-1}$), as well as their contributions to the total $\lambda_{\text {total }}$ for TPP and its derivatives in solution and solid.

Solution	λ_{LF}	λ_{MF}	λ_{HF}	$\lambda_{\text {total }}$	$\lambda_{\mathrm{LF}} / \lambda_{\text {total }}$	$\lambda_{\mathrm{MF}} / \lambda_{\text {total }}$	$\lambda_{\mathrm{HF}} / \lambda_{\text {total }}$
TPP	319	118	162	599	0.53	0.20	0.27
TPP-4CF	229	90	134	453	0.50	0.20	0.30
TPP-4OCH	3	217	116	136	469	0.46	0.25
Solid							0.29
TPP	95	286	210	591	0.16	0.48	0.36
TPP-4CF		50	239	197	486	0.10	0.49
TPP-4OCH $_{3}$	62	111	92	265	0.23	0.42	0.35

Table S12 Relaxation energies (meV) from bond length $\lambda_{\text {bond }}$, bond angle $\lambda_{\text {angle }}$ and dihedral angle $\lambda_{\text {dihedral }}$, as well as their contributions to the total $\lambda_{\text {total }}$ for TPP and its derivatives in solution and solid.

Solution	$\lambda_{\text {bond }}$	$\lambda_{\text {angle }}$	$\lambda_{\text {dihedral }}$	$\lambda_{\text {total }}$	$\lambda_{\text {bond }} / \lambda_{\text {total }}$	$\lambda_{\text {angle }} / \lambda_{\text {total }}$	$\lambda_{\text {dihedral }} / \lambda_{\text {total }}$
TPP	221	7	371	599	0.369	0.012	0.619
TPP-4CF	206	12	235	453	0.455	0.026	0.519
TPP-4OCH $_{3}$	182	18	269	469	0.388	0.038	0.574
Solid							
TPP	187	196	208	591	0.316	0.332	0.352
TPP-4CF		184	180	122	486	0.379	0.370
TPP-4OCH $_{3}$	115	55	95	265	0.434	0.208	0.351

Table S13 Bond angles with large relaxation energies ($>1 \mathrm{meV}$) for TPP and its derivatives in solution and solid.

Solution					
TPP	meV	TPP-4CF3	meV	TPP-4OCH 3	meV
Junction		Junction		Pyrazine core	
N2-C4-C18	2.46	N1-C3-C7	2.00	C3-N1-C6	3.12
N1-C3-C7	2.46	N2-C5-C29	2.00	C4-N2-C5	3.12
C4-C3-C7	1.26	N2-C4-C18	1.95	Junction	
C3-C4-C18	1.26	N1-C6-C40	1.95	N2-C5-C29	2.40
C4-C18-C27	1.19			N1-C3-C7	2.40
C3-C7-C8	1.19			C5-C6-C40	1.69
Phenyl rings				Phenyl rings	1.69
C19-C18-C27	1.07			C30-C29-C38	1.46
C8-C7-C16	1.07			P8-C7-C16	1.45
Solid					
Pyrazine core		Pyrazine core			
C3-N1-C6	45.63	C3-N1-C6			N1-C6-C5
C4-N2-C5	41.74	N1-C3-C4	24.18	C3-N1-C6	11.36
N2-C5-C6	17.79	C4-N2-C5	16.51	C4-N2-C5	11.24
N1-C3-C4	17.13	N2-C5-C6	13.54	N2-C4-C3	7.11
N1-C6-C5	6.88	N1-C6-C5	2.78	Junction	
N2-C4-C3	5.77	N2-C4-C3	1.95	C5-C6-C40	3.29
Junction		Junction		N1-C6-C40	2.25
N2-C4-C18	15.95	N2-C5-C29	17.32	C3-C4-C18	1.86
N1-C6-C40	13.80	N2-C4-C18	13.56	N2-C4-C18	1.67
N2-C5-C29	8.47	N1-C3-C7	12.71	C3-C7-C16	1.25
N1-C3-C7	7.56	C3-C4-C18	5.72	Phenyl rings	
C5-C29-C38	2.74	N1-C6-C40	4.81	C8-C7-C16	1.19
C3-C7-C16	2.72	C3-C7-C16	2.33	C30-C29-C38	1.03
C3-C4-C18	2.35				
Phenyl rings					
C30-C29-C38	1.33				
C8-C7-C16	1.08				

Table S14 N1 $\cdots \mathrm{N} 2$ distance (in \AA) and selected bond angles (in deg) at the optimized S_{0} states for TPP and its derivatives. Δ represents the geometric difference between solution and solid.

	Solution	Solid	Δ	Solution	Solid	Δ	Solution	Solid	Δ
	TPP			TPP-4CF ${ }_{3}$			TPP-4OCH3		
B(N1 $\cdots \mathrm{N} 2$)	2.78	2.63	-0.15	2.77	2.62	-0.15	2.77	2.81	0.04
A(C3-N1-C6)	120.83	128.28	7.45	119.81	129.35	9.54	119.05	117.69	-1.36
A(C4-N2-C5)	120.83	128.05	7.22	119.81	127.65	7.84	119.05	117.61	-1.44

