Supporting Information

for

AIE-Active 9,10-Azaboraphenanthrene-Containing Viologens for

Reversible Electrochromic and Electrofluorochromic Applications

Yan Ni,^{*a,b} Weidong Zhang,^c Guoping Li,^b Sikun Zhang,^b Xiaodong Yang,^b Kun Zhou,^b Dandan Pei,^{*b} Zujing Zhao,^d Gang He^{*b,d}

^aPolymer Materials & Engineering Department, School of Materials Science & Engineering, Engineering Research Center of Transportation Materials, Ministry of Education, Chang'an University, Xi'an, Shaanxi 710064, China
^bKey Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
^cChemical Engineering College, Qinghai University, Xining 810016, China
^dGuangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China
Email: niyan@chd.edu.cn; peidandan1986@126.com, ganghe@mail.xjtu.edu.cn

Contents

1. Materials and instrumentation	
2. Experimental procedures and data	S3
3. DFT computations	S7
4. Single-crystal X-ray structure determination	S7
5. The UV-vis and emission spectra	S11
6. Electrochemical properties	S22
7. DFT calculations	S25
9. ¹ H NMR and ¹³ C NMR spectra	S35
10. Coordinates of molecular structure	S43
11. Reference	S58

1. Materials and instrumentation

General. All reactions were performed using standard Schlenk and glovebox (Vigor) techniques under argon atmosphere. Et₂O, THF, hexanes and toluene were distilled from sodium/benzophenone prior to use. Trimethyltin chloride (99%), tetrakis(triphenylphosphine) palladium (Pd(Ph₃P)₄) (99%), potassium carbonate (99%), and were purchased from Energy (Me_2SnCl_2) Chemical Inc. Dimethyltin dichloride (99%) purchased from TCI. Phenylborondichloride (PhBCl₂) were obtained from Sigma-Aldrich. 4-Pyridineboronic acid pinacol ester (98%) were purchased from Energy Chemical. Unless otherwise indicated, all other reagents and solvents were used as commercially available without further purification. Compound **5** prepared according to literature procedures.¹ EC and EFC Device fabrication prepared according to literature procedures.² Column chromatographic purification of products was accomplished using 200-300 mesh silica gel.

NMR spectra were measured on a Bruker Avance-400 spectrometer in the solvents indicated; chemical shifts are reported in units (ppm) by assigning CHCl₃ resonance in the ¹H spectrum as 7.26 ppm, CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). UV-vis measurements were performed using DH-2000-BAL Scan spectrophotometer. Fluorescence measurements were conducted on an FLS920 system. Single crystal X-ray diffraction analysis was carried out on a Bruker Apex Duo instrument. The cyclic voltammetry (CV) were measured using a CHI660E B157216 set up. EPR was measured using a Bruker EMX PLUS6/1 instrument at room temperature in dry degassed DMF.

2. Experimental procedures and data

2.1 Synthesis of 5-mesityl-6-phenyl-3,8-di(pyridin-4-yl)-5,6-dihydrodibenzo[c,e] [1,2]azaborinine (2):

i) Suzuki cross-coupling: Pd(PPh₃)₄, 5 mol%, Aliquant₃₃₆, 10 mol%, K₂CO₃ (2M),Toluene;

Compound 1 (0.212g, 0.4 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine (0.246 g, 1.2 mmol), Pd(PPh₃)₄ (24 mg, 5 mmol%), Aliquant336 (16 mg, 10 mmol%) and Ar₂-sparged aqueous potassium carbonate (2.0 M, 3.6 mL, 2.0 mmol) were dissolved in 8 mL of toluene in a Schlenk flask. The reaction mixture was stirred for 48 h at 110 °C. The reaction mixture was then cooled to room temperature, the solvent was removed in vacuo, the product was purified via column chromatography (silica gel, Petroleum ether/ ethyl acetate = 1 : 1) afforded the white title compound, recrystallized from hexanes and CH₂Cl₂ at -30 °C to give 2 as white crystals (0.108g, 51%). ¹H NMR (400 MHz, CDCl₃): δ 8.70 (dd, J = 8.8 Hz, 2.0 Hz, 2H, ArH), 8.64 (dd, J = 4.4 Hz, 1.6 Hz, 2H, ArH), 8.61 (dd, J = 4.4 Hz, 1.6 Hz, 2H, ArH), 8.22 (d, J = 2.0 Hz, 1H, ArH), 8.10 (dd, J = 4.8 Hz, 2.0 Hz, 1H, ArH), 7.63 (dd, J = 8.4 Hz, 1.6 Hz, 1H, ArH), 7.53 (dd, J = 4.4 Hz, 1.6 Hz, 2H, ArH), 7.36-7.24 (m, 5H, ArH), 7.10 (d, J = 1.6 Hz, 1H, ArH), 6.90 (s, 1H, ArH), 2.30 (s, 3H, CH₃), 1.93 (s, 6H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 150.3, 147.9, 147.8, 140.8, 139.1, 138.5, 138.3, 136.9, 136.0, 135.8, 134.6, 132.5, 129.7, 129.4, 127.7, 127.0, 125.2, 124.6, 123.1, 121.6, 120.7, 115.4 (Ar-C), 21.1, 18.0 (CH₃-C). ¹¹B NMR (128 MHz, CDCl₃) δ 37.7 (bs). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₇H₃₀BN₃, 528.2606, found, 528.2608. UV/vis (in DMF): $\lambda_{max}(\varepsilon) = 352$ nm (2.27 × 10⁴ M⁻¹ cm⁻¹). Fluorescence emission (in DMF) (λ_{ex} = 350 nm): λ_{emis} = 515 nm. Lifetime (in DMF): τ = 8.22 ns. Mp (°C): 243.1-244.4.

To a suspension of **2** (105 mg, 0.2 mmol) in dichloromethane at 0 °C was added methyl triflate (328 mg, 2.0 mmol). The mixture was brought to room temperature and left to stir overnight. The precipitate was collected via vacuum filtration and washed with DCM to afford the title product **3** as a white powder (152 mg, 86%). ¹H NMR (400 MHz, DMSO): δ 9.15 (dd, J = 8.8 Hz, 2.8 Hz, 2H, Ar*H*), 8.98-8.94 (m, 4H, Ar*H*), δ 8.52 (dd, J = 8.8 Hz, 2.0 Hz, 1H, Ar*H*), 8.37 (d, J = 6.4 Hz, 2H, Ar*H*), 8.22 (s, 1H, Ar*H*), 8.15 (d, J = 6.8 Hz, 2H, Ar*H*), 8.02 (d, J = 8.8 Hz, 1H, Ar*H*), 7.33-7.27 (m, 5H, Ar*H*), 7.08 (s, 1H, Ar*H*), 7.00 (s, 2H, Ar*H*), 4.32 (s, 3H, C*H*₃), 4.30 (s, 3H, C*H*₃), 2.27 (s, 3H, C*H*₃), 1.90 (s, 6H, C*H*₃). ¹⁹F NMR (376 MHz, DMSO), δ -77.75 ppm; ¹³C NMR (100 MHz, DMSO) δ 154.6, 154.4, 146.3, 146.3, 141.1, 140.7, 138.3, 137.1, 135.7, 134.7, 133.2, 132.6, 131.5, 129.9, 128.6, 127.7, 126.2, 125.4, 125.0, 124.9, 122.6, 119.5, 116.1 (Ar-C), 47.7, 21.1, 18.0 (CH₃-C). ¹¹B NMR (128 MHz, DMSO) δ 31.3 (bs). HRMS (ESI) *m/z*: [M]⁺ calcd for C₃₉H₃₆BN₃²⁺, 278.6496, found, 278.6483. UV/vis (in DMF): λ_{max} (ε) = 381 nm (3.22 × 10⁴ M⁻¹ cm⁻¹). Lifetime (solid): $\tau = 15.0$ ns. Mp (°C): 256.2-258.0.

2.3 Synthesis of 4,4'-(5-mesityl-6-phenyl-5,6-dihydrodibenzo[c,e][1,2]azaborinine-3,8-diyl)bis(1-benzylpyridin-1-ium)·Br (4a) :

To a suspension of **2** (105 mg, 0.2 mmol) at room temperature was added benzyl bromide (2 mL), the temperature was allowed to rise to 60 °C and left to stir overnight. The precipitate was collected via vacuum filtration and washed with DCM to afford the title product **4a** as a yellow powder (128 mg, 90%). ¹H NMR (400 MHz, DMSO): δ 9.23-9.18 (m, 4H, Ar*H*), 9.14 (dd, *J* = 8.8 Hz, 2.4 Hz, 2H, Ar*H*), 8.53 (d, *J* = 8.8 Hz, 1H, Ar*H*), 8.41 (d, *J* = 6.4 Hz, 2H, Ar*H*), 8.22-8.20 (m, 3H, Ar*H*), 8.04 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.59-7.57 (m, 4H, Ar*H*), 7.46-7.43 (m, 6H, Ar*H*), 7.31-7.27 (m, 5H, Ar*H*), 7.12 (d, *J* = 1.6 Hz, 1H, Ar*H*), 6.98 (s, 2H, Ar*H*), 5.86 (s, 2H, C*H*₂), 5.85 (s, 2H, C*H*₂), 2.26 (s, 3H, C*H*₃), 1.89 (s, 6H, C*H*₃). ¹³C NMR (100 MHz, DMSO) δ 154.9, 154.5, 145.0, 144.9, 140.7, 140.4, 137.8, 136.8, 136.6, 135.0, 134.4, 134.3, 134.2, 132.6, 132.1, 131.3, 129.4, 129.4, 129.3, 129.0, 128.9, 128.1, 127.2, 125.9, 125.2, 125.0, 122.3, 115.7, 62.5, 39.5, 20.7, 17.6. ¹¹B NMR (128 MHz, DMSO) δ 37.0 (bs). HRMS (ESI) *m/z*: [M]⁺ calcd for C₅₁H₄₄BN₃²⁺, 354.6809, found, 354.6797. UV/vis (in DMF): λ_{max} (ε) = 383 nm (2.65 × 10⁴ M⁻¹ cm⁻¹). Lifetime (solid): τ = 3.6 ns. Mp (°C): 266.2-268.1.

2.4 Synthesis of 4,4'-(5-mesityl-6-phenyl-5,6-dihydrodibenzo[c,e][1,2]azaborinine-3,8-diyl)bis(1-benzylpyridin-1-ium)·OTf (4b):

To a suspension of **4a** (100 mg, 0.14 mmol) in dichloromethane at 0 °C was added methyl triflate (328 mg, 2.0 mmol). The mixture was brought to room temperature and left to stir overnight. The precipitate was collected via vacuum filtration and washed with hexane to afford the title product **4b** as a yellow powder (114 mg, 81%). ¹H NMR (400 MHz, DMSO): δ 9.18-9.13 (m, 6H, Ar*H*), 8.51 (dd, *J* = 6.8 Hz, 1.6 Hz, 1H, Ar*H*), 8.40 (d, *J* = 6.4 Hz, 2H, Ar*H*), 8.22 (d, *J* = 1.6 Hz, 1H, Ar*H*), 8.19 (d, *J* = 6.8 Hz, 2H, Ar*H*), 8.04 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.56-7.54 (m, 4H, Ar*H*), 7.48-7.43 (m, 6H, Ar*H*), 7.31-7.23 (m, 5H, Ar*H*), 7.12 (d, *J* = 1.6 Hz, 1H, Ar*H*), 6.98 (s, 2H, Ar*H*), 5.82 (s, 2H, C*H*₂), 5.80 (s, 2H, C*H*₂), 2.25 (s, 3H, C*H*₃), 1.88 (s, 6H, C*H*₃). ¹⁹F NMR (376 MHz, DMSO), δ -77.75 ppm; ¹³C NMR (100 MHz, DMSO) δ 155.4, 155.1, 145.5, 145.4, 141.2, 140.8, 138.2, 137.1, 135.4, 134.7, 134.7, 134.6, 133.1, 132.5, 129.9, 129.8, 129.7, 129.4, 129.3, 128.5, 128.5, 127.6, 126.9, 126.4, 125.7, 125.4, 122.8, 119.6, 116.2, 63.2, 63.1, 21.1, 18.0. ¹¹B NMR (128 MHz, DMSO) δ 29.0 (bs). HRMS (ESI) *m*/*z*. [M]⁺ calcd for C₅₁H₄₄BN₃²⁺, 354.6809, found, 354.6797. UV/vis (in DMF): λ_{max} (ε) = 385 nm (2.39 × 10⁴ M⁻¹ cm⁻¹). Lifetime (solid): τ = 4.0 ns. Mp (°C): 178.2-180.1.

2.5 Synthesis of 4,4'-(9,10-diphenylphenanthrene-2,7-diyl)dipyridine (6):

i) Suzuki cross-coupling: Pd(PPh₃)₄, 5 mol%, Aliquant₃₃₆, 10 mol%, K₂CO₃ (2M),Toluene;

Monomer **5** (0.256g, 0.57 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine (0.35g, 1.71 mmol), Pd(PPh₃)₄ (35 mg, 5 mmol%), Cs₂CO₃ (0.69 g, 2.12 mmol), and a 1:1 mixture of dry PhMe/DMF (16 mL) was heated to 130 °C under microwave for 1 h before the hot reaction mixture was rendered acidic (pH 2–3) by adding dropwise concentrated HCl, which caused the crude product to precipitate from solution. Then, the reaction mixture was cooled to room temperature, filtered, and washed with CH₂Cl₂. The solid was dispersed in H₂O at 80 °C and the insoluble material was filtered off before an aqueous NaOH solution (10 M) was added dropwise to the filtrate until the pH was 8~9, resulting in precipitation of the desired product. The

solid was filtered and washed with H₂O, dissolved in CHCl₃, and filtered through Celite. The filtrate was concentrated in vacuo, yielding pure **6** (80 mg, 30%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, *J* = 8.8 Hz, 2H, Ar*H*), 8.63 (d, *J* = 5.2 Hz, 4H, Ar*H*), 7.99 (dd, *J* = 8.4 Hz, 2.0 Hz, 2H, Ar*H*), 7.87 (d, *J* = 2.0 Hz, 2H, Ar*H*), 7.47 (d, *J* = 6.0 Hz, 4H, Ar*H*), 7.31-7.19 (m, 10H, Ar*H*); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 148.1, 138.7, 138.2, 136.4, 132.6, 130.9, 130.0, 127.9, 127.0, 126.4, 125.1, 123.8, 121.7. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₃₆H₂₅N₂, 485.2012, found, 485.2013. UV/vis (in DMF): λ_{max} (ε) = 286 nm (4.21 × 10⁴ M⁻¹ cm⁻¹). Fluorescence emission (in DMF) (λ_{ex} = 330 nm): λ_{emis} = 397 nm. Lifetime (in DMF): τ = 15.6 ns. Mp (°C): > 300.

2.6 Synthesis of 4,4'-(9,10-diphenylphenanthrene-2,7-diyl)bis (1-methylpyridin-1-ium)·OTf (7) :

To a suspension of **6** (59 mg, 0.12 mmol) in dichloromethane at 0 °C was added methyl triflate (164 mg, 1 mmol). The mixture was brought to room temperature and left to stir overnight. The precipitate was collected via vacuum filtration and washed with DCM to afford the title product **7** as a white powder (93 mg, 92%). ¹H NMR (400 MHz, DMSO): δ 9.39 (d, *J* = 4.4 Hz, 2H, Ar*H*), 8.98 (d, *J* = 6.4 Hz, 4H, Ar*H*), 8.38 (d, *J* = 8.4 Hz, 2H, Ar*H*), 8.29 (d, *J* = 6.4 Hz, 4H, Ar*H*), 7.90 (s, 2H, Ar*H*), 7.36-7.28 (m, 10H, Ar*H*), 4.32 (s, 6H, C*H*₃). ¹⁹F NMR (376 MHz, DMSO), δ -77.75 ppm; ¹³C NMR (100 MHz, DMSO) δ 154.6, 146.3, 143.2, 138.7, 138.2, 133.9, 132.8, 131.3, 131.2, 128.4, 127.8, 127.6, 127.4, 126.6, 126.1, 125.1, 122.8, 119.6 (Ar-C), 47.7 (CH₃-C). HRMS (ESI) *m*/*z*: [M]⁺ calcd for C₃₈H₃₀N₂²⁺, 257.1199, found, 257.1190. UV/vis (in DMF): λ_{max} (ϵ) = 347 nm (3.72 × 10⁴ M⁻¹ cm⁻¹). Fluorescence emission (in DMF) (λ_{ex} = 365 nm): λ_{emis} = 506 nm. Lifetime (in DMF): τ = 18.0 ns. Mp (°C): > 300.

3. DFT computations

All calculations were carried out with the GAUSSIAN 09 program package.³ The geometries for the ground state of compounds **2**, **3**, **4a**, **4b**, **6** and **7** were optimized at the B3LYP level with the 6-31G* basis set.⁴⁻⁶

The simulated UV–Vis spectra for optimized molecules were performed at the time dependent density functional theory (TD-DFT)^{7, 8} at the ground-state equilibrium geometries were determined using the B3LYP,⁴⁻⁶ in association with the 6-31G* basis set.

It should be pointed out that the structures of all stationary points were fully optimized, and frequency calculations were performed at the same level. The frequency calculations confirmed the nature of all revealed equilibrium geometries: there were no imaginary frequencies.

4. Single-crystal X-ray structure determination

X-ray Crystallography. Crystals of appropriate quality for X-ray diffraction studies were removed from a vial (in a glove box) and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was then selected, attached to a glass fiber, and quickly placed in a glass vial. All data were collected using a Bruker APEX II CCD detector/D8 diffractometer using Mo/Cu Kα radiation. The data were corrected for absorption through Gaussian integration from indexing of the crystal faces. Structures were solved using the direct methods programs SHELXS-97, and refinements were completed using the program SHELXL-97.

Figure S1. Molecular Structure of **2** (CCDC 1878987) with thermal ellipsoids presented at a 50% probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): N(1)—C(12), 1.412(4); N(1)—B(1), 1.414(5); N(1)—C(19), 1.452(5); B(1)—C(1), 1.551(6); B(1)—C(14), 1.576(5). Bond angles (deg): C(12)—N(1)—B(1), 123.2(3); C(12)—N(1)—C(19), 116.1(3); B(1)—N(1)—C(19), 120.7(3); N(1)—B(1)—C(1), 116.0(3); N(1)—B(1)—C(14), 121.8(3); C(1)—B(1)—C(14), 122.2(3).

E	mpirical formula	C ₂₇ H ₂₂ BBr ₂ N	(,
F	ormula weight	531.08	
Te	emperature	153(2) K	
V	/avelength	0.71073 Å	
C	rystal system, space group	Monoclinic, P2(1)	
U	nit cell dimensions	a = 11.2690(4) Å	α = 90 deg.
		b = 7.3358(3) Å	$\beta = 101.4180(10)$
		deg.	
		c = 14.2605(5) Å	$\gamma = 90 \text{ deg.}$
V	olume	1155.54(7) Å^3	
Z	, Calculated density	2, 1.526 Mg/m^3	
A	bsorption coefficient	3.522 mm^-1	
F	(000)	532	
C	rystal size	0.410 x 0.225 x 0.23	31 mm
T	heta range for data ollection	2.111 to 26.415 deg	l.
Li	miting indices	-14<=h<=14, -9<=k	<=9, -17<=l<=17
R	eflections collected / unique	28928 / 4728 [R(int)) = 0.0361]
C 25	ompleteness to theta = 5.242	99.7 %	
R	efinement method	Full-matrix least-squ	uares on F^2
D	ata / restraints / parameters	4728 / 1 / 283	
G	oodness-of-fit on F^2	1.051	
Fi	inal R indices [I>2sigma(I)]	R1 = 0.0271, wR2 =	= 0.0646
R	indices (all data)	R1 = 0.0304, wR2 =	= 0.0664
E	xtinction coefficient	n/a	
La	argest diff. peak and hole	0.608 and -0.865	e. Å^-3

Table S1. Crystallographic experimental details for compound 2 (CCDC 1878987).

Figure S2. Molecular Structure of **4a** (CCDC 1878986) with thermal ellipsoids presented at a 50% probability level. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): N(2)—B(1), 1.416(7); N(2)—C(17), 1.417(6); N(2)—C(43), 1.463(7); N(3)—C(27), 1.337(7); N(3)—C(28), 1.343(7); N(3)—C(30), 1.500(7); N(1)—C(8), 1.338(7); N(1)—C(12), 1.356(7); N(1)—C(7), 1.489(8); C(37)—B(1), 1.576(8); C(24)—B(1), 1.538(8). Bond angles (deg): B(1)—N(2)—C(17), 122.5(4); B(1)—N(2)—C(43), 121.6(4); C(17)—N(2)—C(43), 115.8(4); C(27)—N(3)—C(28), 120.3(5); C(27)—N(3)—C(30), 119.6(5); C(28)—N(3)—C(30), 120.0(5); C(8)—N(1)—C(12), 119.6(5); C(8)—N(1)—C(7), 120.5(5) ; C(12)—N(1)—C(7), 119.9(5); C(48)—C(17)—N(2), 120.2(4); N(2)—C(17)—C(16), 120.3(4); C(44)—C(43)—N(2), 118.4(5); C(48)—C(43)—N(2), 118.7(5); C(23)—C(24)—B(1), 121.6(5); C(19)—C(24)—B(1), 119.6(5); N(3)—C(27)—C(26), 121.4(5); N(3)—C(28)—C(29), 120.2(5); N(1)—C(8)—C(9), 121.4(5); N(1)—C(7)—C(4), 110.9(6); N(1)—C(12)—C(11), 120.8(5); N(2)—B(1)—C(24), 117.1(5); N(2)—B(1)—C(37), 122.0(5); C(24)—B(1)—C(37), 121.0(5).

Table S2. Crystallographic experimenta	I details for compound 4a	(CCDC 1878986).
--	----------------------------------	-----------------

С	54H52BBr2N4O2	
9	59.62	
29	96(2) K	
0.	.71073 Å	
e group M	Ionoclinic, P2(1)	
а	= 12.306(4) Å	α = 90 deg.
b	= 14.658(5) Å	$\beta = 99.846(5) \text{ deg.}$
С	= 27.238(10) Å	$\gamma = 90 \text{ deg.}$
43	841(3) Å^3	
y 4	, 1.317 Mg/m^3	
nt 1.	.719 mm^-1	
19	980	
0.	.286 x 0.244 x 0.22	20 mm
1.	.518 to 24.962 deg].
-1	I4<=h<=12, -16<=	k<=17, -32<=l<=32
l/unique 4 [.]	7181 / 8362 [R(int)) = 0.0476]
eta = 9	5.5 %	
F	ull-matrix least-squ	uares on F^2
rameters 8	362 / 108 / 577	
·^2 1.	.017	
igma(I)] R	1 = 0.0726, wR2 =	= 0.1896
R	1 = 0.1028, wR2 =	= 0.2121
: n/	/a	
d hole 1.	.354 and -1.065 e.	Å^-3
	c group N c group N a b c 4 y 1 1 1 y 4 y 4 y 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	C ₅₄ H ₅₂ BBr ₂ N ₄ O ₂ 959.62 296(2) K 0.71073 Å e group Monoclinic, P2(1) a = 12.306(4) Å b = 14.658(5) Å c = 27.238(10) Å 4841(3) Å^3 4, 1.317 Mg/m^3 nt 1.719 mm^-1 1980 0.286 x 0.244 x 0.22 1.518 to 24.962 deg -14<=h<=12, -16<= 1/ unique 47181 / 8362 [R(int) eta = 95.5 % Full-matrix least-squ 8362 / 108 / 577 7/2 1.017 igma(I)] R1 = 0.0726, wR2 = R1 = 0.1028, wR2 = n/a d hole 1.354 and -1.065 e.

5. The UV-vis and emission spectra

Figure S3. UV-vis absorption and extrapolated optical band gaps (Eg) of **2** (dotted line), **3** (solid line), **6** (dashed line) and **7** (dashed line), [M] = 0.01 mM.

Figure S4. PL spectra of **2** (dotted line), $\lambda_{exc} = 350$ nm; **3** (solid line), $\lambda_{exc} = 365$ nm in DMF; **6** (dashed line), $\lambda_{exc} = 330$ nm, **7** (dashed line), $\lambda_{exc} = 365$ nm (Inset: photographs of the DMF solutions of **2**, **3**, **6** and **7**), [M] = 0.01 mM.

Figure S5. Emission spectra of 3 and 7 in solid state (inset: fluorescence lifetime decay of 3 and 7).

Figure S6. (Top) Photoluminescence (PL) spectra of **3** in different DMF/water ratios; (bottom) emission intensity of **3** as the DMF/water ratio is altered. Inset: aggregates under UV light (λ_{exc} = 365 nm).

Figure S7. (Top) Photoluminescence (PL) spectra of **3** in different DMF/Et₂O ratios; (bottom) emission intensity of **3** as the DMF/Et₂O ratio is altered. Inset: aggregates under UV light (λ_{exc} = 365 nm).

Figure S8. (Top) Photoluminescence (PL) spectra of **4b** in different DMF/DCM ratios; (bottom) emission intensity of **4b** as the DMF/DCM ratio is altered. Inset: aggregates under UV light (λ_{exc} = 365 nm).

Figure S9. UV-vis absorption spectra of 3 in different polarities solutions, c = 0.01 M.

Figure S10. UV-vis absorption spectra of 7 in different polarities solutions, c = 0.01 M.

Figure S11. Emission spectra of **7** in different polarities solutions and solid (Inset: photographs under UV light, $\lambda_{exc} = 365$ nm), c = 0.01 M.

Figure S12. Computed, at the B3LYP level with the 6-31G* basis set in DMF, and experimental UV-vis spectra of **2**. [**2**] = 0.01 mM.

Figure S13. Computed, at the B3LYP level with the 6-31G* basis set in DMF, and experimental UV-vis spectra of **3**. [**3**] = 0.01 mM.

Figure S14. Computed, at the B3LYP level with the 6-31G* basis set in DMF, and experimental UV-vis spectra of **4a**. [**4a**] = 0.01 mM.

Figure S15. Computed, at the B3LYP level with the 6-31G* basis set in DMF, and experimental UV-vis spectra of **4b**. [**4b**] = 0.01 mM.

Figure S16. Computed, at the B3LYP level with the $6-31G^*$ basis set in DMF, and experimental UV-vis spectra of **6**. [**6**] = 0.01 mM.

Figure S17. Computed, at the B3LYP level with the 6-31G* basis set in DMF, and experimental UV-vis spectra of **7**. [**7**] = 0.01 mM.

Figure S18. (a) UV-vis spectrum of DMF solution (solid line), isolated redox states after added Zn (dashed dotted line) and applied voltage (dashed line) of **3**; (b) EPR spectrum of isolated redox states of **3**; (c) Chemical reduction of **3** and Zn.

Figure S19. The optical stability test for electrochromic switching of **3**. (a) Repetitive UV-vis switching in film, aggregation and solution at 681 nm upon potential step between -0.6 V and 0.6 V with a residence time of 5 s; (b) Repetitive fluorescence switching in film (490 nm) and aggregation (480 nm) upon potential step between -0.6 V and 0.6 V with a residence time of 5 s.

Figure S20. (a) Spectroelectrochemistry of **7** in solution of DMF; (b) Solution-based ECD and EFD of **7** under a glass FTO electrode window in daylight lamp (above) and UV illumination (below); (c) Fluorescence spectral changes in solution of DMF upon different applied potentials; (d) Spectroelectrochemistry of **7** in film; (e) film-based ECD and EFD of **7** under a glass FTO electrode window in daylight lamp (above) and UV illumination (below); (f) Fluorescence spectral changes in film upon different applied potentials.

6. Electrochemical properties

Cyclic voltammograms were recorded with a CHI660E/B15721b electrochemical analyzer using degassed and dried DMF under an argon atmosphere in the glovebox. The CV cell consisted of a gold electrode, a Pt wire counter electrode, and an Ag/AgCI reference electrode. All measurements were performed using DMF solutions of samples with a concentration of 1 mM and 0.1 M $Bu_4N^+PF_6^-$ as a supporting electrolyte. Potentials are determined against a ferrocene/ferrocenyl ion couple (Fc/Fc+).

Figure S21. Cyclic voltammograms of **2** in DMF with $Bu_4N^+PF_6^-$ (0.1 M) as a supporting electrolyte, Fc = ferrocene.

Figure S22. Cyclic voltammograms of **3** in DMF with $Bu_4N^+PF_6^-$ (0.1 M) as a supporting electrolyte, Fc = ferrocene.

Figure S23. Cyclic voltammograms of **4b** in DMF with $Bu_4N^+PF_6^-$ (0.1 M) as a supporting electrolyte, Fc = ferrocene.

Figure S24. Cyclic voltammograms of **6** in DMF with $Bu_4N^+PF_6^-$ (0.1 M) as a supporting electrolyte, Fc = ferrocene.

Figure S25. Cyclic voltammograms of **7** in DMF with $Bu_4N^+PF_6^-$ (0.1 M) as a supporting electrolyte, Fc = ferrocene.

7. DFT calculations

Table S3 Calculated and measured dipole moments (D) in gas and DMF solution^a.

			Δμ
 Gas [µ/D]	12.74	10.50	2.24
 DMF [μ/D]	16.36	13.73	2.63

^aTheoretical calculations have been carried out by using the GAUSSIAN09.

Figure S26. Calculated and measured dipole moments (D) in gas and DMF solution by using the GAUSSIAN09 suite.

		1 1				
	LUMO (Exp) ^a	HOMO (Exp) ^a	Eg (Exp) ^a	LUMO (Calc) ^{<i>b</i>}	HOMO (Calc) ^b	Eg (Calc) ^b
2	-2.40	-5.76	3.36	-1.84	-5.89	4.05
3	-3.66	-6.66	3.00	-2.88	-6.25	3.37
4b	-3.74	-6.71	2.97	-2.88	-6.25	3.37
6	-2.66	-6.33	3.67	-1.82	-5.99	4.17
7	-3.42	-6.70	3.28	-2.86	-6.23	3.37

Table S4 Electronic properties of 2, 3, 5, 6 and 7b.

^aEnergy levels vs vacuum level were calculated from CV data and from the optically determined energy gap. ^bTheoretical calculations have been carried out by using the GAUSSIAN09 suite of programs in gas-phase.

Figure S27. Computed molecular orbital plots for 2.

Figure S28. Computed molecular orbital plots for 3.

Figure S29. Computed molecular orbital plots for 4b.

Figure S30. Computed molecular orbital plots for 6.

Figure S31. Computed molecular orbital plots for 7.

DMF	gas
	ా లి ఎం సిన్ రం ఉం సం - లి ఎం సిన్ రం ఉం సం కర్ణ కర్ణ
ి లె ఫెం ట్రిపై లె ఫెం ం - లె ఫెం ట్రిపై లె ఫెం ఫె ఫెం ం - లె	. 63 30 3330 43 33 33 33 3

Table S5 Calculated conformations in gas and DMF solution by using the GAUSSIAN09

Table S6. Calculated (λ_{TD-DFT}) wavelengths of **2**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λtd-dft	Oscillator Strength, f	MOs	
227 /	0 7200	HOMO-1 ->LUMO	88.69%
527.4	0.7299	HOMO ->LUMO+1	10.65%
		HOMO-2 ->LUMO	22.40%
202.4	0 1002	HOMO-1 ->LUMO+1	57.05%
293.4	0.1903	HOMO ->LUMO	12.63%
		HOMO ->LUMO+1	3.74%
		HOMO-1 ->LUMO	9.69%
293.16	1.4489	HOMO-1 ->LUMO+1	2.68%
		HOMO ->LUMO+1	80.01%
		HOMO-12 ->LUMO	23.27%
	0.44.00	HOMO-11 ->LUMO	2.61%
218.88		HOMO-9 ->LUMO+2	2.98%
	0.1102	HOMO-1 ->LUMO+8	2.65%
		HOMO-1 ->LUMO+9	11.64%
		HOMO-1 ->LUMO+10	47.03%

Table S7. Calculated (λ_{TD-DFT}) wavelengths of **3**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λtd-dft	Oscillator Strength, f	MOs	
201 10	1 2226	HOMO-1 ->LUMO	93.58%
301.10	381.18 1.2330	HOMO ->LUMO+1	4.88%
301.72 0.7306	01.72 0.7306	HOMO-8 ->LUMO	5.05%
		HOMO-1 ->LUMO+5	2.29%
		HOMO ->LUMO+2	85.55%
		HOMO-8 ->LUMO	78.86%
291.16	0.1985	HOMO-7 ->LUMO+1	9.04%
		HOMO ->LUMO+2	4.55%

		HOMO-2 ->LUMO+2	83.77%
277.41	0.1714	HOMO-2 ->LUMO+4	2.89%
		HOMO ->LUMO+4	7.07%
		HOMO-9 ->LUMO+1	52.28%
245 20	0 1 2 1 2	HOMO-1 ->LUMO+5	9.39%
245.20	0.1343	HOMO ->LUMO+6	14.11%
		HOMO ->LUMO+7	16.57%
		HOMO-17 ->LUMO	13.82%
		HOMO-17 ->LUMO+1	3.53%
	0.1108	HOMO-16 ->LUMO	51.28%
242.22		HOMO-5 ->LUMO+2	2.23%
243.32		HOMO-3 ->LUMO+3	3.97%
		HOMO-3 ->LUMO+4	5.31%
		HOMO-1 ->LUMO+4	6.02%
		HOMO ->LUMO+6	2.53%
		HOMO-19 ->LUMO	2.87%
		HOMO-17 ->LUMO	5.08%
000.00	0 1 4 0 6	HOMO-9 ->LUMO+1	13.63%
239.90	0.1400	HOMO-1 ->LUMO+5	56.10%
		HOMO ->LUMO+2	2.31%
		HOMO ->LUMO+7	3.69%

Table S8. Calculated (λ_{TD-DFT}) wavelengths of **5**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*) DMF

	Oscillator		
λ_{TD-DFT}	Strength,	MOs	
	f		
346.75	0.9083	HOMO ->LUMO	94.54%
	0.2743	HOMO-2 ->LUMO	3.66%
315.49		HOMO-1 -> LUMO	74.84%
		HOMO -> LUMO	2.50%
		HOMO -> LUMO+1	15.95%
		HOMO-11 -> LUMO	5.70%
	0.1856	HOMO-4 -> LUMO	21.82%
293.55		HOMO-3 -> LUMO	41.35%
		HOMO-2 -> LUMO	22.13%
		HOMO-1 -> LUMO	5.18%

		HOMO -> LUMO+1	44.19%
		HOMO-4 -> LUMO	82.48%
280.05	0.0719	HOMO-1 -> LUMO+1	7.29%
		HOMO -> LUMO+1	5.51%
		HOMO-7 -> LUMO	28.94%
		HOMO-7 -> LUMO+2	5.79%
272.16	0 1 9 0 1	HOMO-6 -> LUMO	7.26%
272.10	0.1604	HOMO-5 -> LUMO	5.96%
		HOMO-4 -> LUMO	2.54%
		HOMO-1 -> LUMO+1	40.78%
		HOMO-11 -> LUMO	4.57%
		HOMO-7 -> LUMO	40.96%
271.66	0.1008	HOMO-7 -> LUMO+2	8.00%
		HOMO-4 -> LUMO	2.70%
		HOMO-1 -> LUMO+1	30.88%
263.5	0.2223	HOMO-2 -> LUMO+1	92.62%

Table S9. Calculated (λ_{TD-DFT}) wavelengths of **6**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

λtd-dft	Oscillator Strength, f	MOs	
422.78	0.631	HOMO -> LUMO	98.24%
390.22	0.2523	HOMO-1 -> LUMO	97.98%
267.01	0 40 49	HOMO-3 -> LUMO	87.29%
367.01	0.4940	HOMO -> LUMO+1	6.26%
		HOMO-8 -> LUMO	13.76%
201	0.3046	HOMO -> LUMO+2	73.61%
291		HOMO -> LUMO+3	2.31%
		HOMO -> LUMO+4	2.22%
		HOMO-9 -> LUMO	2.75%
		HOMO-8 -> LUMO	2.98%
277.26	0.0742	HOMO-1 -> LUMO+2	48.50%
		HOMO-1 -> LUMO+4	16.78%
		HOMO -> LUMO+4	20.96%
260.15	0.0014	HOMO-3 -> LUMO+2	46.23%
209.15	0.0914	HOMO-3 -> LUMO+4	5.88%

		HOMO-2 -> LUMO+2	11.05%
		HOMO-2 -> LUMO+4	2.19%
		HOMO -> LUMO+5	26.60%
	HOMO-9 -> LUMO+1	2.83%	
		HOMO-5 -> LUMO+2	5.70%
		HOMO-5 -> LUMO+4	3.68%
256 21	0 4005	HOMO-4 -> LUMO+2	4.03%
200.01	0.1525	HOMO-3 -> LUMO+2	18.52%
		HOMO-3 -> LUMO+3	2.95%
		HOMO-1 -> LUMO+4	3.30%
		HOMO -> LUMO+5	41.67%

Table S10. Calculated (λ_{TD-DFT}) wavelengths of **7a**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

	Oscillator		
λtd-dft	Strength,	MOs	
	f		
422.46	0.6838	HOMO-6 -> LUMO	98.19%
388.76	0.3305	HOMO-7 -> LUMO	97.92%
371.48	0.0608	HOMO-8 -> LUMO	95.94%
		HOMO-9 -> LUMO	87.19%
366.69	0.4676	HOMO-8 -> LUMO	2.09%
		HOMO-6 -> LUMO+1	5.29%
		HOMO-16 -> LUMO	3.86%
291.17 0.1022	0.1022	HOMO-6 -> LUMO+2	24.49%
		HOMO-2 -> LUMO+3	37.99%
	HOMO-2 -> LUMO+4	26.31%	
		HOMO-16 -> LUMO	9.35%
200.06	0 2217	HOMO-6 -> LUMO+2	48.06%
290.90	0.2217	HOMO-2 -> LUMO+3	19.73%
		HOMO-2 -> LUMO+4	11.92%
		HOMO -17 -> LUMO	3.31%
		HOMO-16 -> LUMO	3.46%
276.88	0.0738	HOMO-17 -> LUMO+2	51.07%
		HOMO-17 -> LUMO+4	15.55%
		HOMO-6 -> LUMO+4	19.06%

Table S11. Calculated (λ_{TD-DFT}) wavelengths of 7b. Molecular orbitals (MOs) involved in the

	Oscillator		
λtd-dft	Strength,	MOs	
	f		
424.1	0.7209	HOMO -> LUMO	98.27%
391.34	0.2689	HOMO-1 -> LUMO	98.11%
373.66	0.0569	HOMO-2 -> LUMO	96.59%
269.20	0 5222	HOMO-3 -> LUMO	89.98%
300.39	0.5552	HOMO -> LUMO+1	3.39%
		HOMO-12 -> LUMO	8.53%
	0.235	HOMO-7 -> LUMO+1	3.01%
291.5		HOMO-6 -> LUMO	2.87%
		HOMO-6 -> LUMO+1	27.70%
	HOMO -> LUMO+2	48.91%	
		HOMO -13-> LUMO+1	3.20%
		HOMO-12 -> LUMO+1	2.25%
		HOMO-5 -> LUMO+2	3.81%
		HOMO-5 -> LUMO+4	2.63%
256.1	0.1542	HOMO-4 -> LUMO+2	3.29%
		HOMO-3 -> LUMO+2	15.93%
		HOMO-2 -> LUMO+3	5.46%
		HOMO-1 -> LUMO+4	4.75%
		HOMO -> LUMO+5	44.57%

main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP/6-31g*)

9. 1H NMR and 13C NMR spectra

S35

S40

Figure S47. ¹³C NMR spectrum of **7** in DMSO

190

10. Coordinates of molecular structure

Table S12 Cartesian coordinates of optimized geometry of 2 (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	3.150823	0.570165	0.016391	
2	6	0	1.745332	0.657784	0.008265	
3	6	0	1.13879	1.941409	0.023298	
4	6	0	1.973355	3.080491	0.076378	
5	6	0	3.352007	2.960434	0.094917	
6	6	0	3.975705	1.695505	0.063447	
7	6	0	1.138465	0.876321	0.015591	
8	6	0	2.538481	1.012824	0.017282	
9	6	0	3.164415	2.25926	0.061789	
10	6	0	2.357084	3.411631	0.074298	
11	6	0	0.979819	3.292135	0.042629	
12	6	0	0.32315	2.043616	0.000714	
13	5	0	0.8599	0.61373	0.019603	
14	7	0	0.556265	0.411859	0.037871	
15	6	0	1.491642	2.060469	0.116506	
16	6	0	1.458435	1.548144	0.09776	
17	6	0	2.251847	2.406361	1.253081	
18	6	0	2.847824	3.66326	1.384592	
19	6	0	2.717839	4.607216	0.36403	
20	6	0	1.984838	4.284477	0.780592	
21	6	0	1.377569	3.03228	0.895753	
22	6	0	1.943356	1.975537	1.348631	
23	6	0	2.792346	3.086176	1.386834	
24	6	0	3.177319	3.766277	0.225689	
25	6	0	2.689977	3.303259	0.999599	
26	6	0	1.836071	2.196885	1.090132	
27	6	0	1.344823	1.726313	2.438658	
28	6	0	1.580322	1.254888	2.626581	
29	6	0	4.117538	4.94736	0.295994	
30	1	0	3.604223	0.415727	0.02545	
31	1	0	1.551412	4.078473	0.102308	
32	1	0	3.958696	3.861192	0.114036	
33	1	0	3.14676	0.118125	0.039921	

34	1	0	2.80858	4.398415	0.085167
35	1	0	0.392363	4.202384	0.053206
36	1	0	2.379451	1.680087	2.053243
37	1	0	3.417538	3.901063	2.279366
38	1	0	3.185787	5.583732	0.457733
39	1	0	1.882914	5.009623	1.584128
40	1	0	0.809321	2.811193	1.7947
41	1	0	3.162211	3.4278	2.351398
42	1	0	2.981934	3.812916	1.915343
43	1	0	1.488021	0.647899	2.56846
44	1	0	0.274655	1.927394	2.567826
45	1	0	1.879953	2.239306	3.243035
46	1	0	0.496004	1.167487	2.758403
47	1	0	1.981216	0.234097	2.637508
48	1	0	1.984764	1.782868	3.494688
49	1	0	5.162168	4.61797	0.373444
50	1	0	4.038069	5.575455	0.596902
51	1	0	3.911186	5.5709	1.172661
52	6	0	4.643505	2.3605	0.101654
53	6	0	5.290006	3.394239	0.798388
54	6	0	5.469665	1.432733	0.553129
55	6	0	6.681871	3.44938	0.807864
56	1	0	4.720572	4.136748	1.347958
57	6	0	6.853383	1.57612	0.480882
58	1	0	5.044928	0.618927	1.132138
59	7	0	7.473005	2.563271	0.184153
60	1	0	7.187474	4.24605	1.351027
61	1	0	7.497934	0.861984	0.990668
62	6	0	5.452226	1.567798	0.087979
63	6	0	6.113425	0.52677	0.584476
64	6	0	6.263515	2.478817	0.783954
65	6	0	7.502737	0.44687	0.528527
66	1	0	5.557134	0.202599	1.164381
67	6	0	7.646511	2.311527	0.775742
68	1	0	5.82715	3.297884	1.346794
69	7	0	8.279527	1.316523	0.135692
70	1	0	8.019403	0.356168	1.051625
71	1	0	8.27874	3.012665	1.31809
71	1	0	8.27874	3.012665	1.31809

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-2.92324	1.253145	-0.338034	
2	6	0	-1.51729	1.234452	-0.346741	
3	6	0	-0.85195	-0.004064	-0.544748	
4	6	0	-1.62834	-1.171624	-0.726936	
5	6	0	-3.00929	-1.12305	-0.713099	
6	6	0	-3.69019	0.098619	-0.518952	
7	6	0	1.367033	1.146356	-0.28699	
8	6	0	2.771425	1.078002	-0.302194	
9	6	0	3.452258	-0.11537	-0.5507	
10	6	0	2.705987	-1.282207	-0.802234	
11	6	0	1.325843	-1.224313	-0.805806	
12	6	0	0.611989	-0.034291	-0.547197	
13	5	0	-0.69646	2.526671	-0.09413	
14	7	0	0.726104	2.377272	-0.031551	
15	6	0	-1.39898	3.932917	0.057373	
16	6	0	1.571609	3.52122	0.265833	
17	6	0	-2.16792	4.436173	-1.012953	
18	6	0	-2.82322	5.667351	-0.930685	
19	6	0	-2.74582	6.421954	0.241456	
20	6	0	-2.00579	5.937977	1.323012	
21	6	0	-1.33899	4.715122	1.226496	
22	6	0	2.007193	3.728316	1.587369	
23	6	0	2.802993	4.848392	1.854023	
24	6	0	3.177125	5.748273	0.851076	
25	6	0	2.746485	5.494915	-0.455326	
26	6	0	1.946928	4.391403	-0.773082	
27	6	0	1.511064	4.155738	-2.199978	
28	6	0	1.659883	2.764479	2.698625	
29	6	0	4.009504	6.968101	1.170576	
30	1	0	-3.4202	2.198199	-0.147669	
31	1	0	-1.15858	-2.135393	-0.880537	
32	1	0	-3.5671	-2.039138	-0.879932	
33	1	0	3.334728	1.975731	-0.084757	
34	1	0	3.201469	-2.219227	-1.032192	

Table S13 Cartesian coordinates of optimized geometry of **3** (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

35	1	0	0.783231	-2.134439	-1.028767
36	1	0	-2.25341	3.857715	-1.930598
37	1	0	-3.39733	6.032296	-1.77848
38	1	0	-3.26003	7.376741	0.313195
39	1	0	-1.94498	6.514359	2.242634
40	1	0	-0.76723	4.366176	2.081381
41	1	0	3.140088	5.017955	2.874272
42	1	0	3.041932	6.17218	-1.253863
43	1	0	1.701173	3.125206	-2.519423
44	1	0	0.437361	4.339844	-2.325558
45	1	0	2.045006	4.825709	-2.87994
46	1	0	0.583669	2.567852	2.755413
47	1	0	2.149611	1.793537	2.553705
48	1	0	1.983469	3.159429	3.665592
49	1	0	4.685643	7.218241	0.346139
50	1	0	3.372631	7.845613	1.34404
51	1	0	4.609982	6.817875	2.07344
52	6	0	4.927617	-0.146058	-0.551659
53	6	0	5.63883	-1.294932	-0.15722
54	6	0	5.692555	0.967084	-0.948336
55	6	0	7.018954	-1.310988	-0.164517
56	1	0	5.121305	-2.183894	0.181949
57	6	0	7.070551	0.906699	-0.940354
58	1	0	5.221695	1.879573	-1.292507
59	7	0	7.718241	-0.216996	-0.554211
60	1	0	7.601746	-2.177036	0.143625
61	1	0	7.689315	1.740002	-1.247161
62	6	0	-5.16273	0.151216	-0.494613
63	6	0	-5.86806	1.306738	-0.891794
64	6	0	-5.93667	-0.946658	-0.076399
65	6	0	-7.24442	1.330702	-0.860934
66	1	0	-5.3486	2.185986	-1.251909
67	6	0	-7.3164	-0.878701	-0.063321
68	1	0	-5.47165	-1.862366	0.267247
69	7	0	-7.95407	0.250115	-0.452622
70	1	0	-7.82021	2.195785	-1.16574
71	1	0	-7.94808	-1.701169	0.259248
72	8	0	9.924908	-3.429131	-1.424805
73	8	0	-10.2846	-4.465911	-0.888966

74	16	0	9.864473	-4.210932	-0.163668
75	16	0	-10.5054	-3.949257	0.479982
76	8	0	-9.56442	-2.872973	0.899624
77	8	0	-10.7626	-4.974427	1.515183
78	8	0	8.752499	-3.820912	0.744001
79	8	0	10.06651	-5.667656	-0.314115
80	6	0	11.37709	-3.648472	0.759627
81	6	0	-12.1222	-3.041651	0.350113
82	9	0	11.46403	-4.257145	1.953085
83	9	0	12.49076	-3.927581	0.063731
84	9	0	11.34005	-2.31945	0.97125
85	9	0	-12.0298	-2.031827	-0.537089
86	9	0	-13.1022	-3.863582	-0.057866
87	9	0	-12.478	-2.520242	1.535125
88	6	0	-9.43275	0.318698	-0.431801
89	1	0	-9.82564	-0.654497	-0.14406
90	1	0	-9.74238	1.07631	0.290523
91	6	0	9.198214	-0.261903	-0.529262
92	1	0	9.537997	-0.195736	0.506174
93	1	0	9.583068	0.581835	-1.100008
94	1	0	9.52967	-1.204053	-0.969081
95	1	0	-9.7877	0.587693	-1.42788

Table S14 Cartesian coordinates of optimized geometry of **4a** (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.980989	0.291464	-0.53715
2	6	0	1.584939	0.354883	-0.38125
3	6	0	0.8273	-0.83833	-0.51848
4	6	0	1.506649	-2.04656	-0.79746
5	6	0	2.882248	-2.08197	-0.92629
6	6	0	3.652697	-0.90556	-0.80061
7	6	0	-1.2905	0.463858	-0.15407
8	6	0	-2.68899	0.479256	-0.00853
9	6	0	-3.45253	-0.68858	-0.06077
10	6	0	-2.79736	-1.9169	-0.2706
11	6	0	-1.42474	-1.9439	-0.42372

12	6	0	-0.62832	-0.77965	-0.36898
13	5	0	0.868537	1.703997	-0.10892
14	7	0	-0.56177	1.668555	-0.0611
15	6	0	1.679947	3.039295	0.122856
16	6	0	-1.32055	2.894652	0.119986
17	6	0	2.57123	3.12347	1.212892
18	6	0	3.322421	4.275455	1.459371
19	6	0	3.218859	5.372326	0.601931
20	6	0	2.356899	5.308346	-0.49573
21	6	0	1.596507	4.160156	-0.72525
22	6	0	-1.84987	3.547321	-1.00927
23	6	0	-2.56072	4.736002	-0.81366
24	6	0	-2.76048	5.280202	0.459981
25	6	0	-2.24047	4.590881	1.559388
26	6	0	-1.52089	3.39845	1.416734
27	6	0	-0.98771	2.683517	2.635702
28	6	0	-1.68792	2.981821	-2.40162
29	6	0	-3.50256	6.584189	0.638176
30	1	0	3.550662	1.206886	-0.41846
31	1	0	0.963474	-2.97438	-0.92881
32	1	0	3.362134	-3.02641	-1.16308
33	1	0	-3.17552	1.424847	0.190362
34	1	0	-3.36057	-2.84085	-0.34455
35	1	0	-0.95441	-2.90518	-0.58853
36	1	0	2.677922	2.274815	1.885395
37	1	0	3.99112	4.312318	2.315504
38	1	0	3.806598	6.268027	0.784956
39	1	0	2.274388	6.154496	-1.17313
40	1	0	0.931005	4.139962	-1.58332
41	1	0	-2.96924	5.248742	-1.68185
42	1	0	-2.40017	4.98674	2.559963
43	1	0	-1.24898	1.619564	2.63045
44	1	0	0.105585	2.74716	2.690498
45	1	0	-1.39316	3.128069	3.549078
46	1	0	-0.64494	2.736419	-2.62976
47	1	0	-2.26314	2.056085	-2.52727
48	1	0	-2.04007	3.696409	-3.15072
49	1	0	-4.30975	6.689328	-0.09455
50	1	0	-3.93615	6.664009	1.640133

51	1	0	-2.83032	7.441953	0.503797
52	6	0	-4.91721	-0.63159	0.110303
53	6	0	-5.63285	-1.69814	0.682531
54	6	0	-5.66776	0.492918	-0.28819
55	6	0	-7.00433	-1.62979	0.839024
56	1	0	-5.1242	-2.58509	1.040131
57	6	0	-7.03407	0.517224	-0.11264
58	1	0	-5.19527	1.347688	-0.75608
59	7	0	-7.68804	-0.53075	0.44296
60	1	0	-7.59209	-2.42763	1.294656
61	1	0	-7.64096	1.361579	-0.41301
62	6	0	5.120311	-0.93943	-0.93346
63	6	0	5.845619	0.171734	-1.41108
64	6	0	5.86935	-2.07894	-0.58802
65	6	0	7.218458	0.119934	-1.50854
66	1	0	5.342308	1.074657	-1.73361
67	6	0	7.246142	-2.08701	-0.70573
68	1	0	5.388979	-2.96859	-0.19918
69	7	0	7.905271	-0.99386	-1.15676
70	1	0	7.803885	0.953151	-1.87513
71	1	0	7.859923	-2.9516	-0.45069
72	6	0	-9.1836	-0.48072	0.591772
73	1	0	-9.43728	-1.23165	1.344926
74	1	0	-9.41931	0.513108	0.977467
75	6	0	9.40678	-0.99736	-1.23107
76	1	0	9.707473	-2.04857	-1.23772
77	1	0	9.668405	-0.54056	-2.18758
78	6	0	10.03277	-0.26054	-0.06617
79	6	0	10.32772	-0.95215	1.117629
80	6	0	10.31796	1.108745	-0.15259
81	6	0	10.88442	-0.27505	2.20375
82	1	0	10.14716	-2.02416	1.165767
83	6	0	10.87356	1.784056	0.935734
84	1	0	10.11976	1.650037	-1.07485
85	6	0	11.15256	1.093715	2.1175
86	1	0	11.1154	-0.81846	3.115885
87	1	0	11.09391	2.844924	0.857383
88	1	0	11.58713	1.618244	2.96401
89	6	0	-9.89584	-0.7592	-0.71426

90	6	0	-10.2027	-2.07982	-1.07265
91	6	0	-10.2549	0.288481	-1.57272
92	6	0	-10.8443	-2.34508	-2.28337
93	1	0	-9.96576	-2.8864	-0.38158
94	6	0	-10.8959	0.0204	-2.78372
95	1	0	-10.0485	1.318495	-1.29129
96	6	0	-11.1866	-1.29769	-3.14296
97	1	0	-11.0842	-3.37017	-2.55221
98	1	0	-11.1733	0.839935	-3.4406
99	1	0	-11.6877	-1.50685	-4.08409
100	35	0	9.826839	-4.59408	-0.16082
101	35	0	-9.47798	-3.84682	2.304598

Table S15 Cartesian coordinates of optimized geometry of 4b (DFT, B3LYP/6-31g*)Standard orientation: (Ground State)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.958784	1.228465	-0.28195
2	6	0	1.552787	1.233238	-0.26922
3	6	0	0.866692	-0.00419	-0.15116
4	6	0	1.623346	-1.19371	-0.04412
5	6	0	3.004865	-1.16759	-0.05821
6	6	0	3.706584	0.051914	-0.17855
7	6	0	-1.33227	1.1957	-0.3444
8	6	0	-2.73757	1.148222	-0.34615
9	6	0	-3.43917	-0.04692	-0.17457
10	6	0	-2.71224	-1.23782	0.014
11	6	0	-1.33154	-1.20243	0.028501
12	6	0	-0.59744	-0.01057	-0.15392
13	5	0	0.753592	2.553093	-0.43365
14	7	0	-0.67054	2.430635	-0.51354
15	6	0	1.478763	3.955575	-0.47724
16	6	0	-1.49733	3.604155	-0.73859
17	6	0	2.250269	4.362297	0.631654
18	6	0	2.925487	5.585241	0.647392
19	6	0	2.865643	6.429083	-0.46334
20	6	0	2.122733	6.042414	-1.58155
21	6	0	1.435909	4.826837	-1.58231

22	6	0	-1.91864	3.905755	-2.04675
23	6	0	-2.70084	5.049375	-2.24279
24	6	0	-3.07416	5.883269	-1.18371
25	6	0	-2.65662	5.537729	0.105561
26	6	0	-1.87163	4.4061	0.353967
27	6	0	-1.44998	4.068809	1.76462
28	6	0	-1.56805	3.017876	-3.2187
29	6	0	-3.89119	7.13078	-1.42687
30	1	0	3.470952	2.175327	-0.41374
31	1	0	1.137464	-2.15723	0.049064
32	1	0	3.546778	-2.10181	0.049647
33	1	0	-3.28423	2.06629	-0.51533
34	1	0	-3.22301	-2.17901	0.185805
35	1	0	-0.80478	-2.13293	0.199221
36	1	0	2.32157	3.713664	1.502343
37	1	0	3.501138	5.87427	1.522949
38	1	0	3.395373	7.378064	-0.45949
39	1	0	2.075308	6.68937	-2.4538
40	1	0	0.861533	4.554418	-2.46281
41	1	0	-3.02766	5.291258	-3.25172
42	1	0	-2.95139	6.16278	0.945802
43	1	0	-1.64762	3.019375	2.008877
44	1	0	-0.37647	4.237506	1.912071
45	1	0	-1.98662	4.692379	2.485394
46	1	0	-0.49107	2.828373	-3.28668
47	1	0	-2.05502	2.038059	-3.13986
48	1	0	-1.89067	3.475537	-4.15798
49	1	0	-4.54079	7.35601	-0.57456
50	1	0	-3.24242	8.00348	-1.57943
51	1	0	-4.51752	7.031783	-2.31933
52	6	0	-4.91463	-0.05538	-0.18857
53	6	0	-5.63899	-1.17706	-0.62852
54	6	0	-5.66816	1.056917	0.239809
55	6	0	-7.02111	-1.17072	-0.63594
56	1	0	-5.13321	-2.06207	-0.99445
57	6	0	-7.04461	1.017963	0.21797
58	1	0	-5.18655	1.950427	0.617312
59	7	0	-7.7064	-0.08221	-0.21548
60	1	0	-7.61559	-2.01424	-0.97691

61	1	0	-7.6548	1.845973	0.555433
62	6	0	5.179795	0.0804	-0.20866
63	6	0	5.907982	1.201939	0.241935
64	6	0	5.93264	-1.00727	-0.68696
65	6	0	7.284246	1.203136	0.204751
66	1	0	5.406167	2.071425	0.648057
67	6	0	7.31355	-0.96179	-0.70669
68	1	0	5.450726	-1.89683	-1.07343
69	7	0	7.973004	0.13383	-0.26369
70	1	0	7.874207	2.039173	0.558041
71	1	0	7.927336	-1.7798	-1.0745
72	8	0	-8.82194	-4.04684	0.74133
73	8	0	9.179127	-3.8025	0.61293
74	16	0	-9.43271	-4.33576	-0.57881
75	16	0	9.791175	-4.06848	-0.71152
76	8	0	9.461207	-3.05371	-1.7519
77	8	0	9.724599	-5.47243	-1.17068
78	8	0	-9.13059	-3.32017	-1.62702
79	8	0	-9.33455	-5.74058	-1.02957
80	6	0	-11.2515	-4.08689	-0.28504
81	6	0	11.60467	-3.77875	-0.42279
82	9	0	-11.9539	-4.32885	-1.40322
83	9	0	-11.6973	-4.90873	0.678142
84	9	0	-11.5	-2.82056	0.097813
85	9	0	11.82543	-2.50795	-0.03732
86	9	0	12.07242	-4.59254	0.536855
87	9	0	12.30883	-4.00169	-1.54382
88	6	0	9.474812	0.175989	-0.30277
89	1	0	9.78977	-0.77507	-0.73409
90	1	0	9.747186	0.976244	-0.99489
91	6	0	-9.20957	-0.08314	-0.23929
92	1	0	-9.50184	-1.05002	-0.65108
93	1	0	-9.51092	0.697301	-0.94188
94	6	0	-9.80785	0.15054	1.12899
95	6	0	-9.79366	-0.87139	2.090316
96	6	0	-10.3883	1.385311	1.444701
97	6	0	-10.3427	-0.64964	3.352844
98	1	0	-9.36677	-1.8402	1.843285
99	6	0	-10.9415	1.603487	2.708976

100	1	0	-10.4187	2.175133	0.697936
101	6	0	-10.9155	0.587422	3.665286
102	1	0	-10.3307	-1.44532	4.09252
103	1	0	-11.3923	2.563781	2.942455
104	1	0	-11.3452	0.754725	4.649025
105	6	0	10.08169	0.402873	1.062958
106	6	0	10.10155	-0.63383	2.008202
107	6	0	10.63628	1.645943	1.39225
108	6	0	10.65816	-0.41881	3.268545
109	1	0	9.695046	-1.60846	1.750113
110	6	0	11.19729	1.857493	2.654276
111	1	0	10.64031	2.447934	0.657904
112	6	0	11.20489	0.826472	3.594755
113	1	0	10.67244	-1.22594	3.99568
114	1	0	11.62777	2.824472	2.898335
115	1	0	11.64059	0.988687	4.576714

 Table S16 Cartesian coordinates of optimized geometry of 6 (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-2.83709	-0.53914	-0.01466
2	6	0	-1.42307	-0.52869	-0.02384
3	6	0	-0.72402	-1.77079	-0.05487
4	6	0	-1.48639	-2.96284	-0.08659
5	6	0	-2.86579	-2.94405	-0.08153
6	6	0	-3.57208	-1.71887	-0.04471
7	6	0	1.42547	-0.52746	-0.00787
8	6	0	2.839515	-0.53556	-0.0217
9	6	0	3.575394	-1.71437	-0.06411
10	6	0	2.870583	-2.94054	-0.09515
11	6	0	1.491221	-2.96103	-0.09311
12	6	0	0.727748	-1.77005	-0.05143
13	6	0	-1.45503	2.010618	0.051113
14	6	0	1.453448	2.012146	0.080073
15	6	0	-2.00663	2.543473	-1.12437
16	6	0	-2.72549	3.740148	-1.09569
17	6	0	-2.9097	4.418988	0.111278
18	6	0	-2.37167	3.893462	1.28811

19	6	0	-1.65088	2.697735	1.258089
20	6	0	1.988961	2.486144	1.287515
21	6	0	2.702765	3.685589	1.328255
22	6	0	2.897845	4.425932	0.159868
23	6	0	2.376081	3.959074	-1.04868
24	6	0	1.660629	2.760427	-1.0881
25	1	0	-3.35905	0.408279	0.044343
26	1	0	-0.98837	-3.92481	-0.1215
27	1	0	-3.41027	-3.88204	-0.12994
28	1	0	3.361074	0.412856	0.025572
29	1	0	3.416149	-3.8775	-0.15081
30	1	0	0.9941	-3.92321	-0.1344
31	1	0	-1.8663	2.018885	-2.06587
32	1	0	-3.14025	4.141358	-2.01653
33	1	0	-3.46965	5.349868	0.134586
34	1	0	-2.51258	4.413263	2.232002
35	1	0	-1.23585	2.292465	2.176731
36	1	0	3.105389	4.040687	2.273107
37	1	0	2.525272	4.527195	-1.963
38	6	0	5.058308	-1.6887	-0.07594
39	6	0	5.817945	-2.69053	0.549272
40	6	0	5.77512	-0.66276	-0.7129
41	6	0	7.208879	-2.6206	0.511371
42	1	0	5.33726	-3.50584	1.080349
43	6	0	7.167634	-0.68391	-0.6916
44	1	0	5.258417	0.132649	-1.24024
45	7	0	7.895577	-1.64005	-0.09436
46	1	0	7.802162	-3.39232	0.999053
47	1	0	7.727895	0.106988	-1.18752
48	6	0	-5.05496	-1.69416	-0.03368
49	6	0	-5.7817	-0.66418	-0.65281
50	6	0	-5.80496	-2.70024	0.596398
51	6	0	-7.17369	-0.68578	-0.61038
52	1	0	-5.27338	0.1354	-1.18201
53	6	0	-7.19631	-2.63051	0.579982
54	1	0	-5.31636	-3.51882	1.115016
55	7	0	-7.89236	-1.64616	-0.00866
56	1	0	-7.74153	0.108393	-1.09223
57	1	0	-7.78197	-3.40562	1.071472

58	6	0	-0.68706	0.723013	0.018432
59	6	0	0.688002	0.723216	0.036231
60	1	0	1.256735	2.401478	-2.03073
61	1	0	1.840606	1.913373	2.199205
62	1	0	3.45373	5.359027	0.190881

Table S17 Cartesian coordinates of optimized geometry of 7 (DFT, B3LYP/6-31g*)

 Standard orientation: (Ground State)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-2.84203	1.33212	-0.45388	
2	6	0	-1.43017	1.353239	-0.42236	
3	6	0	-0.71757	0.15385	-0.71762	
4	6	0	-1.46166	-1.00512	-1.04617	
5	6	0	-2.83946	-1.00087	-1.06947	
6	6	0	-3.5578	0.181239	-0.76916	
7	6	0	1.410052	1.368726	-0.32553	
8	6	0	2.822273	1.374022	-0.30335	
9	6	0	3.570132	0.234254	-0.58234	
10	6	0	2.886049	-0.96262	-0.90295	
11	6	0	1.509108	-0.98755	-0.95092	
12	6	0	0.732081	0.161931	-0.66894	
13	6	0	-1.50156	3.808315	0.227223	
14	6	0	1.409279	3.822893	0.334046	
15	6	0	-2.05218	4.575703	-0.81106	
16	6	0	-2.79046	5.726993	-0.52998	
17	6	0	-2.99448	6.123677	0.793841	
18	6	0	-2.45682	5.362587	1.834158	
19	6	0	-1.7164	4.21253	1.552915	
20	6	0	1.932621	4.000616	1.624064	
21	6	0	2.635105	5.161764	1.952506	
22	6	0	2.82983	6.158844	0.993757	
23	6	0	2.31912	5.987951	-0.29495	
24	6	0	1.614578	4.827778	-0.62274	
25	1	0	-3.3737	2.237275	-0.18831	
26	1	0	-0.9508	-1.92787	-1.29298	
27	1	0	-3.3671 <u></u> 2	-1.9065	-1.34983	

28	1	0	3.327141	2.291677	-0.0281
29	1	0	3.441311	-1.86175	-1.1488
30	1	0	1.025311	-1.91897	-1.21855
31	1	0	-1.8957	4.271291	-1.84261
32	1	0	-3.20432	6.313531	-1.34571
33	1	0	-3.56946	7.019128	1.013001
34	1	0	-2.61321	5.662436	2.866804
35	1	0	-1.30102	3.623111	2.365419
36	1	0	3.02861	5.286566	2.957626
37	1	0	2.468236	6.757543	-1.04745
38	6	0	5.044483	0.27266	-0.53659
39	6	0	5.801002	-0.85949	-0.17982
40	6	0	5.764473	1.441772	-0.84832
41	6	0	7.179794	-0.80661	-0.13906
42	1	0	5.320484	-1.7912	0.092394
43	6	0	7.142386	1.450181	-0.79262
44	1	0	5.259374	2.346669	-1.16259
45	7	0	7.834263	0.340713	-0.44301
46	1	0	7.79491	-1.65963	0.140965
47	1	0	7.727019	2.328889	-1.03261
48	6	0	-5.03322	0.193084	-0.77995
49	6	0	-5.76163	1.355131	-1.09869
50	6	0	-5.78281	-0.95753	-0.47023
51	6	0	-7.1406	1.339482	-1.09389
52	1	0	-5.26132	2.275289	-1.37392
53	6	0	-7.16283	-0.92784	-0.47758
54	1	0	-5.29694	-1.88458	-0.19169
55	7	0	-7.82555	0.213369	-0.7867
56	1	0	-7.73147	2.212085	-1.34043
57	1	0	-7.77246	-1.79602	-0.23451
58	8	0	10.17961	-2.71792	-1.36642
59	8	0	-8.91556	-3.51267	0.198337
60	16	0	10.12187	-3.58208	-0.16001
61	16	0	-10.035	-3.26097	1.144812
62	8	0	-10.0586	-1.88735	1.70876
63	8	0	-10.2884	-4.3455	2.116974
64	8	0	8.961727	-3.31002	0.730134
65	8	0	10.4078	-5.01328	-0.39552
66	6	0	11.57107	-3.00141	0.849651

67	6	0	-11.5325	-3.29506	0.043428
68	9	0	11.6574	-3.686	2.001354
69	9	0	12.71998	-3.16763	0.175101
70	9	0	11.44919	-1.69456	1.149261
71	9	0	-11.4453	-2.34682	-0.90827
72	9	0	-11.6524	-4.4856	-0.56553
73	9	0	-12.6507	-3.07115	0.751946
74	6	0	-9.30607	0.203764	-0.80799
75	1	0	-9.6663	-0.32431	0.076444
76	1	0	-9.66273	1.232649	-0.81003
77	6	0	9.312432	0.370671	-0.36178
78	1	0	9.608945	0.425035	0.687733
79	1	0	9.673949	1.248789	-0.89471
80	1	0	9.708067	-0.54049	-0.8134
81	1	0	-9.64479	-0.30893	-1.71054
82	6	0	-0.71451	2.569023	-0.07595
83	6	0	0.659041	2.574182	-0.0203
84	1	0	1.21911	4.699035	-1.62637
85	1	0	1.783565	3.227649	2.373376
86	1	0	3.37676	7.062248	1.249096

11. Reference

- 1. B. He, H. Tian, Y. Geng, F. Wang and K. Müllen, Org Lett, 2008, 10, 773-776.
- 2. H. Oh, D. G. Seo, T. Y. Yun, C. Y. Kim and H. C. Moon, ACS Appl Mater Interfaces, 2017, 9, 7658-7665.
- G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford, CT, 2010.
- 4. A. D. Becke, J Chem Phys, 1993, 98, 5648-5652.
- 5. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J Phys Chem, 1994, 98, 11623-11627.
- 6. C. T. Lee, W. T. Yang and R. G. Parr, *Phys Rev B*, 1988, **37**, 785-789.
- 7. R. Bauernschmitt and R. Ahlrichs, Chem Phys Lett, 1996, 256, 454-464.
- 8. M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J Chem Phys, 1998, 108, 4439-4449.