Electronic Supplementary Information

Constructing a stable interface between sulfide electrolyte and Li metal anode via a Li⁺conductive gel polymer interlayer

Ya-Hui Wang ^{a, b}, Jun-Pei Yue ^b, Wen-Peng Wang ^b, Wan-Ping Chen ^{b, c}, Ying Zhang ^b, Yu-Guo Yang ^a, Juan Zhang ^{b, c}, Ya-Xia Yin ^{b, c}, Xing Zhang ^{*, b, c}, Sen Xin ^{*, b, c}, and Yu-Guo Guo ^{*, b, c}

^a School of Science, Beijing Jiaotong University, Beijing 100044, China;

^b CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China;

^c University of Chinese Academy of Sciences, Beijing 100049, China

Experimental section

Preparation of precursor solution of gel electrolyte interlayer (GPI):

The precursor solution of GPI was made by dissolving 2 mol L⁻¹ lithium hexafluorophosphate (LiFP₆; Alfa Aesar, 98%) and 1 mol L⁻¹ bis(trifluoromethane)sulfonimide lithium salt (LiTFSI; Sigma-aldrich 99.95% trace metals basis) into a 1, 3-dioxolane (DOL; Alfa Aesar, 99.5%, stab.) and 1, 2-dimethoxyethane (DME) (Alfa Aesar, 99+%) solvent (1:1, v/v) mixture. The decomposition of LiFP₆ triggers the ring-opening cationic polymerization of DOL monomer and thereby converting the precursor solution into GPI. All the preparation processes were conducted in an argon-filled glovebox ($O_2 < 0.1$ ppm, $H_2O < 0.1$ ppm).

The assembly of symmetrical Li|LGPS|Li and blocking SS|LGPS|SS batteries:

About 80 mg of LGPS (Hefei Kejing Corp., 99.99%) powder was weighted and put into a battery mold (Zhongke Wanyuan Co. Ltd) with a diameter of 10 mm and then cold pressed under 360 MPa for 5 minutes.

And the Li foils (Φ 8) were placed on the both sides of LGPS pellet followed by cold pressing under 100 MPa for 3 minutes. Similarly, blocking SS|LGPS|SS cells were prepared without Li foils, two stainless steel cylinders of the battery mold directly contact the LGPS pallet. All the assembled processes were conducted in an argon-filled glovebox (O₂ < 0.1 ppm, H₂O < 0.1 ppm).

The assembly of symmetrical Li|GPI-LGPS-GPI|Li batteries:

About 80 mg of LGPS powder was weighted and put into a battery mold with a diameter of 10 mm and then cold pressed under 360 MPa for 5 minutes. After that, 10 μ L precursor solution was injected into the interface between LGPS pallet and Li foil. Subsequently, the assembled batteries were left to stand for a period of time to form GPI completely inside the battery. All the assembled processes were conducted in an argon-filled glovebox (O₂ < 0.1 ppm, H₂O < 0.1 ppm).

Materials characterization

The X-ray diffraction (XRD) patterns were collected on a Bruker D8 Advance diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) in the 2 θ range from 10° to 60° by using a sealed container to avoid oxygen. The morphology and element mapping were characterized by JEOL 6701F scanning electron microscopy (SEM) with an energy-dispersive X-ray spectroscopy (EDS) system. X-ray photoelectron spectroscopy (XPS) was recorded on AXIS Supra electron spectrometer using 150 W Al K α radiation (hv = 1486.6 eV).

Electrochemical measurements

Electrochemical impedance spectroscopy (EIS) measurements were investigated over the frequency range from 1 MHz to 0.1 Hz with an amplitude of 10 mV on a Princeton PARSTAT MC 1000 multi-channel electrochemical workstation. The ionic conductivity σ was calculated based on the following equation

$$\sigma = \frac{L}{R_{SSE} \times S}$$

where L is the thickness of electrolytes, R_{SSE} is the resistance according to the EIS measurement, S is the effective contact area between electrolyte and stainless steel.

The galvanostatic polarization and cycling measurements were conducted using a LAND battery test system (LANHE Inc. CT2001A). Galvanostatic cycling performance of Li|Li cells were tested with current density 0.1 mA cm⁻² and 0.5 mA cm⁻² corresponding to areal capacity of 0.1 mAh cm⁻² and 0.5 mAh cm⁻², respectively. For the critical current density tests, the initial current density is 0.1 mA cm⁻², the deposited capacity is 0.1 mAh cm⁻². After that, Li plating and stripping was tested at a fixed capacity of 0.1 mAh cm⁻² but a step-increased current density from 0.1 mA cm⁻² to 5 mA cm⁻².

	Thickness	Effective area	R _b	R _{gb}	R _{SSE}	Ionic conductivity
	(cm)	(cm^2)	(Ω)	(Ω)	(Ω)	$(mS cm^{-1})$
LGPS	0.0593	0.785	-	-	14.437	5.23
LGPS-DME	0.0589	0.785	24.8	27.5	52.3	1.43
LGPS-DOL	0.0595	0.785	24	25.6	49.6	1.53
LGPS-						
DOL/DME	0.0580	0.785	-	-	38.9	1.89
(v:v, 1:1)						

Table S1. The specific values of resistances and the calculation result of ionic conductivity of Figure 2b, Figure S2b.

Figure S1. (a) XRD pattern and (b) EIS spectrum of LGPS in DOL/DME (v:v, 1:1) after 24 hours.

Figure S2. Detailed equivalent circuit of Figure 2b, where R_b is the bulk resistance, R_{gb} is the grain-boundary resistance of LGPS powder and R_{el} is the resistance of blocking electrode. Each constant phase element (CPE) describes the capacitance of the corresponding process.

Figure S3. EIS spectrum of GPI-LGPS-GPI composite electrolytes.

Figure S4. Galvanostatic Li plating/stripping overpotential profiles of symmetrical Li|LGPS|Li cells at current density of 0.5 mA cm⁻² with a fixed capacity of 0.5 mAh cm⁻² at room temperature.

Figure S5 The EDS elemental mapping images of Li anode in Li|LGPS|Li system after 30 cycles.

Figure S6. Detailed equivalent circuit of Figure 4c, d, where R_{SSE-b} is the bulk resistance, R_{SSE-b} is the grain-boundary resistance of LGPS, $R_{Li-LGPS}$, R_{Li-GPI} , $R_{GPI-LGPS}$ is the Li/LGPS, Li/GPI, GPI/LGPS interphase resistance, respectively. $R_{LGPI-CT}$ is the electrochemical transfer polarization resistance of Li plating/stripping. Each constant phase element (CPE) describes the capacitance of the corresponding process.

	$R_{b}\left(\Omega ight)$	$R_{gb}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{SUM}}\left(\Omega ight)$	$R_{LGPI-CT}\left(\Omega ight)$	
Li-LGPS-Li	60.01		69.01	140 5	
Before cycle	09.91	-	08.01	149.3	
Li-LGPS-Li			70000		
After 30 cycles	-	-	/0000	-	
Li-GPI-LGPS-GPI-Li	20.2	60	12 20	52.22	
Before cycle	30.2	0.2	43.20	52.22	
Li-GPI-LGPS-GPI-Li	21 87	18 2	51 15	370	
After 30 cycles	34.02	10.2	51.15	370	

Table S2. The specific values of resistances in Figure S4.

Figure S7. XPS of the cycled Li anode recovered from Li|GPI-LGPS-GPI|Li battery. The battery is tested for 30 cycles at current density of 0.1 mA cm⁻² for 0.1 mAh cm⁻² at room temperature.

Figure S8. X-ray photoelectron spectroscopy of the LGPS pellet retreated from Li|GPI-LGPS-GPI|Li battery. The battery is tested for 30 cycles at current density of 0.1 mA cm⁻² with a fixed plating/stripping capacity of 0.1 mAh cm⁻² at room temperature.

	Binding er	nergy (eV)	Attributed species
Spectrum details	$3d_{5/2}; 2p_{3/2}$	$3d_{3/2}; 2p_{1/2}$	
Cald	30.66	31.24	Ge ⁴⁺
(Overlapping ration E 2a)	28.85	29.43	Reduced Ge
(Overlapping region F 2s)	30.3 (F 2s)		LiF
	131.84	132.71	$P_2S_7^{4-}$
Р 2р	132.86	133.73	PS_{4}^{3-}
(Overlapping region Ge 3p)	136.65	137.52	PF_5
	125.28	126.15	Li ₃ P
	122.98	127.08	Ge 3p
S 2m	161.34	162.50	PS_{4}^{3-}
5 2p	162.13	163.29	P=S
	159.66	160.82	Li ₂ S

Table S3. XPS binding energies with attributed species shown in Figure 5

Table S4. XPS binding energies with attributed species shown in Figure S7, S8.

Table 54. At 5 billening energies with attributed species shown in Figure 57, 56.				
Spectrum details	Binding energy (eV)	Attributed species		
	284.71	C-C		
	286.35	C-O-C		
C 1s	288.02	S-C		
	289.84	C-F-C		
	292.95	CF ₃		
	684.64	LiF		
F 1s	686.84	P-O-F		
	688.72	LiPF ₆		