Electronic Supplementary Information (ESI)

Electrochemical fixation of CO₂ over Mo plate to prepare Mo₂C film for electrocatalytic hydrogen evolution

Hansheng Xiao, ^a Hua Zhu, ^a Wei Weng, ^a Kongzhai Li, ^{*b} Wei Li, ^{*c} and Wei Xiao^{*ad}

^a School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, P. R. China. E-mail: <u>00030042@whu.edu.cn</u>(W. Xiao)
 ^b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Faculty of Chemical Engineering, Kunming University of Science and

Technology, Kunming 650093, P. R. China. E-mail: kongzhai.li@foxmail.com (K. Li)

^c Institute of Rare Metals, Guangdong Academy of Sciences, Guangzhou 510650, P.
R. China. E-mail: <u>shs9320@163.com</u> (W. Li)

^d College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, P. R. China.

Fig. S1 High-resolution TEM image of the Mo₂C/Mo-60.

The film is extremely stable and can hardly peel off from the substrate even upon violent ultrasonication. For TEM test, powder is scratched from the substrate by a blade. The TEM image in Fig. S1 is based on the scratched powder.

Fig. S2 Typical SEM images of W plate (a) before electrolysis and (b-c) after electrolysis. Elemental distribution mappings (d-f) after electrolysis. (g) XRD patterns of WC/W and Mo film. Cross-sectional SEM images of W plates after electrolysis (h) and corresponding EDS results of linear sweep analysis (i). Electrolysis time: 120 min.; Cell voltage: 3.1 V.

Similar with the Mo₂C-coated Mo plates, the electrochemical treatment of tungsten substrate was conducted at 3.1 V for 2 h in 900 °C molten Li_2CO_3 . Then the W plate cathode was lifted out from the molten salt and cooled to room temperature. Finally, the tungsten carbide-coated tungsten plate (denoted as WC/W) was obtained after rinsing and drying at 60 °C.

Fig. S3 CV curves measured at different scan rates from 10 to 50 mV s⁻¹ in 0.5 M H_2SO_4 for Mo₂C/Mo samples: (a) Mo₂C/Mo-10, (b) Mo₂C/Mo-30, (c) Mo₂C/Mo-60, and (d) Mo₂C/Mo-120.

Fig. S4 TOFs of Mo₂C/Mo-10, Mo₂C/Mo-30, Mo₂C/Mo-60 and Mo₂C/Mo-120.

Fig. S5 (a) Long-term HER stability test of $Mo_2C/Mo-60$ at 10 mA cm⁻². (b) XRD patterns of $Mo_2C/Mo-60$ before and after stability test. (c) SEM image after stability test.

Fig. S6 Optimized geometry structures of hydrogen adsorption on (a) the surface Mo site of Mo (110), the surface (b) C, (c) Mo1 and (d) Mo2 sites of Mo₂C (121) and (e) C, (f) Mo1 and (g) Mo2 sites of Mo (110)-Mo₂C (121).

Samples	Overpotential (mV) @10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	$R_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$
Pt/C	25	45.3	2.20	9.9
Mo film	375	321.6	1.78	177.7
Mo ₂ C/Mo	149	77.9	2.15	23.8

Table S1 The electrochemical properties of all the tested samples

Table S2 Comparison of Mo₂C-based catalysts for HER performance in 0.5 M H₂SO₄

Catalyst	Overpotential (mV) @10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Preparation method	Reference
Mo ₂ C/Mo	149	77.9	molten salt	This work
Ni-Mo ₂ C _{CB} /CFP	121.4	116.9	molten salt	1
Mo ₂ C/RGO	130	57.3	hydrothermal	2
Mo ₂ C/CC	140	124	hydrothermal	3
Mo ₂ C/NC	140	116	hydrothermal	4
L-Mo ₂ C	170	77	molten salt	5
Mo ₂ C-G	150	55	hydrothermal	6
H-Mo ₂ C/C	160	66	electrospinning	7
MoS_2/CS_2	208	43	Colloidal synthesis	8
MoS ₂ @FePS ₃	168	127	hydrothermal	9

Supplementary references

 Z. Hu, J. Huang, Y. Luo, M. Liu, X. Li, M. Yan, Z. Ye, Z. Chen, Z. Feng and S. Huang, Wrinkled Ni-doped Mo₂C coating on carbon fiber paper: An advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction, *Electrochim. Acta*, 2019, **319**, 293-301.

- L. F. Pan, Y. H. Li, S. Yang, P. F. Liu, M. Q. Yu and H. G. Yang, Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction, *Chem. Commun.*, 2014, **50**, 13135-13137.
- M. Fan, H. Chen, Y. Wu, L.L. Feng, Y. Liu, G.-D. Li and X. Zou, Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction, *J. Mater. Chem. A*, 2015, **3**, 16320-16326.
- M. Fan, Y. Zheng, A. Li, Y. Ma, Q. Huo, Z.A. Qiao and S. Dai, Sprout-like growth of mesoporous Mo₂C/NC nanonetworks as efficient electrocatalysts for hydrogen evolution, *Chemcatchem*, 2018, **10**, 625-631.
- W. Yuan, Q. Huang, X. Yang, Z. Cui, S. Zhu, Z. Li, S. Du, N. Qiu and Y. Liang, Two-dimensional lamellar Mo₂C for electrochemical hydrogen production: Insights into the origin of hydrogen evolution reaction activity in acidic and alkaline electrolytes, *ACS Appl. Mater. Interfaces*, 2018, 10, 40500-40508.
- C. He and J. Tao, Exploration of the electrochemical mechanism of ultrasmall multiple phases molybdenum carbides nanocrystals for hydrogen evolution reaction, *RSC Adv.*, 2016, 6, 9240-9246.
- X. Liu, L. Zhang, X. Lan and X. Hu, Paragenesis of Mo₂C nanocrystals in mesoporous carbon nanofibers for electrocatalytic hydrogen evolution, *Electrochim. Acta*, 2018, 274, 23-30.
- C. Meerbach, B. Klemmed, D. Spittel, C. Bauer, Y. J. Park, R. Hubner, H. Y. Jeong, D. Erb, H. S. Shin, V. Lesnyak and A. Eychmuller, General colloidal synthesis of transition-metal disulfide nanomaterials as electrocatalysts for hydrogen evolution reaction, *ACS Appl. Mater. Interfaces*, 2020, **12**, 13148-13155.
- H. Huang, J. Song, D. Yu, Y. Hao, Y. Wang and S. Peng, Few-layer FePS₃ decorated with thin MoS₂ nanosheets for efficient hydrogen evolution reaction in alkaline and acidic media, *Appl. Surf. Sci.*, 2020, **525**, 146623.