$9{ }^{a}$ Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. 10 China.

Dual anionic substitution engineering advanced NASICON phosphate cathode in sodium-ion batteries

Xin-Xin Zhao ${ }^{\text {a }}$, Zhen-Yi Gu ${ }^{\text {b }}$, Jin-Zhi Guo*b, Chen-De Zhao ${ }^{\text {a }}$, Xiao-Tong Wang ${ }^{\text {a }}$, Dan Xie ${ }^{\text {a }}$, Wen-Hao Li ${ }^{\text {b }}$ and Xing-Long Wu*ab
${ }^{b}$ MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
E-mail: xinglong@nenu.edu.cn (X.-L. Wu); guojz065@nenu.edu.cn (J.-Z. Guo)

Experimental section

Sample preparation:
$\mathrm{VPO}_{4} \& \mathrm{VOPO}_{4}$ sample preparation:
According to the corresponding stoichiometric ratio, the $\mathrm{V}_{2} \mathrm{O}_{5}$ (Sigma-Aldrich, 99\%), $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Sigma-Aldrich, 99\%) (molar ratio $=1: 3$) and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ (SigmaAldrich, 99%) were stirred in deionized water at $70^{\circ} \mathrm{C}$ for 3 h by the liquid phase method. The solution was dried at $120^{\circ} \mathrm{C}$ for 12 h to obtain a solid powder. And then sintered in an argon or air atmosphere at $750^{\circ} \mathrm{C}$ for 8 h to obtain the VPO_{4} or VOPO_{4} sample, respectively.
$\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(0 \leq x \leq 1)$ sample preparation:
Mix $\mathrm{VPO}_{4}, \mathrm{VOPO}_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ (Sigma-Aldrich, 99%) and NaF (Sigma-Aldrich, 99\%) in a stoichiometric ratio as precursors and subject them to wet ball milling. By controlling $7 \mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(0 \leq x \leq 1)$ with different x values are obtained. The F / O ratio is
the ratio of VPO_{4} and VOPO_{4}, the precursor in the different F / O ratio further changes. Specifically, the reaction was carried out according to formula (1) ${ }^{1}$:
$(1-x) \mathrm{VOPO}_{4}+x \mathrm{VPO}_{4}+\left(\frac{1}{2}+x\right) \mathrm{NaF}+\left(\frac{1-x}{2}\right) \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \frac{1}{2} \mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}+\mathrm{gas}$
The mixed precursors in absolute ethanol were performed by planetary ball-milling at a speed of 500 rpm for 20 h . The resulting slurry was dried at $80^{\circ} \mathrm{C}$ for 12 h , and then sintered at $750{ }^{\circ} \mathrm{C}$ for 1.5 h in Ar atmosphere. In the end, powder samples of determined by the molar ratio of VPO_{4} and VOPO_{4}. According to Formula 1, the vanadium in $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 \mathrm{x}}$ with specific valence state could been obtained by adjusting the ratio of VPO_{4} and VOPO_{4}.

Materials characterization:

The X-ray diffractometer (D8 Bruker) is used to collect X-ray diffraction (XRD) of samples, which uses $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation $(\lambda=1.5406 \AA$) in the scanning range (20) of 5$80^{\circ}$ to collect materials‘ composition information. The morphology of the samples was investigated by Hitachi SU8000 scanning electron microscopy (SEM) operating at 10 kV . The images of transmission electron microscopy (TEM) were collected on the JEOL-2100F. The Fourier transform infrared (FTIR) spectrum was made to analyze the chemical bond on Nicolet 6700. The X-ray photoelectron spectroscopy (XPS) was performed on the corresponding spectrophotometer (ESCALABMKLL).

Electrochemical measurement:

A specific proportional slurry of active material, carbon black, and sodium carboxymethylcellulose (CMC, Sigma-Aldrich) was mixed at a mass ratio of 7:2:1,

1 dispersed in deionized water and casted on aluminum foils. The loading density of 2 active material on the working electrodes was about $1.0-1.5 \mathrm{mg} \mathrm{cm}^{-2}$. After drying in 3 vacuum at $60{ }^{\circ} \mathrm{C}$ for 12 h , the electrodes transferred to the argon-filled atmosphere 4 glovebox for assembling the coin cells (CR2032). Na metal (Sigma-Aldrich) and glass 5 microfiber filter (Whatman) were employed as counter electrode and separator, 6 respectively. The electrolyte composition was $1 \mathrm{M} \mathrm{NaClO}_{4}$ with the solvent propylene 7 carbonate (PC) and the additive 5 vol \% fluoroethylene carbonate (FEC). The battery 8 testing system (Neware CT-4000) was used to test galvanostatic charge/discharge 9 (GCD) in the voltage window of $2.0 \mathrm{~V}-4.3 \mathrm{~V} v s . \mathrm{Na}^{+} / \mathrm{Na}$ at room temperature. CHI600E 10 electrochemical workstation was carried on testing cyclic voltammetry (CV) at 11 different scanning rates in $2.0 \mathrm{~V}-4.3 \mathrm{~V}$ vs. $\mathrm{Na}^{+} / \mathrm{Na}$.

Figure S2 FTIR spectra of the as-synthesized $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(0 \leq x \leq 1)$.
4

6 Figure S3 SEM image and corresponding EDS mapping of the as-synthesized $7 \quad \mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{0.6} \mathrm{~F}_{2.4}$.

2 Figure S4 The rate performance of the $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(0 \leq x \leq 1)$ from 0.2 C to 320 C .

5 Table S1 The ICE of $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 \mathrm{x}} \mathrm{F}_{1+2 \mathrm{x}}$ materials.

x in $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 \mathrm{x}} \mathrm{F} \mathrm{F}_{1+2 \mathrm{x}}$	ICE
0	96.18%
0.3	84.93%
0.5	81.58%
0.7	89.38%
1	88.12%

6

8 Figure S5 The GCD curves of $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{0.6} \mathrm{~F}_{2.4}$ during different cycles at 0.5 C .

2 Figure S6 The cycle performance of the $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(0 \leq x \leq 1)$ at 0.5 C .

3

4 Calculation process $D_{\text {app,Na }}$ through CV tests:
5 The $D_{\text {app,Na }}$ was calculated from the following Randles-Sevcikequation (2) ${ }^{2}$:
${ }_{6} i_{p}=2.69 \times 10^{5} n^{\frac{3}{2}} A D_{a p p, N a}^{\frac{1}{2}} C_{0} v^{\frac{1}{2}}$
7 where i_{p} is the peak current density, n is the electron-transfer number per molecule
8 formula during the redox reaction, A is the surface area of the electrode, C_{0} is the

9 concentration of Na^{+}in the electrode, and v is the scan rate.

2 Figure S7 The CV test results and fitting curves of the $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(x=0.1$, 3 0,2, 0,4).

2 Figure S8 The CV test results and fitting curves of the $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(x=0.6$, 3 0.8, 0.9).

2 Figure S9 The CV test results of the $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2-2 x} \mathrm{~F}_{1+2 x}(x=0,0.3,0.5,0.7,1)$.

3 References

S1. Y.-U. Park, D.-H. Seo, H. Kim, J. Kim, S. Lee, B. Kim and K. Kang, A Family of 5 High-Performance Cathode Materials for Na-ion Batteries, $\mathrm{Na}_{3}\left(\mathrm{VO}_{1-\mathrm{x}} \mathrm{PO}_{4}\right)_{2} \mathrm{~F}_{1+2 \mathrm{x}}(0$ $6 \leq \mathrm{x} \leq 1$): Combined First-Principles and Experimental Study, Adv. Funct. Mater., 2014, 24, 4603-4614.
S2. L. Q. Xu, J. Y. Li, Y. T. Li, P. Cai, C. Liu, G. Q. Zou, H. S. Hou, L. P. Huang and X. B. Ji, Nitrogen-doped Carbon Coated $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ with Superior Sodium Storage Capability, Chem. Res. Chin. Univ., 2020, 36, 459-466.

