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General Information 

Commercially available reagents were used directly without further purification. NMR 

spectra (1H and 13C) were recorded on a Bruker Avance 400 MHz spectrometer in 

CDCl3. Mass spectra were measured on the WATERS I-Class VION IMS Qtof mass 

spectroscopy. The thermal gravimetric analysis (TGA) was studied with a NETZSCH 

STA 409C instrument under N2 at a heating rate of 20 K/min. UV-vis absorption spectra 

of Pt(II) complexes in CH2Cl2 solutions at a concentration of ca. 310−5 M were 

measured on a Shimadzu UV-2250 spectrophotometer at room temperature. 

Photoluminescent spectra and lifetimes of Pt(II) complexes in doped films were 

measured on an Edinburgh Instruments Ltd (FLSP920) fluorescence 

spectrophotometer. The PLQYs of doped films were tested with an integrating sphere. 

Cyclic voltammetry curves were recorded with a Princeton Applied Research 

equipment (PARSTAT 2273) in CH2Cl2 solutions using n-Bu4NPF6 (0.1 M) as the 

supporting electrolyte and ferrocene/ferrocenium (Fc/Fc+) couple as the reference. 

Energy levels of HOMOs (EHOMO) were determined from the onset of oxidation 

potentials (Eox) according to EHOMO = – (Eox + 4.8) eV and energy levels of LUMOs 

(ELUMO) were determined from ELUMO = – (Ered + 4.8) eV. Theoretical computations 

based on density functional theory (DFT) and time dependent-DFT (TD-DFT) were 

carried out for all three dinuclear Pt(II) complexes with Gaussian 09 program. Non-

metal atoms of C, H, N, O, S, and B were described by the basis set of B3LYP/6-31G(d, 

p). The metal atom Pt was described by the B3LYP/LanL2DZ basis set. 



OLED Fabrication and Measurements. The ITO glass substrates were pre-cleaned 

in ultrasonic cleaner with detergent and deionized water. The substrates were treated 

with UV-O3 for 30 minutes before use. Then, PEDOT:PSS was spin-coated on the 

surface of ITO glass substrates to form a hole-injection layer and annealed at 150 °C 

for 15 min in the air. The hole transport layer was prepared by spin-coating the 

chlorobenzene solution of PVK on the surface of PEDOT:PSS layer and annealed at 

120 °C for 10 min in a glove box. After spin-coating the chlorobenzene solution of 

Pt(II) complexes and CBP host (1, 2, or 3 wt% doping level) to form the emissive layer, 

the TmPyPB (40 nm), LiF 1 (nm), and Al (100 nm) layers were vucuum deposited 

under a pressure of 5 × 10−4 torr. The current density-voltage (I-V) curves were 

measured by a SourceMeter (Keithely 2400). The EL spectra and luminance values 

were measured with a PR788 spectra colorimeter. The efficiency and spectra tests were 

carried out under ambient conditions.
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Scheme S1 Synthetic routes of dinuclear Pt(II) complexes.

Compound 1: To a solution of triphenylamine (2.45 g, 10.0 mmol) in CHCl3 (30 

mL) at 0 C, N-bromosuccinimide (NBS, 3.56 g, 20.0 mmol) was added very slowly. 

Then the mixture was stirred at room temperature overnight. After being washed with 

water, the organic layer was separated, dried over anhydrous MgSO4, and concentrated 

with a rotary evaporator. The residual was purified on a silica column using petroleum 

ether as the eluent to the target product (3.71 g, 92% yield). 1H NMR (400 MHz, CDCl3, 

δ): 7.37−7.31 (m, 4H), 7.29−7.24 (m, 2H), 7.08−7.03 (m, 3H), 6.96–6.92 (m, 4H).

Compound 2: The mixture of compound 1 (2.02 g, 5.0 mmol), 

bis(pinacolato)diboron (2.86 g, 11.0 mmol), Pd(dppf)Cl2 (0.48 g, 0.66 mmol), and 

potassium acetate (3.30 g, 33.7 mmol) were added to dioxane (50 mL) and stirred at 



100 oC for 12 h under a N2 atmosphere. After cooled to room temperature, the mixture 

was poured into water and extracted with CH2Cl2 several times. The organic layers were 

combined, dried over anhydrous MgSO4 and concentrated with a rotary evaporator. The 

residual was purified on a silica column using a mixture of petroleum ether and CH2Cl2 

as the eluent to give the target product (1.67 g, 67 % yield). 1H NMR (400 MHz, CDCl3, 

δ): 7.67 (d, J = 8.0 Hz, 4H), 7.28−7.24 (m, 3H), 7.11 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 

8.4 Hz, 4H), 1.33 (s, 24H); 13C NMR (100 MHz, CDCl3, δ): 150.10, 147.02, 135.86, 

129.35, 125.58, 124.96, 123.86, 122.71, 83.60, 24.84.

Compound L: Under a N2 atmosphere, the mixture of compound 2 (1.0 g, 2.0 

mmol), 2-bromopyridine (0.66 g, 4.2 mmol), and Pd(PPh3)4 (0.24 g, 0.21 mmol) were 

stirred in the THF (30 mL) and 2 M K2CO3 (20 mL) at 110 oC overnight. The reaction 

mixture was cooled to room temperature, poured into water, and extracted with CH2Cl2 

several times. The organic layers were combined, dried over anhydrous MgSO4 and 

concentrated with a rotary evaporator. The residual was purified on a silica column 

using a mixture of petroleum ether and CH2Cl2 as the eluent to give the related target 

product (0.69 g, 86.8% yield). 1H NMR (400 MHz, CDCl3, δ): 8.66 (d, J = 4.4 Hz, 2H), 

7.90 (d, J = 8.8 Hz, 4H), 7.75−7.67 (m, 4H), 7.30 (t, J = 8.0 Hz, 2H), 7.25−7.17 (m, 

8H), 7.09 (t, J = 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3, δ): 156.99, 149.60, 148.28, 

147.15, 136.66, 133.68, 129.40, 127.81, 125.15, 123.85, 123.67, 121.55, 119.95.

Compound L-Br: To a solution of compound L (1.0 g, 2.5 mmol) in THF (100 

mL) at room temperature, N-bromosuccinimide (NBS, 0.46 g, 2.6 mmol) was added 

very slowly. Then the mixture was stirred overnight. After being washed with water, 



the organic layer was separated, dried over anhydrous MgSO4, and concentrated with a 

rotary evaporator. The residual was purified on a silica column using the mixture of 

CH2Cl2 and ethyl acetate as the eluent to the target product (1.16 g, 97.2% yield). 1H 

NMR (400 MHz, CDCl3, δ): 8.66 (d, J = 4.8 Hz, 2H), 7.90 (d, J = 8.8 Hz, 4H), 

7.75−7.67 (m, 4H), 7.38 (dd, J = 5.2, 7.2 Hz, 2H), 7.21−7.18 (m, 6H), 7.05 (d, J = 8.8 

Hz, 2H); 13C NMR (100 MHz, CDCl3, δ): 156.78, 149.61,147.74, 146.27, 136.70, 

134.18,132.35, 127.93, 126.12, 124.06, 121.68, 119.99, 115.91.

Compound L-BPin: The mixture of compound L-Br (1.1 g, 2.3 mmol), 

bis(pinacolato)diboron (0.89 g, 3.5 mmol), Pd(dppf)Cl2 (0.17 g, 0.23 mmol), and 

potassium acetate (1.1 g, 11.2 mmol) were added to dioxane (35 mL). The reaction 

mixture was stirred at 100 oC for 16 h under a N2 atmosphere. After cooled to room 

temperature, the mixture was poured into water and extracted with CH2Cl2 several 

times. The organic layers were combined, dried over anhydrous MgSO4 and 

concentrated with a rotary evaporator. The residual was purified on a silica column 

using a mixture of petroleum ether and ethyl acetate as the eluent to give the target 

product (0.8 g, 66.2% yield). 1H NMR (400 MHz, CDCl3, δ): 8.66 (d, J = 4.8 Hz, 2H), 

7.90 (d, J = 8.4 Hz, 4H), 7.74−7.67 (m, 6H), 7.23 (d, J = 8.8 Hz, 4H), 7.20−7.15 (m, 

4H), 1.34 (s, 12H); 13C NMR (100 MHz, CDCl3, δ): 156.76, 149.75, 149.49, 147.77, 

136.66, 135.91, 134.15, 127.83, 124.52, 122.88, 121.61, 120.00, 83.58, 24.78.

Compounds SO-BPin and AB-I were synthesized according to our previous 

studies.1, 2



Compound L-SO: Under a N2 atmosphere, the mixture of compound SO-BPin 

(0.42 g, 1.2 mmol), L-Br (0.48 g, 1.0 mmol), and Pd(PPh3)4 (0.07 g, 0.06 mmol) were 

stirred in the 1,2-dimethoxyethane (20 mL), ethanol (5 mL), and 2 M K2CO3 (15 mL) 

at 110 oC overnight. The reaction mixture was cooled to room temperature, poured into 

water, and extracted with CH2Cl2 several times. The organic layers were combined, 

dried over anhydrous MgSO4 and concentrated with a rotary evaporator. The residual 

was purified on a silica column using a mixture of petroleum ether and ethyl acetate as 

the eluent to give the related target product (0.4 g, 65.0% yield). 1H NMR (400 MHz, 

CDCl3, δ): 8.67 (d, J = 4.4 Hz, 2H), 7.98 (d, J = 7.2 Hz, 4H), 7.93 (d, J = 8.4 Hz, 4H), 

7.76−7.69 (m, 6H), 7.58−7.48 (m, 6H), 7.26−7.12 (m, 7H); 13C NMR (100 MHz, 

CDCl3, δ): 156.83, 149.66, 147.76, 145.45, 139.52, 136.73, 134.48, 133.30, 133.11, 

132.03, 129.28, 128.24, 128.18, 128.00, 127.60, 127.30, 124.55, 124.25, 121.75, 

120.06.

Compound L-AB: Under a N2 atmosphere, the mixture of AB-I (0.4 g, 0.88 

mmol), L-BPin (0.4 g, 0.76 mmol), and Pd(PPh3)4 (0.051 g, 0.04 mmol) were stirred 

in the THF (25 mL) and 2 M K2CO3 (15 mL) at 80 oC for 5 h. The reaction mixture was 

cooled to room temperature, poured into water, and extracted with CH2Cl2 several 

times. The organic layers were combined, dried over anhydrous MgSO4 and 

concentrated with a rotary evaporator. The residual was purified on a silica column 

using a mixture of ethyl acetate and CH2Cl2 as the eluent to give the related target 

product (0.25 g, 45.5% yield). 1H NMR (400 MHz, CDCl3, δ): 8.69 (d, J = 4.4 Hz, 2H), 

7.95 (d, J = 8.8 Hz, 4H), 7.78−7.71 (m, 4H), 7.63−7.61 (m, 6H), 7.29−7.26 (m, 6H), 

7.22 (t, J = 5.6 Hz, 2H), 6.86 (s, 4H), 2.34 (s, 6H), 2.07 (s, 12H); 13C NMR (100 MHz, 

CDCl3, δ): 156.91, 149.63, 147.99, 146.95, 143.57, 140.81, 138.54, 137.17, 136.69, 



135.37, 134.06, 128.14, 128.07, 127.90, 126.02, 124.76, 124.20, 121.64, 119.99, 23.47, 

21.22.

General procedure for synthesizing dinuclear Pt(II) complexes: Under a N2 

atmosphere, the mixture solution of 2-ethoxyethanol and H2O (3:1, v/v) (25 mL), 

organic ligand (1.0 equiv), and K2PtCl4 (ca. 2.1 equiv) were stirred at 90 °C for 4 h. 

After cooled to room temperature, the mixture was extracted with CH2Cl2 several times. 

The collected organic layers were dried over anhydrous MgSO4 and concentrated with 

a rotary evaporator. Then, the residual was mixed with thallium(I) acetylacetonate (ca. 

2.1 equiv) in CH2Cl2 (20 mL), and stirred at room temperature overnight under a N2 

atmosphere. Finally, the solvent was removed, and the residual was purified on self-

made silica TLC to give the target dinuclear Pt(II) complexes. 

SO-DPt (19.2% yield). 1H NMR (400 MHz, CDCl3, δ): 8.93 (d, J = 5.6 Hz, 2H), 

8.01−7.98 (m, 4H), 7.77 (t, J = 7.6 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.60−7.50 (m, 

7H), 7.39−7.35 (m, 6H), 7.05 (t, J = 6.4 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 5.40 (s, 2H), 

1.99 (s, 6H), 1.75 (s, 6H); 13C NMR (100 MHz, CDCl3, δ): 185.62, 184.13, 167.72, 

148.03, 147.47, 147.17, 145.92, 141.90, 139.86, 139.40, 139.14, 137.94, 133.06, 

132.82, 129.26, 128.18, 127.75, 127.59, 127.17, 125.36, 125.21, 123.99, 120.14, 

119.78, 117.89, 102.36, 28.22, 26.96; ESI-MS (m/z) theoretical [M]+: 1201.20, found: 

1201.20.

AB-DPt (18.9 % yield). 1H NMR (400 MHz, CDCl3, δ): 8.90 (d, J = 5.2 Hz, 2H), 

7.73 (t, J = 7.2 Hz, 2H), 7.58−7.56 (m, 6H), 7.49 (d, J = 8.0 Hz, 2H), 7.38−7.32 (m, 

6H), 7.01 (t, J = 6.0 Hz, 2H), 6.92 (dd, J = 6.0, 8.4 Hz, 2H), 6.83 (s, 4H), 5.38 (s, 2H), 



2.32 (s, 6H), 2.04 (s, 12H), 1.96 (s, 6H), 1.74 (s, 6H); 13C NMR (100 MHz, CDCl3, δ): 

185.53, 184.24, 167.84, 165.03, 147.70, 147.15, 144.25, 143.79, 140.80, 139.78, 

138.99, 138.46, 137.87, 137.18, 135.08, 128.12, 127.73, 126.03, 125.83, 124.92, 

123.93, 119.98, 119.45, 117.82, 102.32, 28.22, 26.96, 23.48, 21.22; ESI-MS (m/z) 

theoretical [M]+: 1309.38, found: 1309.38.

Fig. S1 NMR spectra of SO-DPt and AB-DPt.



Fig. S2 Mass spectra of SO-DPt and AB-DPt complexes.

100 200 300 400 500
0

20

40

60

80

100

120

298 C 

 SO-DPt
 AB-DPt

 

 

 
 W

ei
gh

t (
%

) 

Temperature (°C)

302 C 

Fig. S3 TGA curves of SO-DPt and AB-DPt.



Fig. S4 Caltulation results of absorptions for SO-DPt and AB-DPt.
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Fig. S5 CV curves of SO-DPt and AB-DPt.

Table S1 NTO results for SO-DPt and AB-DPt

NTOs
Contribution from Pt and 

ligands to MOs (%)
SO-DPt Pt L-SO acac

Particle 4.62 94.65 0.73
Hole 3.87 95.71 0.42

AB-DPt Pt L-AB acac
Particle 4.61 94.66 0.73
Hole 3.52 96.08 0.40



Fig. S6 EL performance of devices A1 and B1: (a) EL spectra, (b) J-V-L characteristics, (c) CE/PE 
vs luminance, and (d) EQE vs luminance.

Fig. S7 EL performance of devices A3 and B3: (a) EL spectra, (b) J-V-L characteristics, (c) CE/PE 
vs luminance, and (d) EQE vs luminance.
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Fig. S8 Summary of EQEs vs EL peaks of OLEDs based on dinuclear Pt(II) complexes.3-10

Table S2 EL performance of highly efficienct solution-processed yellow OLEDs 

Complex
Center 

metal

λEL 

(nm )

EQEmax

(%)

CEmax

(cd/A)

PEmax

(lm/W)

CIE

(x, y)
Reference

SO-DPt Pt 549 21.54 76.64 52.33 (0.43, 0.56) This work

AB-DPt Pt 553 21.39 74.35 48.08 (0.45, 0.54) This work

2-FBNO Ir - a 18.9 b 65.7 b 64.4 b (0.45, 0.54) 11

Complex 4 Pt 550 7.2 7.5 24.0 (0.41, 0.57) 12

Y1 Ir 578 7.55 15.1 - a (0.53, 0.45) 13

Ir(SFXpy)3 Ir 542 12.1 46.2 36.3 (0.45, 0.54) 14

BPyPmIr Ir 568 18.7 62.8 60.9 - a 15

Ir(TPABPBI)2(acac) Ir 568 15.0 30.0 6.80 (0.507, 0.486) 16

FCF3BNO Ir - a 22.7 c 82.5 c 49.2 c (0.43, 0.56) 17

m-LIrpic Ir 572 17.1 43.9 23.0 (0.528, 0.469) 18

(Et-Cz-BTz)2Ir(EO2-pic) Ir ~550 19 60 - a (0.467, 0.524) 19

Complex 1 Ir 570 19.20 40.10 - a (0.493, 0.500) 20

PO-01 Ir 564 23 b 71 b 72 b - a 21

Ir(FP)3 Ir - a 12.7 41.7 12.5 - a 22

IrST-3F Ir 580 12.3 27.5 17.3 (0.57, 0.43) 23

PyTPt Pt 557 16.92 56.74 29.09 (0.47, 0.52) 24

a Not report. b Recorded at a luminance of 100 cd m−2. c Recorded at a luminance of 1000 cd m−2.
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