Supporting Information

In-situ grown MnO₂/Graphdiyne oxide hybrid 3D nanoflowers for high performance aqueous zinc-ion batteries

Fuhui Wang,^{a, b} Weiyue Jin,^{a, b} Zecheng Xiong,^{a, b} Huibiao Liu^{∞a, b}
^a Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China E-mail: liuhb@iccas.as.cn

Fig. S1 (a) TEM and (b) HR-TEM images of GDYO nanosheet.

Fig. S2 Microstructural and compositional analysis of MnO₂@10GDYO hybrid 3D nanoflowers. (a-c) SEM images. (d-e) TEM images. (f) HR-TEM image and (g) elemental mapping images of Mn, O and C.

Fig. S3 Microstructural and compositional analysis of MnO₂@20GDYO hybrid 3D nanoflowers. (a-c) SEM images. (d-e) TEM images. (f) HR-TEM image and (g) elemental mapping images of Mn, O and C.

Fig. S4 Microstructural and compositional analysis of MnO₂@100GDYO hybrid 3D nanoflowers. (a-c) SEM images. (d-e) TEM images. (f) HR-TEM image and (g) elemental mapping images of Mn, O and C.

Fig. S5 Microstructural and compositional analysis of MnO₂. (a) SEM image. (b) TEM image. (c) HR-TEM image and (d) elemental mapping images of Mn, O and C.

Fig. S6 (a) TEM and (b) HR-TEM images of MnO₂@50GDYO hybrid 3D nanoflowers.

Fig. S7 XRD patterns of MnO₂@GDYO hybrid 3D nanoflowers.

Fig. S8 Raman spectra of MnO₂ and MnO₂@GDYO hybrid 3D nanoflowers.

Fig. S9 XPS spectra of MnO₂ and MnO₂@GDYO hybrid 3D nanoflowers. (a-d) Survey scan and narrow scan for element C, O, Mn.

Fig. S10 TGA curves of (a) MnO₂@10GDYO, (b) MnO₂@20GDYO and (c) MnO₂@100GDYO hybrid 3D nanoflowers.

Tab. S1 Comparison of specific surface area of MnO_2 with different synthetic methods and morphologies

Materials	Preparation	Morphology	Specific surface area (m ² g ⁻¹)	Ref.
MnO ₂	solvothermal	nanowires	81.9	1
N-CNSs@ MnO ₂	hydrothermal	nanoflakes	7.3	2
MnO ₂ -	mechanical	nanosheets	99.04	3
CNTs/CNHs	mixing			
MnO ₂ /rGO	vacuum	nanowires	159.9	4
	filtration			
α -MnO ₂ /CNT	chemical	microspheres	119.3	5
HMs	precipitation			
MnO_2	chemical	nanospheres	178	6
	precipitation			
β -MnO ₂	microwave	nanofibers	$\Box 68$	7
	hydrothermal			
Graphene-MnO ₂	hydrothermal	nanotube	136.2	8
MnO ₂ @50GDYO	in-situ	3D	204.83	This work
	induced	nanoflowers		

Fig. S11 Nitrogen adsorption-desorption isotherms of (a) MnO₂, (b) MnO₂@10GDYO, (c) MnO₂@20GDYO, (d) MnO₂@100GDYO hybrid 3D nanoflowers and (e) GDYO at 77 K.

The BET specific surface area of GDYO is 14.7253 m² g⁻¹, according to the Nitrogen adsorption-desorption isotherm.

Fig. S12 Specific surface area of MnO₂ and MnO₂@GDYO hybrid 3D nanoflowers.

Fig. S13 Photographs of MnO₂ and MnO₂@100GDYO samples with approximate weight.

Fig. S14 (a) CV curves of GDYO at 0.1 mV s⁻¹. (b) Cycle performances of GDYO at 100 mA h g⁻¹. Charge and discharge curves of (c) MnO₂, (d) MnO₂@10GDYO, (e) MnO₂@20GDYO and (f) MnO₂@100GDYO electrodes at current densities ranging from 0.1 to 10 C.

It can be seen from the CV curve of GDYO that there is no redox peak in the voltage range of 1 - 2V, and the current increase when the voltage is greater than 1.8V is caused by the decomposition of the electrolyte. The specific capacity of GDYO tested at current density of 100 mA g^{-1} is approximately 1 mA h g^{-1} , which is negligible. Therefore, it is concluded that the GDYO has no capacity contribution to zinc ion storage.

Tab. S2 Comparison of reported MnO₂ cathode materials for Zn-ion batteries

Materials	Low-rate capacity	High-rate capacity	Capacity retention	Cycling stability	Ref.
	(mA h g ⁻¹)	(mA h g ⁻¹)			
Graphene-MnO ₂	321 (48	147 (1200	45.8%	91% after	8
	$mA g^{-1}$)	mA g ⁻¹)		300 cycles	
				at 720 mA	
				g^{-1}	
N-CNSs@MnO2	303.7 (0.2	114.3 (10	37.6%	81.2% after	2
0	A g ⁻¹)	$A g^{-1}$)		200 cycles	
	- /	- /		at 8 Å g^{-1}	
MnO_2	171 (1 C)	87 (30 C)	50.9%		9
	× ,			after 1000	
				cycles at 20	
				C	
MnO ₂ -rGO	275 (0.3 A	180 (3 A	65.5%	□ 74.3%	3
-	g ⁻¹)	g ⁻¹)		after 500	
	8,	6 /		cycles at 3	
				A g ⁻¹	
MnO ₂	200 (0.3 A	60 (3 A	30%	500 cycles	1
	g ⁻¹)	g ⁻¹)		at 0.6 A g ⁻¹	
MnO ₂ /rGO	317 (0.1 A	112 (7.5 A	35.33%	76.2% after	4
2	g ⁻¹)	g ⁻¹)		600 cycles	
	C)	C ,		at 1 Å g^{-1}	
MnO ₂	264 (0.2 C)	58 (3 C)	21.97%	99.4% after	10
2	()	()		1000 cycles	
				at 1 C	
$K_{0.28}MnO_2$	238 (0.1 A	83 (5 A	35%	95% after	11
0.20 2	g ⁻¹)	g ⁻¹)		1000 cycles	
	8)	8)		at 2 A g^{-1}	
α -MnO ₂ -C-30	298.2 (0.1	170 (2 A	57%	\Box 33%	12
	$A g^{-1}$	g^{-1}		after 100	
	0)	6)		cycles at	
				0.5 A g^{-1}	
MnO2@50GDYO	265.1 (0.1	80.6 (10 C)	30.4%	77.6% after	This
3D nanoflowers	C)			1000 cvcles	work
	- /			at 5 C	

 $1 \text{ C} = 308 \text{ mA h g}^{-1}$

Fig. S15 Nyquist plots of the impedance spectra of MnO₂ and MnO₂@GDYO electrodes before and after cycles.

Tab. S3 Fitting results of R₀, Rct of the EIS based on the equivalent circuit.

Materials	$R_0(\Omega)$	Rct (Ω)
MnO ₂	2.23	1265
MnO ₂ @10GDYO	2.07	836
MnO ₂ @20GDYO	1.98	790
MnO ₂ @50GDYO	1.76	513
MnO ₂ @100GDYO	1.88	612

Fig. S16 Long-term cycling performance of (a) MnO₂@10GDYO, (b) MnO₂@20GDYO and (c) MnO₂@100GDYO electrodes at 1 C after rate performances test.

Fig. S17 TEM images of the MnO₂@50GDYO hybrid 3D nanoflowers after discharge-charge test.

Fig. S18 Photographs, SEM images and their corresponding elemental mapping, XRD patterns at various states marked in Fig. 5a.

Fig. S19 XPS narrow scan spectra for element Zn and Mn of MnO₂@50GDYO electrodes at full discharge and charge state.

With deep discharging to 1.0 V, the splitting of Mn 3s peak ($\Delta Es = 5.1 \text{ eV}$) becomes wider when the valence of Mn in the oxide decreases because of fewer unpaired electrons in the 3d level. Recharging to 1.8 V, the splitting of Mn 3s peak ($\Delta Es = 4.62 \text{ eV}$) becomes narrower when the valence of Mn in the oxide increases.

Fig. S20 SEM images of the MnO₂@50GDYO cathodes after 1000 cycles (a) discharge state, (b) charge state.

References

- J. J. Wang, J. G. Wang, X. P. Qin, Y. Wang, Z. Y. You, H. Y. Liu and M. H. Shao, Superfine MnO₂ nanowires with rich defects toward boosted zinc ion storage performance, *ACS Appl. Mater. Interfaces*, 2020, **12**, 34949-34958.
- 2 Y. Zhang, S. J. Deng, Y. H. Li, B. Liu, G. X. Pan, Q. Liu, X. L. Wang, X. H. Xia and J. P. Tu, Anchoring MnO₂ on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO₂ batteries, *Energy Storage Mater.*, 2020, **29**, 52-59.
- 3 Y. Huang, Z. X. Li, S. Y. Jin, S. D. Zhang, H. L. Wang, P. Hiralal, Gehan A.J. Amaratunga, and H. Zhou, Carbon nanohorns/nanotubes: An effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries, *Carbon*, 2020, 167, 431-438.
- 4 J. J. Wang, J. G. Wang, H. Y. Liu, Z. Y. You, Z. Li, F. Y. Kang and B. Q. Wei, A highly flexible and lightweight MnO₂/Graphene membrane for superior zinc-ion batteries, *Adv. Funct. Mater.*, 2020, **31**, 2007397.
- 5 N. Palaniyandy, M. A. Kebede, K. Raju, K. I. Ozoemena, L. le Roux, M. K. Mathe and R. Jayaprakasam, α-MnO₂ nanorod/onion-like carbon composite cathode material for aqueous zinc-ion battery, *Mater. Chem. Phys.*, 2019, 230, 258-266.
- 6 J. J. Wang, J. G. Wang, H. Y. Liu, C. G. Wei and F. Y. Kang, Zinc ion stabilized MnO₂ nanospheres for high capacity and long lifespan aqueous zinc-ion batteries, *J. Mater. Chem. A*, 2019, 7, 13727-13735.
- M. Q. Liu, Q. H. Zhao, H. Liu, J. L. Yang, X. Chen, L. Y. Yang, Y. H. Cui, W. Y. Huang, W. G. Zhao, A. Y. Song, Y. T. Wang, S. X. Ding, Y. L. Song, G. Y. Qian, H. B. Chen and F. Pan, Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery, *Nano Energy*, 2019, 64, 103942.
- 8 C. Y. Wang, M. Q. Wang, Z. C. He, L. Liu and Y. D. Huang, Rechargeable aqueous zinc-manganese dioxide/graphene batteries with high rate capability and large capacity, ACS Appl. Energy Mater., 2020, 3, 1742-1748.
- 9 X. T. Zhang, J. X. Li, H. S. Ao, D. Y. Liu, L. Shi, C. M. Wang, Y. C. Zhu and Y. T.

Qian, Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries, *Energy Storage Mater.*, 2020, **30**, 337-345.

- 10 N. Li, G. Q. Li, C. J. Li, H. C. Yang, G. W. Qin, X. D. Sun, F. Li and H. M. Cheng, Bi-cation electrolyte for a 1.7 V aqueous Zn ion battery, ACS Appl. Mater. Interfaces, 2020, 12, 13790-13796.
- 11 Y. D. Jiao, L. Q. Kang, J. B. Gair, K. McColl, J. W. Li, H. B. Dong, H. Jiang, R. Wang, F. Corà, D. J. L. Brett, G. J. He and I. P. Parkin, Enabling stable MnO₂ matrix for aqueous zinc-ion battery cathodes, *J. Mater. Chem. A*, 2020, **8**, 22075-22082.
- 12 X. Gao, H. W. Wu, W. J. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Q. Zou, H. S. Hou and X. B. Ji, H⁺ -insertion boosted alpha-MnO₂ for an aqueous Zn-ion battery, *Small*, 2020, 16, 1905842.