Constructing Sensitive Luminescent Thermometers via Energy Transfer in Ce³⁺ and Eu²⁺ Co-Doped Ca₈Mg₃Al₂Si₇O₂₈

Phosphors

Rongfu Zhou^{a,*}, Litian Lin^b, Hongting Zhao^a, Tingting Deng^a, Jingwei Li^c

^a School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, P. R. China.

^b Guangdong Province Key Laboratory of Rare Earth Development and Application, Institute of Rare Metals, Guangdong Academy of Sciences, Guangzhou 510651, P. R. China.

^c School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China.

* E-mail: zhourongfu@fosu.edu.cn (R. Zhou).

Part A. The details of samples preparations and characterizations

Preparation. The analytic reagents CaCO₃, MgO, Al₂O₃, SiO₂, Na₂CO₃ and 99.99% pure rare-earth oxides CeO₂ and Eu₂O₃ were used as starting materials and weighed with the nominal formulas Ca_{8-2x-v}Ce_xNa_xEu_vMg₃Al₂Si₇O₂₈ for Ce³⁺ and Eu²⁺ doped samples. The mixtures were ground thoroughly in an agate mortar, and then moved to alumina crucibles. Ce³⁺ and Eu²⁺ doped Ca₈Mg₃Al₂Si₇O₂₈ samples were pre-fired at 973 K in air atmosphere for 4 h, and annealed at 1593 K for 6 h in CO ambience which was produced from the incomplete combustion of carbon at high temperature. Eu³⁺ doped Ca₈Mg₃Al₂Si₇O₂₈ sample were weighed with nominal formulas Ca_{7.98}Eu_{0.01}Na_{0.01}Mg₃Al₂Si₇O₂₈, and annealed in air atmosphere in the whole preparation. After cooling down to room temperature, the final products were ground into powders for subsequent analyses.

Characterizations. The phase purity of the synthetic samples was estimated by powder X-ray diffraction (P-XRD) on a Rigaku D-MAX 2200 VPC X-ray diffractometer of Cu K α (λ = 1.5418 Å) radiation at 40 kV and 26 mA. The P-XRD data for refinement was

collected with the 2θ range from 5° to 110° and 2θ step of 0.02° on a Bruker D8 advanced X-ray diffractometer with a wavelength of 1.54056 Å Cu Kα radiation at 40 kV and 40 mA. Temperature-dependent P-XRD data were also recorded on the Bruker D8 advanced X-ray diffractometer. The Rietveld refinement is performed using the TOPAS - Academic program.¹ The Raman spectra of 77–500 K were measured on an inVia Qontor confocal microscopic Raman spectrometer under the laser excitation of 532 nm. The exact Ce/Eu contents in samples were measured on an Agilent ICP-OES 730. The photoluminescence quantum yields (PLQYs) were recorded by integrated sphere, which was attached in the FLS1000 spectrofluorometer.

The excitation and emission spectra in the VUV-UV range were recorded on the 4B8 beamline of the Beijing Synchrotron Radiation Facility (BSRF).² The UV-vis excitation and emission spectra as well as the luminescence decay curves at room temperature (RT) were recorded on an Edinburgh FLS 1000 model spectrometer which was a combined fluorescence lifetime and steady-state, equipped with a cooled housing (-20 °C) photomultiplier PMT-900. The 450 W Xenon lamp was used as the excitation source of steady-state excitation and emission spectra. A 150 W nF900 lamp with a pulse width of 1 ns and pulse repetition rate of 40 kHz was used for the measurements of decay curves. The temperature-dependent spectral measurements in the 77–500 K range were performed by mounting the samples in an Oxford cryostat. The emission spectra of 20–450 K were measured in an Edinburgh FLS 920 model spectrometer and an Oxford cryostat with a closed cycle liquid helium apparatus.

References

- A. A. Coelho. TOPAS Academic, Ver. 4; Coelho Software: 666 Brisbane, Australia, 2007.
- 2 Y. Tao, Y. Huang, Z. Gao, H. Zhuang, A. Zhou, Y. Tan, D. Li, S. Sun. Developing VUV Spectroscopy for Protein Folding and Material Luminescence on Beamline 4B8 at the Beijing Synchrotron Radiation Facility. *J. Synchrot. Radiat.* 2009, 16, 857-863.

Part B. Tables and Figures

Atom	Site	Х	у	Z	Occ.	B _{iso}
Ca	4e	0.3382	0.1618	0.5094	1	1.43(5)
Al1	2a	0	0	0	0.25	0.90(9)
Mg	2a	0	0	0	0.75	0.90(9)
Al2	4e	0.1413	0.3587	0.9620	0.125	1.50(0)
Si	4e	0.1413	0.3587	0.9620	0.875	1.50(0)
01	2c	1/2	0	0.1602	1	1.31(3)
02	4e	0.1419	0.3581	0.2735	1	1.49(9)
03	8f	0.0839	0.1711	0.8221	1	1.65(7)

Table S1. Final Refined Structural Parameters of Ca₈Mg₃Al₂Si₇O₂₈ Host ^h.

^h Ca₈Mg₃Al₂Si₇O₂₈ belongs to tetragonal symmetry with space group $P\overline{42}_1m$ (113) and lattice parameters a = b = 7.7773(6) Å, c = 5.0159(4) Å, Z = 1, V = 303.39(4) Å³.

Table S2. CIE Chromaticity Coordinates (X, Y) of Emission Spectra ($\lambda_{ex} = 340$ nm; RT) of Ca_{7.98-v}Ce_{0.01}Na_{0.01}Eu_vMg₃Al₂Si₇O₂₈ (y = 0–0.09) Samples.

Concentration (y)	Chromaticity Coordinates (X, Y)
0	(0.157, 0.049)
0.01	(0.271, 0.365)
0.03	(0.333, 0.528)
0.05	(0.349, 0.565)
0.07	(0.358, 0.578)
0.09	(0.359, 0.578)

Table S3. The Detected Content of Ce and Eu in $Ca_{7.98-y}Ce_{0.01}Na_{0.01}Eu_yMg_3Al_2Si_7O_{28}$ (y = 0.03, 0.05, and 0.09) Samples ⁱ.

Sample	n(Ce ³⁺) (mg/ Kg)	$n(Eu^{2+}) (mg/Kg)$
$Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg_{3}Al_{2}Si_{7}O_{28}$	1512.8	1882.9
$Ca_{7.95}Ce_{0.01}Na_{0.01}Eu_{0.03}Mg_{3}Al_{2}Si_{7}O_{28}$	1835.0	4193.0
$Ca_{7.93}Ce_{0.01}Na_{0.01}Eu_{0.05}Mg_{3}Al_{2}Si_{7}O_{28}$	1506.6	6743.7
$Ca_{7.91}Ce_{0.01}Na_{0.01}Eu_{0.07}Mg_{3}Al_{2}Si_{7}O_{28}$	1892.1	10159.5
$Ca_{7.89}Ce_{0.01}Na_{0.01}Eu_{0.09}Mg_3Al_2Si_7O_{28}$	2023.0	12545.8

 $^{\rm i}$ The density of Ca_8 Mg_3Al_2Si_7O_{28} is 2.9885 g/cm $^{\rm 3}.$

Table	S4.	Fitting	Parameters	via	Inokuti-Hirayama	Model	for	Ca _{7.98-}
_y Ce _{0.01} N	Va _{0.01} E	uyMg ₃ Al	$_{2}\mathrm{Si}_{7}\mathrm{O}_{28} (y = 0.$.03, 0.	05, 0.07 and 0.09) Sa	amples.		

у	$n_{a}(m^{-3})$	C _{DA} (m ⁶ /s)	R _{adj} ²
0.03	9.35×10 ²⁴	3.59×10 ⁻⁴⁵	99.4%
0.05	1.67×10 ²⁵	4.16×10 ⁻⁴⁵	99.1%
0.07	2.54×10 ²⁵	3.97×10 ⁻⁴⁵	98.1%
0.09	3.92×10 ²⁵	4.08×10 ⁻⁴⁵	97.7%

Table S5. Fitting Parameters via Yokota-Tanimoto Model for $Ca_{7.98-}$ $_yCe_{0.01}Na_{0.01}Eu_yMg_3Al_2Si_7O_{28}$ (y = 0.03, 0.05, and 0.09) Samples.

у	$n_{a} (m^{-3})$	C _{DA} (m ⁶ /s)	C_{DD} (m ⁶ /s)	D	R _{adj} ²
0.03	9.39×10 ²⁴	3.46×10 ⁻⁴⁶	6.15×10 ⁻⁴⁷	5.53×10 ⁻²¹	99.5%
0.05	1.61×10 ²⁵	4.80×10 ⁻⁴⁶	6.21×10 ⁻⁴⁷	5.58×10 ⁻²¹	99.2%
0.09	4.10×10 ²⁵	4.23×10 ⁻⁴⁶	6.27×10 ⁻⁴⁷	5.64×10 ⁻²¹	98.1%

Table S6. Lifetime of Ce^{3+} and Energy Transfer Efficiency (η) from Ce^{3+} to Eu^{2+} in $Ca_{7.98-y}Ce_{0.01}Na_{0.01}Eu_yMg_3Al_2Si_7O_{28}$ Samples at RT.

у	$\tau(Ce^{3+})$ (ns)	η (%) ^j
0.01	30.1	6.42
0.03	23.6	26.6

0.05	18.3	43.2
0.07	15.1	53.2
0.09	13.8	57.1

^j $\eta = 100 \diamond (1-\tau (Ce^{3+})/\tau_0)$, where τ_0 is the lifetime of isolated Ce^{3+} in $Ca_8Mg_3Al_2Si_7O_{28}$, and is about 32.2 ns.

Table S7. CIE Chromaticity Coordinates (X, Y) of Emission Spectra (λ_{ex} = 320 nm) of

Temperature	Chromaticity	Temperature	Chromaticity
(K)	Coordinates (X, Y)	(K)	Coordinates (X, Y)
77	(0.368, 0.532)	300	(0.336, 0.507)
100	(0.367, 0.531)	325	(0.329, 0.497)
125	(0.365, 0.531)	350	(0.321, 0.482)
150	(0.363, 0.531)	375	(0.312, 0.466)
175	(0.360, 0.529)	400	(0.304, 0.447)
200	(0.355, 0.526)	425	(0.295, 0.426)
225	(0.350, 0.522)	450	(0.284, 0.399)
250	(0.346, 0.519)	475	(0.275, 0.365)
275	(0.341, 0.513)	500	(0.260, 0.331)

 $Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg_{3}Al_{2}Si_{7}O_{28} \text{ Samples at } 77{-}500 \text{ K}.$

Fig. S1 Representative P-XRD patterns of $Ca_{8-2x-y}Ce_xNa_xEu_yMg_3Al_2Si_7O_{28}$ (x = 0, 0.01 and 0.07; y = 0–0.09) samples and corresponding refined result.

Fig. S2 Temperature-dependent P-XRD data of synthesized $Ca_8Mg_3Al_2Si_7O_{28}$ sample and magnified P-XRD patterns of $31.1-31.5^{\circ}$ (2-theta) range.

Fig. S3 Normalized synchrotron radiation emission ($\lambda_{ex} = 251$ and 278 nm; 10 K) spectra of Ca_{7.98}Ce_{0.01}Na_{0.01}Mg₃Al₂Si₇O₂₈ sample.

Fig. S4 (a) Normalized synchrotron radiation VUV-UV excitation ($\lambda_{em} = 590$ and 611 nm; 10 K) and normalized lab UV-vis excitation ($\lambda_{em} = 611$ nm; RT) spectra of Ca_{7.98}Eu_{0.01}Na_{0.01}Mg₃Al₂Si₇O₂₈ sample; (b) emission spectrum ($\lambda_{ex} = 393$ nm; RT) of Ca_{7.98}Eu_{0.01}Na_{0.01}Mg₃Al₂Si₇O₂₈ sample; the inset shows decay curve ($\lambda_{ex} = 393$ nm, $\lambda_{em} = 611$ nm; RT) of Ca_{7.98}Eu_{0.01}Na_{0.01}Mg₃Al₂Si₇O₂₈ sample; the inset shows decay curve ($\lambda_{ex} = 393$ nm, $\lambda_{em} = 611$ nm; RT) of Ca_{7.98}Eu_{0.01}Na_{0.01}Mg₃Al₂Si₇O₂₈ sample.

Fig. S5 Highest-height normalized emission ($\lambda_{ex} = 290$ and 320 nm; 10 K) spectra of Ca_{7.99}Eu_{0.01}Mg₃Al₂Si₇O₂₈ sample under the excitation of synchrotron radiation VUV-UV beamline.

Fig. S6 Integral intensity (a, $\lambda_{ex} = 400 \text{ nm}$) and lifetime (b, $\lambda_{ex} = 406 \text{ nm}$, $\lambda_{em} = 537 \text{ nm}$) of Eu²⁺ emission as a function of temperature in Ca_{7.99}Eu_{0.01}Mg₃Al₂Si₇O₂₈ sample.

Fig. S7 Temperature sensitivities S_a and S_r values of phosphor $Ca_{7.99}Eu_{0.01}Mg_3Al_2Si_7O_{28}$ in the temperature range of 50–450 K.

$$S_{a} = \left| \frac{\partial(\tau)}{\partial(T)} \right| = \frac{E_{a}}{k_{B}T^{2}} \tau^{2} k_{1} \exp\left(\frac{-E_{a}}{k_{B}T}\right)$$
(S1)

$$S_r = \left| \frac{\partial(\tau)}{\tau \partial(T)} \right| \times 100\% = \frac{E_a}{k_B T^2} \tau k_1 \exp\left(\frac{-E_a}{k_B T}\right) \times 100\%$$
(S2)

Fig. S8 (a, b, c) Temperature-dependent decay curves ($\lambda_{ex} = 406 \text{ nm}$, $\lambda_{em} = 537 \text{ nm}$) of $Ca_{8-y}Eu_yMg_3Al_2Si_7O_{28}$ (a, y = 0.05; b, y = 0.07; c, y = 0.09) samples at 100–450 K; (d) temperature-dependent lifetime of Eu²⁺ in Ca_{8-y}Eu_yMg_3Al_2Si_7O_{28} samples.

 $Ca_{7.99}Eu_{0.01}Mg_3Al_2Si_7O_{28}$ (b), and $Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg_3Al_2Si_7O_{28}$ (c) samples under the excitation at 340 nm in the integrated sphere.

Fig. S10 Decay curves ($\lambda_{ex} = 320$ nm, $\lambda_{em} = 400$ nm; RT) of Ca_{7.98-} _yCe_{0.01}Na_{0.01}Eu_yMg₃Al₂Si₇O₂₈ (y = 0.03, 0.05, and 0.09) samples and corresponding fitting results via Yokota-Tanimoto model.

Fig. S11 (a) Integral intensities of Ce^{3+} (350–460 nm) and Eu^{2+} (460–680 nm) in $Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg_3Al_2Si_7O_{28}$ at 77–500 K; (b) temperature sensitivities S_a ` and S_r ` values of phosphor $Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg_3Al_2Si_7O_{28}$ at 77–500 K under the excitation at 320 nm.

$$S_{a}^{`} = \left|\frac{\partial(FIR)}{\partial(T)}\right| = \frac{D \cdot P \cdot \Delta E}{k_{B}T^{2}} \cdot \exp\left(\frac{-\Delta E}{k_{B}T}\right) \cdot \left[1 + P \cdot \exp\left(\frac{-\Delta E}{k_{B}T}\right)\right]^{-2}$$
(S3)

$$S_r = \left| \frac{\partial(FIR)}{FIR\partial(T)} \right| \times 100\%$$
 (S4)

Fig. S12 (a, b) Temperature-dependent normalized emission spectra (a, $\lambda_{ex} = 340$ nm; b, $\lambda_{ex} = 350$ nm) of Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg₃Al₂Si₇O₂₈; (c) temperature-dependent FIR values of Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg₃Al₂Si₇O₂₈ sample with excitations at 320, 340 and 350 nm; (d) CIE chromaticity coordinates (125–425 K) of Ca_{7.97}Ce_{0.01}Na_{0.01}Eu_{0.01}Mg₃Al₂Si₇O₂₈ sample with excitation at 340 nm.