Supporting information

Cooperative B-site octahedral tilting, distortion and A-site conformational change induced phase transition of 2D Lead Halide Perovskite

Muhammad Azeem,^a Yan Qin,^b Zhi-Gang Li,^a Wei Li,^{*a}

a. School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

b. School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

Fig. S1. Structure and layer thickness of $(BA)_2PbI_4$ at low pressure phase (pink octahedra at 0 GPa) and at high pressure phase (green octahedra at 1.12 GPa). (a, d) Inorganic layer sandwich between two organic layers stacked along *c*-axis in a unit cell. (b, c) The layer thickness is about 14.4 Å at 0 GPa, and 13.85 Å at 1.12 GPa.

Fig. S2. Le-Bail refinements of $(BA)_2PbI_4$ at ambient pressure in Phase-I (orthorhombic "*Pbca*").

Fig. S3. Le-Bail refinements of (BA)₂PbI₄ at 1.12 GPa pressure in Phase-II (triclinic "*P-1*").

Fig. S4. The molecular structure of $(BA)_2PbI_4$, the conformation of BA cations, and $(PbI_4)^{2-1}$ inorganic unit in *ac*-direction at different pressures.

Fig. S5. The structure of $(BA)_2PbI_4$, the conformation of BA cations, and $(PbI_4)^2$ -inorganic unit, at 0 GPa [a and d], 2.9 GPa [b and e], and 4.68 GPa [c and f], while [a-c] are in *bc*-direction showing layer stacking, while [d-f] indicating PbI₆ octahedra at unit cell edges with distortion in different directions. Obtained by experiment-aided DFT calculations. Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) -0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Fig. S6. High-pressure evolution of $(BA)_2PbI_4$ single crystal. XRD patterns from ambient to 4.68 GPa. XRD patterns of Phase-I and Phase-II with a new peak at about 6.02°.

Fig. S7. The bond lengths within the two adjacent PbI₆ octahedra at different pressure at; (a) 0 GPa (b) 0.78 GPa (c) 1.12 GPa, (d) 2.90 GPa, and (e) 4.68 GPa, obtained by experiment-aided DFT calculations. Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) -0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Fig. S8. The tilting of two adjacent PbI₆ octahedra under different pressure. Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) -0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Fig. S9. The distance of nitrogen atom from Pb atoms at; (a) 0 GPa (b) 0.78 GPa (c) 1.12 GPa, (d) 2.90 GPa, and (e) 4.68 GPa. Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) - 0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Fig. S10. The tilting distortion of PbI6 octahedra and configurational changes in of BA cation at 0.78 GPa (a), and at 2.9 GPa (b) obtained by experiment-aided DFT calculations. Hydrogen atoms are removed for clarity. Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) - 0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Fig. S11. General configurational behavior in of BA⁺ cation under pressure. Hydrogen atoms are removed for clarity

Fig. S12. The evolution of lattice parameters as a function of pressure, fitted by Second-order Birch-Murnaghan EoS using PASCal software. (a) Lattice parameter 'a' (b) lattice parameter 'b' (c) lattice parameter 'c'.

Fig. S13. The linear compressibility indicatrices along three orthogonal directions for two phases.

Fig. S14. The band energy behavior as a function of pressure (compression) (a) Band energy reduction under pressure. (b) Band energy comparison at different pressures (observed and calculated). (c) Band energy calculations via DFT at different pressures.

Fig. S15. The PL behavior as a function of pressure (decompression) (a) PL spectra (1.90 GPa $\rightarrow 0$ GPa), inset showed the recovery of enhanced nonradioactive process induced by amorphization (5.23 \rightarrow 2.87 GPa). (b) PL intensity evolution with decompression.

Table S1. Calculated bond lengths and angles for PbI_6 octahedra at different pressures in Phase-I and Phase-II. Symmetry codes: Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) -0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Distance	Phase-I		Phase-II		
(Å)	0 GPa	0.78 GPa	1.12 GPa	2.90 GPa	4.68 GPa
Pb1–I2 ^{iv}	3.1814	3.1750	3.1692	3.1319	3.1095
Pb1–I1 ^{iv}	3.2437	3.1915	3.2201	3.1744	3.1197
Pb1–I1 ⁱⁱ	3.2241	3.1775	3.1478	3.0879	3.0500
Pb1–I2	3.1814	3.1750	3.1692	3.1319	3.1095
Pb1–I1	3.2437	3.1915	3.2201	3.1744	3.1197
Pb1–I1 ⁱⁱⁱ	3.2241	3.1775	3.1478	3.0879	3.0500
Pb1 ⁱ –I2 ⁱ	3.1814	3.1750	3.1661	3.1212	3.0901
Pb1 ⁱ –I1 ^{iv}	3.2241	3.1775	3.2139	3.1795	3.1517
Pb1 ⁱ –I1 ^v	3.2437	3.1915	3.1570	3.0914	3.0500
Pb1 ⁱ –I2 ^v	3.1814	3.1750	3.1661	3.1212	3.0901
Pb1 ⁱ –I1 ^{vi}	3.2241	3.1775	3.2139	3.1795	3.1517
Pb1 ⁱ –I1 ⁱ	3.2437	3.1915	3.1570	3.0914	3.0500
Pb1–Pb1 ⁱ	6.3202	6.2182	6.2959	6.2264	6.1301
Pb1 ⁱ _Pb1 ^{vii}	6.3202	6.2182	6.1186	5.9973	5.8991
Pb1 ^{vii} –Pb1 ⁱⁱ	6.3202	6.2182	6.2959	6.2264	6.1301
Pb1 ⁱⁱ –Pb1	6.3202	6.2182	6.1186	5.9973	5.8991

	Pha	ase-I Phase		Phase-II	
Angle	0 GPa	0 GPa 0.78 GPa		2.90 GPa	4.68 GPa
(°)					
∠Pb1–I1 ^{iv} –Pb1 ⁱ	155.473	155.020	156.213	157.008	155.623
∠Pb1–I1 ⁱⁱ –Pb1 ⁱⁱ	155.473	155.020	152.075	152.117	150.510
∠ Pb1 ⁱⁱ –I1 ^{vii} –Pb1 ^{vii}	155.473	155.020	156.213	157.008	155.623
∠Pb1 ^{vii} –I1 ^v –Pb1 ⁱ	155.473	155.020	152.075	152.117	150.510
∠I2 ^{iv} –Pb1–I1 ^{iv}	84.306	85.772	87.097	88.566	91.496
∠I2 ^{iv} –Pb1–I1 ⁱⁱ	92.053	92.626	94.608	95.551	95.910
$\angle I2^i - Pb1^i - I1^{iv}$	92.053	92.626	92.724	94.598	98.290
∠I2 ⁱ -Pb1 ⁱ -I1 ^v	95.694	94.228	94.581	92.861	90.913
∠I1 ⁱⁱ –Pb1–I1 ^{iv}	∠I1 ⁱⁱ –Pb1–I1 ^{iv} 86.915		88.831	89.467	90.649
∠I1 ^{iv} –Pb1 ⁱ −I1 ^v	93.085	93.550	95.715	95.856	96.759

Table S2. Calculated bond lengths and angles for BA cation at different pressures in Phase-I and Phase-II. Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) -0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Distance	Pha	se-I	Phase-II		
(Å)	0 GPa	0.78 GPa	1.12 GPa	2.90 GPa	4.68 GPa
N1 ^{vii} –C1 ^{vii}	1.4831	1.4807	1.4802	1.4767	1.4721
C1 ^{vii} –C2 ^{vii}	1.4857	1.4842	1.4837	7 1.4805 1.47	
C2 ^{vii} –C3 ^{vii}	1.3875	1.3869	1.3870	1.3870 1.3863 1	
C3 ^{vii} –C4 ^{vii}	1.3833	1.3831	1.3834	1.3823	1.3811
C4 ^{vii} –C5 ^{vii}	1.3835	1.3825	1.3827	1.3815	1.3811
C5 ^{vii} -C6 ^{vii}	1.3845	1.3843	1.3843	1.3825	1.3819
C6 ^{vii} -C7 ^{vii}	1.3821	1.3811	1.3813	1.3797	1.3782
C7 ^{vii} –C1 ^{vii}	1.3885	1.3887	1.3887	1.3887 1.3879 1.38	
	Phase-I		Phase-II		
Angle	0 GPa	0.78 GPa	1.12 GPa	2.90 GPa	4.68 GPa
(°)					
∠N1 ^{vii} –C1 ^{vii} –C2 ^{vii}	112.060	111.842	111.580	110.637	110.271
∠C3 ^{vii} –C2 ^{vii} –C7 ^{vii}	119.225	119.340	119.478 119.626 119.8		119.814
∠C4 ^{vii} –C5 ^{vii} –C6 ^{vii}	120.121	120.267	120.367 120.511 120.55		120.555

Table S3. Calculated distances for nitrogen atom at different pressures in Phase-I and Phase-II. Symmetry codes: (i) 0.5-x, -y, 0.5+z; (ii) 0.5-x, 1-y, 0.5+z; (iii) -0.5+x, y, 1.5-z; (iv) x, 0.5-y, 0.5+z; (v) 0.5+x, y, 1.5-z; (vi) -x, -0.5+y, 1.5-z; (vii) 1-x, 0.5+y, 1.5-z.

Distance	Phase-I		Phase-II			
(Å)	0 GPa	0.78 GPa	1.12 GPa	2.90 GPa	4.68 GPa	
N1 ^{vii} –I1 ^{iv}	3.6423	3.5984	3.5510	3.5064	3.4787	
N1 ^{vii} –I1 ⁱⁱ	3.8923	3.8301	3.8535	3.7741	3.6714	
N1 ^{vii} _I1 ^v	5.3427	5.2603	5.3918	5.2157	5.1614	
N1 ^{vii} –I1 ^{vii}	3.6872	3.6093	3.6218	3.4871	3.3738	
N1 ^{vii} –Pb1	4.5583	4.4745	4.3598	4.2346	4.0673	
N1 ^{vii} –Pb1 ⁱ	5.5792	5.4860	5.4916	5.3761	5.2903	
N1 ^{vii} –Pb1 ^{vii}	5.9689	5.8997	5.9493	5.7978	5.7019	
N1 ^{vii} -Pb1 ⁱⁱ	4.5912	4.4900	4.4780	4.3689	4.2648	

Sr	Р	a	b	c	V	alpha	beta	gamma
	GPa	Å			Å ³	Deg.		
1	0	9.1702(1)	8.7059(3)	28.8228(2)	2301.0(5)	90	90	90
2	0.16	9.1521(2)	8.6781(1)	28.6733(4)	2277.3(4)	90	90	90
3	0.31	9.1297(1)	8.6440(1)	28.4792(2)	2247.5(4)	90	90	90
4	0.5	9.1002(3)	8.6010(2)	28.2857(3)	2213.9(4)	90	90	90
5	0.78	9.0590(2)	8.5398(3)	28.0366(1)	2168.9(5)	90	90	90
6	1.12	9.0149(1)	8.5372(4)	27.7440(3)	2131.0(4)	88.98(1)	87.01(1)	91.63(1)
7	1.43	8.9973(2)	8.5336(4)	27.6118(2)	2114.5(3)	89.08(1)	86.56(3)	91.98(2)
8	1.73	8.9825(4)	8.5119(2)	27.5045(4)	2097.3(2)	89.22(2)	86.46(1)	92.07(2)
9	2.01	8.9569(2)	8.4900(2)	27.2983(3)	2069.4(5)	89.16(1)	86.48(2)	92.19(3)
10	2.4	8.9056(3)	8.4853(1)	27.0376(2)	2037.5(1)	89.42(3)	86.51(1)	92.30(2)
11	2.9	8.8483(2)	8.4367(2)	26.7383(3)	1990.8(3)	89.16(2)	86.77(2)	92.41(3)
12	3.11	8.8187(3)	8.4170(2)	26.6070(2)	1969.8(1)	89.07(1)	86.77(1)	92.38(1)
13	3.48	8.7425(4)	8.3815(4)	26.3588(3)	1927.0(3)	89.32(2)	86.89(2)	92.20(2)
14	3.81	8.7182(3)	8.3706(3)	26.2317(4)	1910.0(2)	89.37(1)	86.98(1)	92.23(3)
15	4.24	8.6970(2)	8.3533(2)	26.1406(1)	1894.9(1)	89.35(1)	87.01(1)	92.23(1)
16	4.68	8.6751(4)	8.3365(3)	26.0362(2)	1878.6(2)	89.34(3)	86.91(3)	92.20(2)

Table S4. The lattice parameters of $(BA)_2PbI_4$ from high-pressure synchrotron powder XRD experiments under different hydrostatic pressures from ambient to 4.68 GPa. The errors are given in the parentheses.