Electronic Supplementary Information for

Ordered Mesoporous ZnGa₂O₄ for Photocatalytic Hydrogen Evolution

Xiaomei Yang[†], Jinmiao Ma[†], Ru Guo, Xiaochen Fan, Ping Xue^{*}, Xiaozhong Wang, Hui Sun, Qingfeng Yang, and Xiaoyong Lai^{*}

State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China. Email: xylai@nxu.edu.cn; ping@nxu.edu.cn

Table of Contents

Fig. S1 N ₂ physisorption isotherms and pore size distribution of KIT-6	S-2
Fig. S2 Typical SEM and TEM images of ZnGa ₂ O ₄ nanoflower	S-2
Fig. S3 Typical SEM image of ordered mesoporous ZnGa ₂ O ₄	S-2
Fig. S4 Valence band XPS spectra of ordered mesoporous ZnGa ₂ O ₄	S-3
Fig. S5 Photocurrent response of all the ZnGa ₂ O ₄ samples	S-3
Fig. S6 Stability test of ordered mesoporous ZnGa ₂ O ₄ for H ₂ evolution	S-3
Fig. S7 TEM image of ordered mesoporous ZnGa ₂ O ₄ after H ₂ evolution	S-4
Fig. S8 XPS spectra of ordered mesoporous ZnGa ₂ O ₄ before H ₂ evolution	S-4
Fig. S9 XPS spectra of ordered mesoporous ZnGa ₂ O ₄ after H ₂ evolution	S-5
Tab. S1 Comparison of ZnGa2O4 photocatalyst	S-6

Fig. S1 N_2 physisorption isotherms and pore size distribution of ordered mesoporous silica (KIT-6) with pore size of 5.6 nm.

Fig. S2 Typical (a, b) SEM and (c) TEM images of ZnGa₂O₄ nanoflower.

Fig. S3 Typical SEM image of ordered mesoporous ZnGa₂O₄, showing its irregular morphology.

Fig. S4 Valence band XPS spectra of ordered mesoporous ZnGa₂O₄.

Fig. S5 Photocurrent response of ordered mesoporous ZnGa₂O₄, ZnGa₂O₄ nanoflower and bulk ZnGa₂O₄ by using 0.5 M Na₂SO₄ solution as electrolyte, Ag/AgCl as reference electrode and Pt as counter electrode.

Fig. S6 Stability test of ordered mesoporous ZnGa₂O₄ during photocatalytic water splitting H₂ evolution for 24 h.

Fig. S7 TEM image of ordered mesoporous ZnGa₂O₄ after photocatalytic water splitting H₂ evolution

Fig. S8 XPS spectra of ordered mesoporous ZnGa₂O₄ before photocatalytic water splitting H₂ evolution

Fig. S9 XPS spectra of ordered mesoporous ZnGa₂O₄ after photocatalytic water splitting H₂ evolution

Product	$S_{ m BET} \ ({ m m}^2 \cdot { m g}^{-1})$	H_2 evolution rate (mmol·h ⁻¹ ·g ⁻¹)	Literature
Ordered mesoporous ZnGa ₂ O ₄	157	2.72	This work
RuO ₂ -dispersed ZnGa ₂ O ₄	2.3	0.04	47
ZnGa ₂ O ₄ nanosphere	26.67	0.12	65
N-doped ZnGa ₂ O ₄ nanosphere	29.69	0.19	65
B-doped ZnGa ₂ O ₄ nanosphere	29.16	0.29	65
B/N-codoped ZnGa ₂ O ₄ nanosphere	23.94	0.45	65
ZnGa ₂ O ₄ scaffolded nanosheets	96	0.27	55
ZnGa ₂ O ₄ nanocube	9	1.05	55
ZnGa ₂ O ₄ nanosphere/N-rGO heterostructure	-	0.7	64
ZnGa ₂ O ₄ nanoparticle	29	0.14	63
ZnGa ₂ O ₄ irregular particle	1.06	0.85	62

Tab. S1 Comparison of the ordered mesoporous ZnGa₂O₄ photocatalyst and those reported in the previous literature.