Modulating the kinetics of CoSe₂ yolk-shell spheres via nitrogen doping with high pseudocapacitance toward ultra-high-rate and high-energy density sodiumion half/full batteries

Jitao Geng^a, Shiyu Zhang^a, Edison Huixiang Ang^b, Jia Guo^a, Zhihua Jin^a, Xiao Li^a,

Yafei Chenga*, Huilong Donga*, Hongbo Genga*

^aSchool of Materials Engineering, Changshu Institute of Technology, Changshu,

Jiangsu 215500, China

^bNatural Sciences and Science Education, National Institute of Education, Nanyang

Technological University, Singapore, Singapore

Fig. S1. (a, b) SEM images, (c, d) TEM images of the Co precursor.

Fig. S2. XRD pattern of the Co precursor.

Fig. S3. (a, b) SEM images, (c, d) TEM images of the N-Co precursor.

Fig. S4. XPS survey spectrum of the N-CoSe₂ yss.

Fig. S5. XRD pattern of the CoSe₂.

Fig. S6. (a, b) SEM images of the CoSe₂.

Fig. S7. The initial five discharge/charge profiles of $CoSe_2$ yss at the current density of 0.2 A g⁻¹.

Fig. S8. The discharge/charge profiles of N-CoSe₂ yss at different current densities.

Fig. S9. The comparison of capacity between N-CoSe₂ yss and other CoSe₂-based materials at different current densities [S1-S9].

Fig. S10. Cycling property of N-CoSe₂ yss under the current density of 1.0 A g^{-1} .

Fig. S11. Separation of the capacitive (shaded region) and diffusion currents at different scan rates.

Fig. S12. Nyquist plots of the CoSe₂ and N-CoSe₂ yss electrode. The inset is corresponding equivalent circuit. R_s is the ohmic resistance, R_{ct} is the charge transfer resistance, CPE₁ is the constant phase element, and W is the Warburg impedance. The fitted result shows that the R_{ct} value of the N-CoSe₂ yss electrode is 14.0 Ω , which was much lower than that of the CoSe₂ electrode (60.2 Ω), indicating the much faster charge transport kinetics for N-CoSe₂ yss.

Fig. S13 (a) XRD pattern and (b) SEM image of the $Na_3V_2(PO_4)_2O_2F$.

References

[S1] T.Z. Liu, Y.P. Li, S. Hou, C.H. Yang, Y.Y. Guo, S. Tian, L.Z. Zhao, Building hierarchical microcubes composed of one-dimensional CoSe₂@nitrogen-doped carbon for superior sodium ion batteries, *Chem.-Eur. J.*, 2020, 26, 13716-13724.
[S2] S.H. Yang, S.K. Park, Y.C. Kang, Mesoporous CoSe₂ nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes,

Chem. Eng. J., 2019, 370, 1008-1018.

[S3] P. Ge, H.S. Hou, S.J. Li, L.P. Huang, X.B. Ji, Three-dimensional hierarchical framework assembled by cobblestone-like CoSe₂@C nanospheres for ultra stable sodium-ion storage, *ACS Appl. Mater. Interfaces*, 2018, **10**, 14716-14726..

[S4] Y.C. Tang, Z.B. Zhao, X.J. Hao, Y.W. Wang, Y. Liu, Y.N. Hou, Q. Yang, X.Z. Wang, J.S. Qiu, Engineering hollow polyhedrons structured from carbon-coated CoSe₂ nanospheres bridged by CNTs with boosted sodium storage performance, *J. Mater. Chem. A*, 2017, **5**, 13591-13600.

[S5] X.L. Cheng, D.J. Li, F.F. Liu, R. Xu, Y. Yu, Binding nanosized cobalt chalcogenides in B,N-codoped graphene for enhanced sodium storage, *Small Methods*, 2019, **3**, 1800170.

[S6] X. Liu, G.B. Xu, T.T. Cheng, L.W. Yang, J.X. Cao, Effect of crystal structures on electrochemical performance of hierarchically porous CoSe₂ spheres as anodes for sodium-ion batteries, *ChemElectroChem*, 2020, **7**, 846-854.

[S7] X. Ma, L. Zou, W. Zhao, Tailoring hollow microflower-shaped CoSe₂ anodes in sodium ion batteries with high cycling stability, *ChemComm.*, 2018, 54, 10507-10510.
[S8] K. Zhang, M.H. Park, L.M. Zhou, G.-H. Lee, W.J. Li, Y.-M. Kang, J. Chen, Urchin-like CoSe₂ as a high-performance anode material for sodium-ion batteries, *Adv. Funct. Mater.*, 2016, 26, 6728-6735.

[S9] H.N. Guo, G.S. Liu, M.Y. Wang, Y. Zhang, W.Q. Li, K. Chen, Y.F. Liu, M.Y. Yue, Y.J. Wang, In-situ fabrication of bone-like CoSe₂ nano-thorn loaded on porous carbon cloth as a flexible electrode for Na-ion storage, *Chem Asian J.*, 2020, **15**, 1493-1499.