Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2021 ## **Supporting Information** ## In-Situ Formed Lithium Ionic Conductor Thin Film on the Surface of High-Crystal-Layered LiCoO₂ as High-Voltage Cathode Materials Liewu Li,‡ Qi Yuan,‡^a Shenghua Ye, Yonghuan Fu, Xiangzhong Ren, Qianling Zhang* and Jianhong Liu Fig. S1 (a) SEM image of the LiCoO₂. (b) High-magnification SEM image of the LiCoO₂. Fig. S2 dQ/dV profiles of the first cycle for the bare $LiCoO_2$ (a) and $LiCoO_2@Li_4SiO_4$ (b) electrodes. **Fig. S3** Cycling performance of the bare $LiCoO_2$, $L-LiCoO_2$ @ Li_4SiO_4 , $LiCoO_2$ @ Li_4SiO_4 , and $H-LiCoO_2$ @ Li_4SiO_4 electrodes at 0.5 C. **Fig. S4** Kinetic analysis of the electrochemical behavior of the bare $LiCoO_2$ and $LiCoO_2$ @ Li_4SiO_4 electrodes. CV curves at various scan rates ranging from 0.1-1.5 mV s⁻¹ (a) and the relationship between I_p and $v^{1/2}$ (b) for the bare $LiCoO_2$ electrode. CV curves at various scan rates ranging from 0.1-1.5 mV s⁻¹ (c) and the relationship between I_p and $v^{1/2}$ (d) for the $LiCoO_2$ @ Li_4SiO_4 electrode. **Table S1.** Comparison of the electrochemical properties of the LiCoO₂@Li₄SiO₄ cathode with previously reported LiCoO₂-based cathodes for LIBs. | cathode | potentials | density | discharge | number | retention | | |---|--------------------------------|-------------|------------------------|----------|-----------|------| | Cathode | (V vs. | (1C = 274) | capacity | Hullibel | retention | | | | (v vs.
Li/Li ⁺) | $mA g^{-1}$ | (mAh g ⁻¹) | | | | | TiO ageted LiCeO | 3–4.5 | 1C | 186 | 100 | 86.5% | [1] | | TiO ₂ coated LiCoO ₂ | | | | | | | | MgAl ₂ O ₄ - | 3–4.5 | 0.58C | 184 | 70 | 96.8% | [2] | | modifified LiCoO ₂ | | | | | | | | Li-Al-F modified | 3–4.6 | 0.1C | 208.6 | 100 | 89.1% | [3] | | LiCoO ₂ | | | | | | | | Li ₂ ZrO ₃ coated | 3–4.5 | 3.65C | 126.7 | 100 | 85.2% | [4] | | LiCoO ₂ | | | | | | | | Al-doped ZnO | 2.75-4.5 | 0.36C | 185 | 200 | 95% | [5] | | coated LiCoO ₂ | | | | | | | | Li ₃ PO ₄ coated | 3-4.5 | 1C | 185 | 100 | 80% | [6] | | LiCoO ₂ | | | | | | | | Al-doped ZnO | 3-4.5 | 0.14C | 174.7 | 100 | 97.4% | [7] | | coated LiCoO ₂ | | | | | | | | Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ | 3-4.6 | 0.5C | 214.6 | 100 | 88.3% | [8] | | Coated LiCoO ₂ | 5 1.0 | 0.50 | 211.0 | 100 | 00.570 | | | Li ₄ Ti ₅ O ₁₂ coated | 3–4.5 | 0.2C | 190 | 60 | 90% | [9] | | | 3-4.3 | 0.20 | 190 | 00 | 90 / 0 | [-] | | LiCoO ₂ | 2.45 | 0.720 | 174 | 200 | 000/ | [10] | | $LiCo_xMn_{2-x}O_4$ | 3–4.5 | 0.73C | 174 | 300 | 82% | [10] | | coated LiCoO ₂ | | | | | | | | LiCoO ₂ @Li ₄ SiO ₄ | 3–4.5 | 0.5C | 180.7(at | 100 | 98.9% | This | | | | | 0.1C) | | | work | | | | 2 C | 180.7(at | 500 | 82.2% | This | | | | | 0.1C) | | | work | ## References - [1] A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai and J. Li, Sputtering TiO₂ on LiCoO₂ composite electrodes as a simple and effective coating to enhance high-voltage cathode performance, *J. Power Sources*, 2017, **346**, 24-30. - [2] D. Liang, H. Xiang, X. Liang, S. Cheng and C. Chen, Spinel MgAl₂O₄ modification on LiCoO₂ cathode materials with the combined advantages of MgO and Al₂O₃ modifications for high-voltage lithiumion batteries, RSC Adv., 2017, 7, 6809-6817. - [3] J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H. Zhuang and Y. Lu, Electrochemical surface passivation of LiCoO₂ particles at ultrahigh voltage and its applications in lithium-based batteries, *Nat. Commun.*, 2018, **9**, 4918. - [4] J. Zhang, R. Gao, L. Sun, H. Zhang, Z. Hu and X. Liu, Unraveling the multiple effects of Li₂ZrO₃ coating on the structural and electrochemical performances of LiCoO₂ as high-voltage cathode Materials, *Electrochim. Acta*, 2016, 209,102-110. - [5] B. Shen, P. Zuo, Q. Li, X. He, G. Yin, Y. Ma, X. Cheng, C. Du and Y. Gao, Lithium Cobalt Oxides Functionalized by Conductive Al-doped ZnO Coating as Cathode for High-performance Lithium Ion Batteries, *Electrochim. Acta*, 2017, **224**, 96-104. - [6] A. Zhou, J. Xu, X. Dai, B. Yang, Y. Lu, L. Wang, C. Fan and J. Li, Improved high-voltage and high-temperature electrochemical performances of LiCoO₂ cathode by electrode sputter-coating with Li₃PO₄, *J. Power Sources*, 2016, **322**, 10-16. - [7] K. Nie, X. Sun, J. Wang, Y. Wang, W. Qi, D. Xiao, J. Zhang, R. Xiao, X. Yu, H. Li, X. Huang and L. Chen, Realizing long-term cycling stability and superior rate performance of 4.5 V-LiCoO₂ by aluminum doped zinc oxide coating achieved by a simple wet-mixing method, *J. Power Sources*, 2020, 470, 228423. - [8] Y. Wang, Q. Zhang, Z. Xue, L. Yang, J. Wang, F. Meng, Q. Li, H. Pan, J. Zhang, Z. Jiang, W. Yang, X. Yu, L. Gu and H. Li, An In Situ Formed Surface Coating Layer Enabling LiCoO₂ with Stable 4.6 V High-Voltage Cycle Performances, *Adv. Energy Mater.*, 2020, 10, 2001413. - [9] A. Zhou, X. Dai, Y. Lu, Q. Wang, M. Fu and J. Li, Enhanced Interfacial Kinetics and High-Voltage/High-Rate Performance of LiCoO₂ Cathode by Controlled Sputter-Coating with a Nanoscale Li₄Ti₅O₁₂ Ionic Conductor, *ACS Appl. Mater. Interfaces*, 2016, **8**, 34123-34131. - [10] R. Gu, Z. Ma, T. Cheng, Y. Lyu, A. Nie and B. Gao, Improved Electrochemical Performances of LiCoO₂ at Elevated Voltage and Temperature with an In Situ Formed Spinel Coating Layer, ACS Appl. Mater. Interfaces, 2018, 10, 31271-31279.