Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

In-Situ Formed Lithium Ionic Conductor Thin Film on the Surface of High-Crystal-Layered LiCoO₂ as High-Voltage Cathode Materials

Liewu Li,‡ Qi Yuan,‡^a Shenghua Ye, Yonghuan Fu, Xiangzhong Ren, Qianling Zhang* and Jianhong Liu

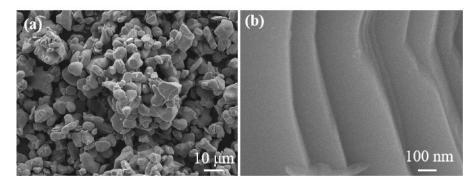


Fig. S1 (a) SEM image of the LiCoO₂. (b) High-magnification SEM image of the LiCoO₂.

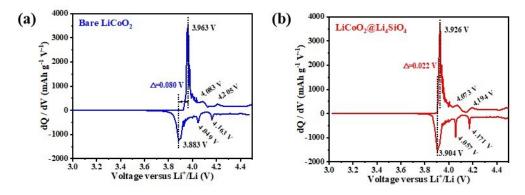
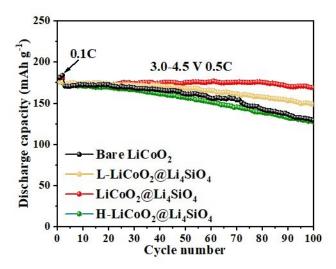
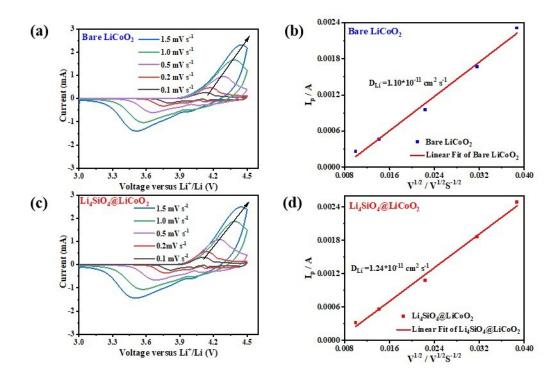




Fig. S2 dQ/dV profiles of the first cycle for the bare $LiCoO_2$ (a) and $LiCoO_2@Li_4SiO_4$ (b) electrodes.

Fig. S3 Cycling performance of the bare $LiCoO_2$, $L-LiCoO_2$ @ Li_4SiO_4 , $LiCoO_2$ @ Li_4SiO_4 , and $H-LiCoO_2$ @ Li_4SiO_4 electrodes at 0.5 C.

Fig. S4 Kinetic analysis of the electrochemical behavior of the bare $LiCoO_2$ and $LiCoO_2$ @ Li_4SiO_4 electrodes. CV curves at various scan rates ranging from 0.1-1.5 mV s⁻¹ (a) and the relationship between I_p and $v^{1/2}$ (b) for the bare $LiCoO_2$ electrode. CV curves at various scan rates ranging from 0.1-1.5 mV s⁻¹ (c) and the relationship between I_p and $v^{1/2}$ (d) for the $LiCoO_2$ @ Li_4SiO_4 electrode.

Table S1. Comparison of the electrochemical properties of the LiCoO₂@Li₄SiO₄ cathode with previously reported LiCoO₂-based cathodes for LIBs.

cathode	potentials	density	discharge	number	retention	
Cathode	(V vs.	(1C = 274)	capacity	Hullibel	retention	
	(v vs. Li/Li ⁺)	$mA g^{-1}$	(mAh g ⁻¹)			
TiO ageted LiCeO	3–4.5	1C	186	100	86.5%	[1]
TiO ₂ coated LiCoO ₂						
MgAl ₂ O ₄ -	3–4.5	0.58C	184	70	96.8%	[2]
modifified LiCoO ₂						
Li-Al-F modified	3–4.6	0.1C	208.6	100	89.1%	[3]
LiCoO ₂						
Li ₂ ZrO ₃ coated	3–4.5	3.65C	126.7	100	85.2%	[4]
LiCoO ₂						
Al-doped ZnO	2.75-4.5	0.36C	185	200	95%	[5]
coated LiCoO ₂						
Li ₃ PO ₄ coated	3-4.5	1C	185	100	80%	[6]
LiCoO ₂						
Al-doped ZnO	3-4.5	0.14C	174.7	100	97.4%	[7]
coated LiCoO ₂						
Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃	3-4.6	0.5C	214.6	100	88.3%	[8]
Coated LiCoO ₂	5 1.0	0.50	211.0	100	00.570	
Li ₄ Ti ₅ O ₁₂ coated	3–4.5	0.2C	190	60	90%	[9]
	3-4.3	0.20	190	00	90 / 0	[-]
LiCoO ₂	2.45	0.720	174	200	000/	[10]
$LiCo_xMn_{2-x}O_4$	3–4.5	0.73C	174	300	82%	[10]
coated LiCoO ₂						
LiCoO ₂ @Li ₄ SiO ₄	3–4.5	0.5C	180.7(at	100	98.9%	This
			0.1C)			work
		2 C	180.7(at	500	82.2%	This
			0.1C)			work

References

- [1] A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai and J. Li, Sputtering TiO₂ on LiCoO₂ composite electrodes as a simple and effective coating to enhance high-voltage cathode performance, *J. Power Sources*, 2017, **346**, 24-30.
- [2] D. Liang, H. Xiang, X. Liang, S. Cheng and C. Chen, Spinel MgAl₂O₄ modification on LiCoO₂ cathode materials with the combined advantages of MgO and Al₂O₃ modifications for high-voltage lithiumion batteries, RSC Adv., 2017, 7, 6809-6817.
- [3] J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H. Zhuang and Y. Lu, Electrochemical surface passivation of LiCoO₂ particles at ultrahigh voltage and its applications in lithium-based batteries, *Nat. Commun.*, 2018, **9**, 4918.
- [4] J. Zhang, R. Gao, L. Sun, H. Zhang, Z. Hu and X. Liu, Unraveling the multiple effects of Li₂ZrO₃ coating on the structural and electrochemical performances of LiCoO₂ as high-voltage cathode Materials, *Electrochim. Acta*, 2016, 209,102-110.
- [5] B. Shen, P. Zuo, Q. Li, X. He, G. Yin, Y. Ma, X. Cheng, C. Du and Y. Gao, Lithium Cobalt Oxides Functionalized by Conductive Al-doped ZnO Coating as Cathode for High-performance Lithium Ion Batteries, *Electrochim. Acta*, 2017, **224**, 96-104.

- [6] A. Zhou, J. Xu, X. Dai, B. Yang, Y. Lu, L. Wang, C. Fan and J. Li, Improved high-voltage and high-temperature electrochemical performances of LiCoO₂ cathode by electrode sputter-coating with Li₃PO₄, *J. Power Sources*, 2016, **322**, 10-16.
- [7] K. Nie, X. Sun, J. Wang, Y. Wang, W. Qi, D. Xiao, J. Zhang, R. Xiao, X. Yu, H. Li, X. Huang and L. Chen, Realizing long-term cycling stability and superior rate performance of 4.5 V-LiCoO₂ by aluminum doped zinc oxide coating achieved by a simple wet-mixing method, *J. Power Sources*, 2020, 470, 228423.
- [8] Y. Wang, Q. Zhang, Z. Xue, L. Yang, J. Wang, F. Meng, Q. Li, H. Pan, J. Zhang, Z. Jiang, W. Yang, X. Yu, L. Gu and H. Li, An In Situ Formed Surface Coating Layer Enabling LiCoO₂ with Stable 4.6 V High-Voltage Cycle Performances, *Adv. Energy Mater.*, 2020, 10, 2001413.
- [9] A. Zhou, X. Dai, Y. Lu, Q. Wang, M. Fu and J. Li, Enhanced Interfacial Kinetics and High-Voltage/High-Rate Performance of LiCoO₂ Cathode by Controlled Sputter-Coating with a Nanoscale Li₄Ti₅O₁₂ Ionic Conductor, *ACS Appl. Mater. Interfaces*, 2016, **8**, 34123-34131.
- [10] R. Gu, Z. Ma, T. Cheng, Y. Lyu, A. Nie and B. Gao, Improved Electrochemical Performances of LiCoO₂ at Elevated Voltage and Temperature with an In Situ Formed Spinel Coating Layer, ACS Appl. Mater. Interfaces, 2018, 10, 31271-31279.