Supporting Information

Graphdiyne Anchored Ultrafine Ag Nanoparticles for High Efficient and Solvent-Free Catalysis of CO₂ Cycloaddition

Chang Liu, Chao Zhang and Tong-Bu Lu*

Figure S1. (a–c) HRTEM images of Cu/Pyr-GDY at different scales; (d-f) Aberration-corrected high-magnification high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images of the as-prepared Cu/Pyr-GDY ((f) Zoomed-in image from (e)); (g-i) HAADF-STEM elemental mapping images of Cu/Pyr-GDY; (j) Raman spectrum of Cu/Pyr-GDY; (k) XPS spectrum for C 1s of Cu/Pyr-GDY; (l) XPS spectrum for Cu 2p of Cu/Pyr-GDY.

Figure S2. (a) N_2 adsorption–desorption isotherm of Cu/Pyr-GDY; (b) CO₂ adsorption isotherm of Cu/Pyr-GDY; (c) Pore diameter of Cu/Pyr-GDY; (d) N_2 adsorption–desorption isotherm of Ag/Pyr-GDY-5.3; (e) CO₂ adsorption isotherm of Ag/Pyr-GDY-5.3. (f) Pore diameter of Ag/Pyr-GDY-5.3. (Before the experiment, the powders of Cu/Pyr-GDY and Ag/Pyr-GDY-5.3 were heated at 120°C for 10 h.).

The difference of desorption curves for Cu/Pyr-GDY and Ag/Pyr-GDY-5.3 samples could be attributed to the existence of larger Ag nanoparticles in Ag/Pyr-GDY-5.3, which makes the desorption of N_2 more difficult compared with that of Cu/Pyr-GDY, thus Ag/Pyr-GDY-5.3 displays a desorption hysteresis. The pore size distribution was determined by the density functional theory (DFT) calculation.

Figure S3. (a) Aberration-corrected high-magnification high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images of Ag/Pyr-GDY-5.3; (b) histogram for the size distribution of Ag particles in Ag/Pyr-GDY-5.3; (c) scanning transmission electron microscopy(STEM) images of Ag/Pyr-GDY-12.0 at various scales; (d) histogram for the size distribution of Ag particles in Ag/Pyr-GDY-12.0; (e) scanning transmission electron microscopy(STEM) images of Ag/Pyr-GDY-12.0; (e) scanning transmission electron microscopy(STEM) images of Ag/Pyr-GDY-12.0; (e) scanning transmission electron microscopy(STEM) images of Ag/Pyr-GDY-12.0; for the size distribution of Ag particles in Ag/Pyr-GDY-19.5 at various scales; (f) histogram for the size distribution of Ag particles in Ag/Pyr-GDY-19.5.

Figure S4. (a) XRD patterns of Cu/Pyr-GDY and Ag/Pyr-GDY-5.3; (b) Raman spectra of Cu/Pyr-GDY and Ag/Pyr-GDY-5.3; (c) XPS pattern for C 1s of Ag/Pyr-GDY-5.3; (d) XPS patterns for Ag 3d of Cu/Pyr-GDY and Ag/Pyr-GDY-5.3.

Catalyst stability test was performed to exclude the possibility of homogeneous Ag species contributing to the catalytic performance. As shown in **Figure S4**, after the reaction for 1 h, the catalyst Ag/Pyr-GDY-5.3 was filtered, and the clear filtrate was stirred for another 1 h. It was found that the cycloaddition reaction completely stopped after the removal of the catalyst. The control experiment showed the conversion of benzylprop-2-ynylamine completed after 2 h in the presence of the catalyst. This catalyst was separated by centrifugation, and analyzed by ICP-MS. The Ag loading was determined to be 5.33%. The experiments described above confirmed that the reaction was catalyzed in a heterogeneous manner by Ag/Pyr-GDY-5.3.

Figure S5. Comparison of the conversions over time for a normally conducted reaction (black line), and a reaction in which the catalyst was filtered out after 1 h reaction (red line).

Figure S6. The recycling experiments for Ag/Pyr-GDY-5.3.

Figure S7. (a–c) HRTEM images of the recycled Ag/Pyr-GDY-5.3 at different magnifications; (d) XRD patterns of Cu/Pyr-GDY, as-prepared and post-catalytic Ag/Pyr-GDY-5.3; (e) XPS profiles for Ag 3d of Cu/Pyr-GDY, as-prepared and post-catalytic Ag/Pyr-GDY-5.3.

Preparation of 1

$$\begin{array}{c|c} \hline \\ \hline \\ Br \end{array} + R_1 - NH_2 & \xrightarrow{DCM, \text{ Toluene}} & R_1 \\ \hline \\ rt, 24 \text{ h} & H \\ \hline \\ SI-1 & SI-2 & 1 \end{array}$$

To a solution of the primary amine **SI-2** (25 mmol) in DCM (10 mL) was added dropwise a solution of 3-bromo-1-propyne **SI-1** (5 mmol)in toluene (10 mL). The mixture was stirred for 24 h, and then washed 3 times with distilled water (20 mL). The resulting organic phase was dried with anhydrous Na_2SO_4 , and then filtered, and the solvent was evaporated under reduced pressure. Purification of the desired product was performed by column chromatography (petroleum ether/ethyl acetate, 5:1, v/v).

Synthesis of 2

General Procedure:

A sealed reaction tube containing the catalyst,1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 0.02 mmol, 0.1 equiv.), **1a** (0.2 mmol, 1.0 equiv.) were evacuated and purged with CO₂ gas three times. The tube was then connected to a balloon filled with CO₂, and the mixture therein was stirred at room temperature for 2 h. The mixture was purified by column chromatography onsilica gel (petroleum ether/ethyl acetate, 2:1, v/v) to afford the desired pure products **2** (yellow oil, 37 mg, 98% yield).

To evaluate the efficiency of Ag/Pyr-GDY, the reaction of **1a** and CO₂ was scaled up to a gram scale. Ag/Pyr-GDY-5.3 (1.5 mg), propargylamines **1a** (1.1607 g, 8 mmol), DBU (0.08 mmol) were evacuated and purged with CO₂ gas three times. The tube was then connected to a balloon filled with CO₂ and stirred at room temperature. After 60 h, the yield of **2a** was >99%, as determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. The TON was calculated according to the equation (TON = mole of products/mol of catalytic sites) and the values of TON and TOF were 10971 and 183 h⁻¹, respectively.

To evaluate the efficiency of Ag/Pyr-GDY, the reaction of 1a and CO₂ was scaled up to a gram scale. Ag/Pyr-GDY-5.3 (1.5 mg), propargylamines 1a (2.6116 g, 18 mmol), DBU (0.18 mmol) were evacuated and purged with CO_2 gas three times. The tube was then connected to a balloon filled with CO_2 and stirred at room temperature. After 220 h, the yield of **2a** was 83%, as determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. The TON was calculated according to the equation (TON = mole of products/mol of catalytic sites) and the values of TON and TOF were 20488 and 93 h⁻¹, respectively.

The Reaction Process Monitored by ¹H NMR (CDCl₃).

Figure S8a. ¹H NMR of **1a** (400 MHz, CDCl₃), δ 7.32 – 7.23 (m, 5.0H, Ph-*H*), 3.84 (s, 2.0H, NC*H*₂Ph), 3.38 (d, *J* = 2.4 Hz, 2.0H, NHC*H*₂C≡CH), 2.24 (s, 1.0H, C≡C*H*), 1.48 (s, 1.0H, NH).

Figure S8b. ¹H NMR of **1a** with CO₂ (400 MHz, CDCl₃), δ 7.33 – 7.22 (m, 5.0H, Ph-H), 3.85 (s, 2.0H, NCH₂Ph), 3.40 (d, J = 2.4 Hz, 2.0H, NHCH₂C≡CH), 2.23 (t, J = 2.3 Hz, 1.0H, C≡CH), 1.54 (s, 1.0H, NH).

Figure S8c. ¹H NMR of DBU (400 MHz, CDCl₃), δ 3.29 – 3.25 (m, 2.0H), 3.23 – 3.17 (m, 4.0H), 2.41 – 2.37 (m, 2.0H), 1.82 – 1.76 (m, 2.0H), 1.64 (d, *J* = 2.7 Hz, 4.0H), 1.57 (d, *J* = 2.7 Hz, 2.0H).

Figure S8d. ¹H NMR of DBU + CO₂ (400 MHz, CDCl₃), δ 3.35 – 3.31 (m, 2.0H), 3.26 (t, *J* = 6.1 Hz, 4.0H), 2.54 – 2.49 (m, 2.0H), 1.87 – 1.81 (m, 2.0H), 1.67 (d, *J* = 2.4 Hz, 4.0H), 1.59 (d, *J* = 2.7 Hz, 2.0H).

Figure S8e. ¹H NMR of **1a** + DBU (400 MHz, CDCl₃), δ 7.35 – 7.19 (m, 5.0H, **1a**), 3.85 (d, *J* = 4.2 Hz, 2.0H, **1a**), 3.40 (d, *J* = 3.6 Hz, 2.0H, **1a**), 3.26 (s, 0.2H, **DBU**), 3.18 (d, *J* = 5.3 Hz, 0.4H, **DBU**), 2.39 (d, *J* = 3.4 Hz, 0.2H, **DBU**), 2.23 (t, *J* = 2.3 Hz, 1.0H, **1a**), 1.76 (d, *J* = 5.8 Hz, 0.2H, **DBU**), 1.63 (d, *J* = 2.2 Hz, 0.4H, **DBU**), 1.54 (s, 0.2H, **DBU**), 1.36 (d, *J* = 49.8 Hz, 1.0H, **1a**).

Figure S8f. ¹H NMR of **1a** + DBU + CO₂ (400 MHz, CDCl₃), δ 7.37 – 7.13 (m, 5.0H, **1a** + **A**), 4.66 (s, 0.4H, **A**), 4.08 (s, 0.4H, **A**), 3.85 (s, 1.6H, **1a**), 3.39 (t, *J* = 4.7 Hz, 2.2H, **1a** + **DBU**), 2.88 (s, 0.1H, **DBU**), 2.23 (s, 0.8H, **1a**), 2.07 (s, 0.2H, **DBU**), 1.98 – 1.93 (m, 0.2H, **DBU**), 1.72 (s, 0.4H, **DBU**), 1.63 (s, 0.2H, **DBU**).

Figure S8g. ¹H NMR of $1a + DBU + CO_2 + Ag/Pyr-GDY-5.3$ (400 MHz, CDCl₃), δ 7.42 - 7.13 (m, 5H, 1a + 2a + A), 4.71 (q, J = 2.7 Hz, 0.5H, 2a), 4.67 (s, 0.4H, A),

4.44 (s, 1.1H, **2a**), 4.21 (d, *J* = 2.3 Hz, 0.5H, **2a**), 4.08 (d, *J* = 1.8 Hz, 0.4H, **A**), 3.99 (d, *J* = 2.1 Hz, 1.1H, **2a**), 3.85 (s, 0.6H, **1a**), 3.39 (t, *J* = 5.6 Hz, 1.2H, **1a** + **DBU**), 2.85 − 2.81 (m, 0.2H, **DBU**), 2.23 (d, *J* = 2.2 Hz, 0.3H, **1a**), 2.07 (s, 0.2H, **DBU**), 1.97 − 1.92 (m, 0.4H, **DBU**), 1.72 (s, 0.5H, **DBU**), 1.63 (s, 0.4H, **DBU**).

Characterization of 1

N-benzylprop-2-yn-1-amine (1a)

N H

Yellow oil. (0.62 g, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 5H, Ph-*H*), 3.84 (s, 2H, NC*H*₂Ph), 3.38 (d, *J* = 2.4 Hz, 2H, NHC*H*₂C≡CH), 2.24 (s, 1H, C≡C*H*), 1.48 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 128.3, 128.3, 127.1, 82.0, 71.5, 52.2, 37.2.

3-(4-fluorobenzyl)-5-methyleneoxazolidin-2-one (1b)

Yellow oil. (0.41 g, 50%);¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 8.4, 5.6 Hz, 2H), 6.99 (t, J = 8.7 Hz, 2H), 3.81 (s, 2H), 3.37 (d, J = 2.4 Hz, 2H), 2.27 (t, J = 2.4 Hz, 1H), 1.52 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, J = 250.6 Hz), 134.9(d, J = 3.1 Hz), 129.8 (d, J = 7.9 Hz), 114.9 (d, J = 27.1 Hz), 81.8, 71.5, 51.2, 36.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.63.

N-(4-chlorobenzyl)prop-2-yn-1-amine (1c)

Yellow oil. (0.48 g, 54%); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 4H), 3.82 – 3.78 (m, 2H), 3.38 –3.34 (m, 2H), 2.27 (t, *J* = 2.4 Hz, 1H), 1.51 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 132.5, 129.4, 128.2, 81.7, 71.6, 51.1, 36.9.

N-(4-bromobenzyl)prop-2-yn-1-amine (1d)

Yellow oil. (0.50 g, 45%); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 3.78 (s, 2H), 3.36 (d, *J* = 2.4 Hz, 2H), 2.27 (t, *J* = 2.4 Hz, 1H), 1.51 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 131.2, 129.8, 120.6, 81.7, 71.6, 51.1, 36.9.

N-(4-methoxybenzyl)prop-2-yn-1-amine (1e)

Yellow oil. (0.61 g, 70%); ¹H NMR (400 MHz, CDCl₃) δ 7.27 - 7.22 (m, 2H), 6.88 -

6.82 (m, 2H), 3.79 (s, 2H), 3.77 (s, 3H), 3.38 (d, *J* = 2.4 Hz, 2H), 2.26 (t, *J* = 2.4 Hz, 1H), 1.50 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 131.3, 129.4, 113.6, 82.0, 71.4, 55.0, 51.4, 37.0.

N-(4-methylbenzyl)prop-2-yn-1-amine (1f)

Yellow oil. (0.46 g, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 7.9 Hz, 2H), 3.78 (s, 2H), 3.35 (d, J = 2.4 Hz, 2H), 2.30 (s, 3H), 2.22 (t, J= 2.4 Hz, 1H), 1.48 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 136.1, 128.8, 128.1, 81.9, 71.3, 51.6, 36.9, 20.8.

N-(4-(tert-butyl)benzyl)prop-2-yn-1-amine (1g)

Yellow oil. (0.56 g, 56%);. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.30 – 7.27 (m, 2H), 3.86 (s, 2H), 3.43 (d, *J* = 2.4 Hz, 2H), 2.26 (t, *J* = 2.4 Hz, 1H), 1.58 (s, 1H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 136.3, 128.1, 125.4, 82.1, 71.5, 51.9, 37.3, 34.5, 31.4.

N-(3-methylbenzyl)prop-2-yn-1-amine (1h)

Yellow oil. (0.43 g, 54%); ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.02 (m, 4H), 3.79 (s, 2H), 3.37 (d, *J* = 2.4 Hz, 2H), 2.31 (s, 3H), 2.23 (t, *J* = 2.4 Hz, 1H), 1.46 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 137.7, 128.9, 128.0, 127.6, 125.2, 81.9, 71.3, 51.9, 37.0, 21.1.

N-(2-chlorobenzyl)prop-2-yn-1-amine (1i)

Yellow oil. (0.55 g, 61%); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.20 (m, 4H), 3.97 (s, 2H), 3.46 – 3.43 (m, 2H), 2.27 (t, *J* = 2.4 Hz, 1H), 1.66 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 133.8, 130.2, 129.5, 128.5, 126.8, 81.8, 71.7, 49.8, 37.5.

N-(2-methylbenzyl)prop-2-yn-1-amine (1j)

Yellow oil. (0.48 g, 60%); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 1H), 7.19 – 7.12 (m, 3H), 3.85 (s, 2H), 3.44 (d, *J* = 2.4 Hz, 2H), 2.36 (s, 3H), 2.26 (t, *J* = 2.4 Hz, 1H), 1.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 136.5, 130.2, 128.6, 127.1, 125.8, 82.2, 71.4, 49.9, 37.6, 18.8.

N-benzylbut-2-yn-1-amine (1k)

Yellow oil. (0.68 g, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.20 (m, 5H), 3.84 (s, 2H), 3.36 (q, *J* = 2.3 Hz, 2H), 1.83 (t, *J* = 2.4 Hz, 3H), 1.51 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ139.5, 128.2, 128.2, 126.8, 79.0, 53.0, 52.3, 37.7, 3.3.

N-(1-phenylethyl)prop-2-yn-1-amine (11)

Yellow oil. (0.68 g, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.22 (m, 5H), 4.00 (q, J = 6.6 Hz, 1H), 3.24 (ddd, J = 77.9, 17.1, 2.4 Hz, 2H), 2.20 (t, J = 2.4 Hz, 1H), 1.61 (s, 1H), 1.35 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 128.4, 127.1, 126.8, 82.2, 71.2, 56.2, 35.8, 23.8.

N-(prop-2-yn-1-yl)aniline (1m)

Red oil. (0.36 g, 55%); ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.17 (m, 2H), 6.81 – 6.74 (m, 1H), 6.67 – 6.63 (m, 2H), 3.87 (d, J = 2.5 Hz, 2H), 3.81 (s, 1H), 2.19 (t, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.72, 129.12, 118.47, 113.39, 80.97, 71.20, 33.44.

Characterization of 2

3-benzyl-5-methyleneoxazolidin-2-one (2a)

Yellow oil. (37 mg, 98%); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 5H, Ph-*H*), 4.71 (dd, *J* = 5.6, 2.7 Hz, 1H, C=CHaHb), 4.44 (s, 2H, NCH₂Ph), 4.21 (dd, *J* = 5.3, 2.2 Hz, 1H, *C*=*C*H*a*H*b*), 3.99 (t, *J* = 2.4 Hz, 2H, H₂C=CCH₂); ¹³C NMR (100 MHz, CDCl₃) δ 155.6 (*C*=O), 148.9 (H₂C=*C*), 134.9 (Ar*C*), 128.9 (Ar*C*), 128.2 (Ar*C*), 128.1 (Ar*C*), 86.7(H₂*C*=*C*), 47.8 (NCH₂Ph), 47.2 (CCH₂N).

3-(4-fluorobenzyl)-5-methyleneoxazolidin-2-one (2b)

Yellow oil. (37 mg, 89%); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.20 (m, 2H), 7.05 (t, J = 8.5 Hz, 2H), 4.74 (d, J = 2.5 Hz, 1H), 4.44 (s, 2H), 4.26 (d, J = 1.7 Hz, 1H), 4.03 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, J = 245.5 Hz), 155.5, 148.7, 130.8 (d, J = 3.2 Hz), 129.9 (d, J = 7.2 Hz), 115.8 (d, J = 21.5 Hz), 86.8, 47.1, 47.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.69.

3-(4-chlorobenzyl)-5-methyleneoxazolidin-2-one (2c)

White soild. (42 mg, 95%);¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.25 – 7.20 (m, 2H), 4.75 (dd, *J* = 5.7, 2.7 Hz, 1H), 4.44 (s, 2H), 4.27 (dd, *J* = 5.3, 2.2 Hz, 1H), 4.03 (t, *J* = 2.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 148.6, 134.1, 133.5, 129.4, 129.1, 87.0, 47.1, 47.1.

3-(4-bromobenzyl)-5-methyleneoxazolidin-2-one (2d)

White soild. (49 mg, 92%);¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.3 Hz, 2H), 4.71 (dd, *J* = 5.6, 2.7 Hz, 1H), 4.38 (s, 2H), 4.23 (dd, *J* = 5.3, 2.2 Hz, 1H), 4.00 (t, *J* = 2.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 148.6, 133.9, 131.9, 129.7, 122.1, 86.9, 47.1, 47.0.

3-(4-methoxybenzyl)-5-methyleneoxazolidin-2-one (2e)

Yellow oil. (43 mg, 98%); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 4.70 (dd, *J* = 5.5, 2.7 Hz, 1H), 4.39 (s, 2H), 4.23 (dd, *J* = 5.0, 2.2 Hz, 1H), 4.01 (t, *J* = 2.3 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 155.3, 148.9, 129.4, 126.8, 114.1, 86.4, 55.1, 47.0, 46.8.

3-(4-methylbenzyl)-5-methyleneoxazolidin-2-one (2f)

White soild. (39 mg, 96%); ¹H NMR (400 MHz, CDCl₃) δ 7.09 (s, 4H), 4.65 (dd, *J* = 5.6, 2.7 Hz, 1H), 4.35 (s, 2H), 4.15 (dd, *J* = 5.2, 2.2 Hz, 1H), 3.93 (t, *J* = 2.4 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 149.0, 138.0, 131.8, 129.6, 128.2, 86.6, 47.5, 47.1, 21.1.

3-(4-(tert-butyl)benzyl)-5-methyleneoxazolidin-2-one (2g)

White soild. (48 mg, 97%);¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 4.73 (dd, J = 5.5, 2.7 Hz, 1H), 4.43 (s, 2H), 4.23 (dd, J = 5.1, 2.2 Hz, 1H), 4.02 (t, J = 2.3 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ

155.6, 151.3, 149.0, 131.9, 128.0, 125.8, 86.6, 47.4, 47.2, 34.6, 31.3.

3-(3-methylbenzyl)-5-methyleneoxazolidin-2-one (2h)

Yellow oil. (39 mg, 95%); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.03 (m, 4H), 4.73 (d, *J* = 2.5 Hz, 1H), 4.42 (s, 2H), 4.24 (d, *J* = 2.0 Hz, 1H), 4.02 (s, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 148.9, 138.7, 134.8, 128.9, 128.8, 128.7, 125.2, 86.6, 47.7, 47.1, 21.3.

3-(2-chlorobenzyl)-5-methyleneoxazolidin-2-one (2i)

White soild. (44 mg, 98%);¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.18 (m, 4H), 4.67 (dd, J = 5.7, 2.7 Hz, 1H), 4.54 (s, 2H), 4.19 (dd, J = 5.3, 2.2 Hz, 1H), 4.02 (t, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 148.8, 133.7, 132.6, 130.3, 129.8, 129.6, 127.4, 86.8, 47.6, 45.1.

3-(2-methylbenzyl)-5-methyleneoxazolidin-2-one (2j)

White soild. (39 mg, 97%); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.16 (m, 4H), 4.74 (dd, J = 5.6, 2.7 Hz, 1H), 4.50 (s, 2H), 4.23 (dd, J = 5.2, 2.2 Hz, 1H), 3.96 (t, J = 2.3 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 148.9, 136.9, 132.7, 130.9, 129.1, 128.5, 126.3, 86.8, 47.2, 46.0, 19.0.

(Z)-3-benzyl-5-ethylideneoxazolidin-2-one (2k)

Yellow oil. (39 mg, 96%); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.25 (m, 5H), 4.60 – 4.51 (m, 1H), 4.46 (s, 2H), 3.99 – 3.90 (m, 2H), 1.67 (dt, *J* = 6.9, 2.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 141.6, 135.1, 128.9, 128.1, 128.1, 97.5, 47.8, 47.0, 9.9.

5-methylene-3-(1-phenylethyl)oxazolidin-2-one (21).

Yellow oil. (39 mg, 97%); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.20 (m, 5H), 5.19 (q, *J* = 7.1 Hz, 1H), 4.63 (dd, *J* = 5.5, 2.7 Hz, 1H), 4.14 (dd, *J* = 5.1, 2.2 Hz, 1H), 4.03 (dt, *J* = 14.2, 2.3 Hz, 1H), 3.69 (dt, *J* = 14.2, 2.4 Hz, 1H), 1.52 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 149.2, 138.7, 128.8, 128.1, 126.9, 86.5, 51.3, 43.6, 16.3.

¹H and ¹³C NMR Spectra

PROTON

PROTON

Table S1 The different amounts of Ag/Cu loadings on Pyr-GDY determinedby ICP-MS.

Catalysts	Cu	Cu loading	AgNO ₃	Ag	Ag
	loading	(µmol/mg)	(µmol)	loading	loading
	(%)			(%)	(µmol/mg)
Cu/Pyr-GDY	13.5	2.1	0	0	0
Ag/Pyr-GDY-2.8	9.4	1.5	3.1	2.8	0.3
Ag/Pyr-GDY-3.1	9.9	1.6	6.3	3.1	0.3
Ag/Pyr-GDY-4.4	7.3	1.2	12.5	4.4	0.4
Ag/Pyr-GDY-5.3	8.6	1.4	25.0	5.3	0.5
Ag/Pyr-GDY-12.0	4.2	0.7	50.0	12.0	1.1
Ag/Pyr-GDY-19.5	1.4	0.2	100	19.5	1.8
Ag/Pyr-GDY-24.6	0.8	0.1	200	24.6	2.3
Pyr-GDY	0	0	0	0	0
Ag/Pyr-GDY-0.4	0	0	25.0	0.4	0.3
(Cu-Free)					
Ag/Pyr-GDY-6.0	0	0	50.0	6.0	0.6
(Cu-Free)					

Table S2. The values of TON and TOF for the reactions.

Entry	1a	reaction	conversion	catalyst	TON	TOF (h ⁻¹)
	(mmol)	time		(% Ag loading)		
1	0.2	2 h	100%	Ag-Pyr-GDY -12.0	120	59
2	0.2	2 h	100%	Ag-Pyr-GDY-5.3	274	137
3	8	20 h	35%	Ag-Pyr-GDY-5.3	3840	192
4	8	40 h	71%	Ag-Pyr-GDY-5.3	7790	195
5	8	60 h	100%	Ag-Pyr-GDY-5.3	10971	183
6	18	20 h	16%	Ag-Pyr-GDY-5.3	3949	197
7	18	40 h	31%	Ag-Pyr-GDY-5.3	7652	191
8	18	60 h	36%	Ag-Pyr-GDY-5.3	8886	148
9	18	90 h	44%	Ag-Pyr-GDY-5.3	10861	121
10	18	150 h	68%	Ag-Pyr-GDY-5.3	16785	112
11	18	220 h	83%	Ag-Pyr-GDY-5.3	20488	93

Catalysts	Homogeneous	Loading	Solvent	Temp	Pressure	Time	Yield	TON	Ref
	/Heterogeneo								
	us								
$(^{n}C_{7}H_{15})_{4}NBr$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	0 %	0	1
$[(^{n}C_{16}H_{33})(CH_{3})_{3}N]_{6}[\alpha$ -	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	86 %	34.4	1
SiW ₁₁ O ₃₉ Cu]									
$[(^{n}C_{4}H_{9})_{4}N]_{6} [\alpha-SiW_{11}O_{39}Cu]$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	95 %	38	1
$[(^{n}C_{7}H_{15})_{4}N]_{6} [\alpha-SiW_{11}O_{39}Co]$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	66 %	26.4	1
$[(^{n}C_{7}H_{15})_{4}N]_{6} [\alpha-SiW_{11}O_{39}Cu]$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	99 %	39.6	1
[(ⁿ C ₇ H ₁₅) ₄ N] ₆ [α-SiW ₁₁ O ₃₉ Fe]	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	18 %	7.2	1
[(ⁿ C ₇ H ₁₅) ₄ N] ₆ [α-SiW ₁₁ O ₃₉ Fe]	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	18 %	7.2	1
$[(^{n}C_{7}H_{15})_{4}N]_{6} [\alpha - SiW_{11}O_{39}Mn]$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	43 %	17.2	1
$[(^{n}C_{7}H_{15})_{4}N]_{6} [\alpha-SiW_{11}O_{39}Ni]$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	16%	6.4	1
$[(^{n}C_{7}H_{15})_{4}N]_{6} [\alpha-SiW_{11}O_{39}Zn]$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	45 %	18	1
CuCl ₂	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	67 %	26.8	1
$CuCl_2 / ({}^{n}C_7H_{15})_4NBr$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	68 %	27.2	1
K ₆ [SiW ₁₁ O ₃₉ Cu]	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	43 %	17.2	1
$K_8 [\alpha - SiW_{11}O_{39}]$	Homogeneous	2.5 mol %	-	60 °C	balloon	20 h	0 %	0	1
[DBUH][MIm]	Homogeneous	200 mol %	-	60 °C	0.1 MPa	6 h	95 %	-	2
t-BuOI	Homogeneous	1.0 equiv.	MeCN	-20 °C	0.1 MPa	24 h	94 %	0.94	3
1G1[PEG]	Homogeneous	1 mol %	MeOH	40 °C	0.1 MPa	48 h	87 %	87	4
AuCl(IPr)	Homogeneous	2 mol %	MeOH	40 °C	0.1 MPa	48 h	76 %	38	4
2G1[PEG]	Homogeneous	1 mol %	H ₂ O	r.t.	0.1 MPa	48 h	87 %	87	5
Ag ₂ O / DBU	Heterogeneous	0.5 mol %	DMSO	60 °C	air	16 h	92 %	184	6

Table S3. A comparison of TONs and conversions for Ag-Pyr-GDY-5.3 with those of reported catalysts.

AgNO ₃ / DBU	Homogeneous	0.5 mol %	DMSO	60 °C	air	33 h	94 %	188	6
AgOAc / DBU	Homogeneous	0.5 mol %	DMSO	60 °C	air	18 h	90 %	180	6
AgOAc / DBU	Homogeneous	0.5 mol %	DMSO	60 °C	air	24 h	86 %	172	6
			/ H ₂ O						
Cu(OAc) ₂ / DBU	Homogeneous	0.5 mol %	DMSO	60 °C	air	78 h	78 %	156	6
			/						
			H ₂ O						
CuI / DBU	Heterogeneous	0.5 mol %	DMSO/	60 °C	air	63 h	63 %	126	6
			H ₂ O						
PtCl ₂ / DBU	Homogeneous	0.5 mol %	DMSO	60 °C	air	240 h	69 %	138	6
			/						
			H ₂ O						
AgCl(IPr)	Heterogeneous	2 mol %	MeOH	40 °C	1 atm	15 h	52 %	26	7
AuCl(IPr)	Homogeneous	2 mol %	MeOH	40 °C	1 atm	15 h	91 %	45.5	7
CuCl(IPr)	Homogeneous	2 mol %	MeOH	40 °C	1 atm	15 h	19 %	9.5	7
AgOAc / (ⁿ C ₇ H ₁₅) ₄ NBr	Homogeneous	0.1 mol %	DMSO	60 °C	0.1 MPa	48 h	54 %	544	8
AgOAc / iPrNH-GlyNa	Homogeneous	10 mol %	PEG15	40 °C	1 atm	-	91 %	-	9
			0						
Au(OH)(IPr)	Homogeneous	2 mol %	THF	40 °C	0.1 MPa	20 h	54 %	27	10
CuBr / DBU	Homogeneous	10 mol %	DMSO	50 °C	0.1MPa	6 h	69 %	6.9	11
CuCl / DBU	Homogeneous	10 mol %	DMSO	50 °C	0.1MPa	6 h	<1 %	< 0.1	11
CuCN / DBU	Homogeneous	10 mol %	DMSO	50 °C	0.1MPa	6 h	76 %	7.6	11
CuI / DBU	Heterogeneous	10 mol %	DMSO	50 °C	0.1MPa	6 h	99 %	9.9	11
CuO / DBU	Heterogeneous	10 mol %	DMSO	50 °C	0.1MPa	6 h	41 %	4.1	11
MTBD	Homogeneous	10 mol %	MeCN	75 °C	5 bar	18 h	100%	10	12

TMG	Homogeneous	10 mol %	DMSO	75 °C	5 bar	18 h	100 %	10	12
AgOAc	Homogeneous	2 mol %	DMSO	25 °C	0.1 MPa	1.5 h	99 %	49.5	13, 14
Pd(OAc) ₂	Homogeneous	5 mol %	toluene	50 °C	40	48 h	85 %	17	15
					kg/cm3				
PdCl ₂ (dppf) / NaO ^t Bu	Homogeneous	2.5 mol %	DMSO	40 °C	1 atm	22 h	90 %	36	16
PdI ₂ / KI	Homogeneous	1 mol %	MeOH	75 °C	40 bar	24 h	27 %	27	17
Pd@BBA-1, Pd@BBA-2	Heterogeneous	1 mol %	DMSO	80 °C	1 bar	0.5 h	98 %	98	18
Triethanolamine	Homogeneous	10 mol %	-	90 °C	0.1 MPa	10 h	99 %	9.9	19
ItBu	Homogeneous	2 mol %	ⁱ PrOH	90 °C	0.6 MPa	24 h	97 %	48.5	20, 21
-	-	-	supercri	100 °C	9 MPa	18 h	88 %	-	22
			tical						
			CO ₂						
Fe ₃ O ₄ /KCC-	Heterogeneous	1 mg	H ₂ O	r.t.	0.5 MPa	18 h	95 %	-	23
1/tetrazolylidene/Au		(1 mmol							
		propargylic							
		amine)							
HPG@KCC-1/PPh ₂ /Au	Heterogeneous	2 mg	H ₂ O	reflux	1.5 MPa	48 h	92 %	-	24
		(1 mmol							
		propargylic							
		amine)							
Basic alumina	Heterogeneous	5 mol %	supercri	90 °C	80 bar	21 h	85 %	17	25
			tical						
			CO ₂						
Hydrotalcite MG30	Heterogeneous	5 mol %	supercri	90 °C	80 bar	21 h	67 %	13.4	25
			tical						
			CO ₂						

Hydrotalcite MG70	Heterogeneous	5 mol %	supercri tical CO ₂	90 °C	80 bar	21 h	58 %	11.6	25
SiO ₂ -(CH ₂) ₃ -NEt ₂	Heterogeneous	5 mol %	supercri tical CO ₂	90 °C	80 bar	21 h	72 %	14.4	25
SiO ₂ -TBD	Heterogeneous	5 mol %	supercri tical CO ₂	90 °C	80 bar	21 h	88 %	17.6	25
TNS-Ag8	Heterogeneous	0.1 mol %	MeCN	25 °C	0.1 MPa	180 h	76 %	760	26
TOS-Ag4	Heterogeneous	0.1 mol %	MeCN	25 °C	0.1 MPa	96 h	93 %	930	26
CoBr ₂ /[EEIM][OAc]	Homogeneous	0.05 mol%	-	60 °C	balloon	106 h	87%	1740	27
Ag-MOF-1	Heterogeneous	4 mol%	MeCN	25 °C	0.1 MPa	24 h	95%	23.8	28
AuNP@PAMAM/C	Heterogeneous	1 mol%	H ₂ O- toluene	40 °C	balloon	10 h	99%	99	29
[Cu(bpy) ₂ (1,2,4,5- BTMS) _{0.5} (H ₂ O) _{0.5}] _n	Heterogeneous	10 mol%	DMSO	50 °C	0.1 MPa	6 h	99%	9.9	30
NiBDP-AgS	Heterogeneous	0.5 mol%	DMSO	25 °C	0.1 MPa	4 h	99%	200	31
KCC-1/IL/Ni@Pd NPs	Heterogeneous	0.1 mg catalyst/1 mmol substrate	-	25 °C	1 MPa	3 h	96%	-	32
KCC-1/Salen/Ru(II) NPs	Heterogeneous	1 mg catalyst/1 mmol substrate	-	100 °C	1 MPa	1 h	98%	-	33
[Au(dpb ^F)]SbF ₆	Homogeneous	0.5 mol%	DMSO	25 °C	air	24 h	78%	156	34
Bu₄NF	Homogeneous	1 mol%	t-Bu- OH	110 °C	0.5 MPa	18 h	91%	91	35

$[Zn_{22}(Trz)_8(OH)_{12}(H_2O)_x]_n$	Heterogeneous	0.27 mol%	MeCN	70 °C	0.1 MPa	12 h	99%	367	36
		catalyst/substra							
		te							
Ag27-MOF	Heterogeneous	0.025 mol%	MeCN	25 °C	0.1 MPa	240 h	34%	1333	37
Ag@TpTta	Heterogeneous	0.01429 mol %	-	25 °C	balloon	16 h	96%	67	38
Ag@TpPa-1	Heterogeneous	0.01429 mol %	-	25 °C	balloon	16 h	89%	62	38
Ag/Pyr-GDY-5.3	Heterogeneous	0.0036 mol %	-	25 °C	balloon	60 h	100%	10971	This
									work
Ag/Pyr-GDY-5.3	Heterogeneous	0.0036 mol %	-	25 °C	balloon	220 h	83%	20488	This
									work

References

- [1] M. Y. Wang, Q. W. Song, R. Ma, J. N. Xie and L. N. He, Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(II)-substituted polyoxometalate-based ionic liquids, *Green Chem.*, 2016, 18, 282-287.
- [2] J. Hu, J. Ma, Q. Zhu, Z. Zhang, C. Wu and B. Han, Transformation of Atmospheric CO₂ Catalyzed by Protic Ionic Liquids: Efficient Synthesis of 2– Oxazolidinones, *Angew. Chem. Int. Ed.*, 2015, **54**, 5399–5403.
- [3] Y. Takeda, S. Okumura, S. Tone, I. Sasaki and S. Minakata, Cyclizative Atmospheric CO₂ Fixation by Unsaturated Amines with *t*-BuOI Leading to Cyclic Carbamates, *Org. Lett.*, 2012, 14, 4874–4877.
- [4] K. Fujita, K. Inoue, J. Sato, T. Tsuchimoto and H. C Yasuda, arboxylative cyclization of propargylic amines with CO₂ catalyzed by dendritic N-heterocyclic carbene-gold(I) complexes, *Tetrahedron*, 2016, **72**, 1205-1212.
- [5] K. Fujita, J. Sato, K. Inoue, T. Tsuchimoto and H. Yasuda, Aqueous media carboxylative cyclization of propargylic amines with CO₂ catalyzed by amphiphilic dendritic *N*-heterocyclic carbene–gold(I) complexes, *Tetrahedron Letters*, 2014, 55, 3013–3016.
- [6] M. Yoshida, T. Mizuguchi and K. Shishido, Synthesis of Oxazolidinones by Efficient Fixation of Atmospheric CO₂ with Propargylic Amines by using a Silver/1,8-Diazabicyclo [5.4.0]undec-7-ene (DBU) Dual - Catalyst System, *Chemistry*, 2012, 18, 15578-15581.
- [7] S. Hase, Y. Kayaki and T. Ikariya, NHC–Gold(I) Complexes as Effective Catalysts for the Carboxylative Cyclization of Propargylamines with Carbon Dioxide, *Organometallics*, 2013, **32**, 5285-5288.
- [8] Q. W. Song and L. N. He, Robust Silver (I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions, *Adv. Synth. Catal.*, 2016, **358**, 1251-1258.

- [9] A. H. Liu, R. Ma, C. Song, Z. Z. Yang, A. Yu, Y. Cai, L. N. He, Y. N. Zhao, B. Yu and Q. W. Song, Equimolar CO₂ Capture by N-Substituted Amino Acid Salts and Subsequent Conversion, *Angew. Chem. Int. Ed.*, 2012, **51**, 11306-11310.
- [10] K. Yamashita, S. Hase, Y. Kayaki and T. Ikariya, Highly Selective Carboxylative Cyclization of Allenylmethylamines with Carbon Dioxide Using N-Heterocyclic Carbene-Silver(I) Catalysts, *Org. Lett.*, 2015, **17**, 2334-2337.
- [11] Y. Zhao, J. Qiu, L. Tian, Z. Li, M. Fan and J. Wang, New Copper(I)/DBU Catalyst System for the Carboxylative Cyclization of Propargylic Amines with Atmospheric CO₂: An Experimental and Theoretical Study, ACS Sustainable Chem. Eng., 2016, 4, 5553-5560.
- [12] R. Nicholls, S. Kaufhold and B. N. Nguyen, Observation of guanidine–carbon dioxide complexation in solution and its role in the reaction of carbon dioxide and propargylamines, *Catal. Sci. Technol.*, 2014, 4, 3458–3462.
- [13] S. Kikuchi, S. Yoshida, Y. Sugawara, W. Yamada, H.-M. Cheng, K. Fukui, K. Sekine, I. Iwakura, T. Ikeno and T. Yamada, Silver-Catalyzed Carbon Dioxide Incorporation and Rearrangement on Propargylic Derivatives, *Bull. Chem. Soc. Jpn.*, 2011, 84, 698-717.
- [14] S. Yoshida, K. Fukui, S. Kikuchi and T. Yamada, Silver-catalyzed Preparation of Oxazolidinones from Carbon Dioxide and Propargylic Amines, *Chem. Lett.*, 2009, **38**, 786-787.
- [15] M. Shi and Y. M. Shen, Transition-Metal-Catalyzed Reactions of Propargylamine with Carbon Dioxide and Carbon Disulfide, J. Org. Chem., 2002, 67, 16–21.
- [16] P. García-Domínguez, L. Fehr, G. Rusconi and C. Nevado, Palladium-catalyzed incorporation of atmospheric CO₂: efficient synthesis of functionalized oxazolidinones, *Chem. Sci.*, 2016, 7, 3914-3918.
- [17] A. Bacchi, G. P. Chiusoli, M. Costa, B. Gabriele, C. Righi and G. Salerno, Palladium-catalysed sequential carboxylation–alkoxycarbonylation of acetylenic amines, *Chem. Commun.*, 1997, 1209-1210.

- [18] S. Ghosha, S. Riyajuddinb, S. Sarkara, K. Ghoshb and S. M. Islam, Pd NPs Decorated on POPs as Recyclable Catalysts for the Synthesis of 2-Oxazolidinones from Propargylic Amines via Atmospheric Cyclizative CO₂ Incorporation, *ChemNanoMat.*, 2020, 6, 160-172. Ghosha, S. Riyajuddinb , S. Sarkara , K. Ghoshb, S. M. Islam, *ChemNanoMat.*, 2020, 6, 160-172.
- [19] B. Yu, D. Kim, S. Kim and S. H. Hong, Cyanuric Acid Based Organocatalyst for Utilization of Carbon Dioxide at Atmospheric Pressure, *ChemSusChem*, 2017, 10, 1080–1084.
- [20] K. Fujita, J. Sato, A.Fujii, S.-y.Onozawa and H. Yasuda, A Carboxylative Cyclization of Propargylic Amines with Carbon Dioxide Catalyzed by the N - Heterocyclic Carbene 1,3 - Di - *tert* - butylimidazol - 2 - ylidene (ItBu), *Asian J. Org. Chem.*, 2016, 5, 828–833.
- [21] K. Fujita, A. Fujii, J. Sato, S. Onozawa and H. Yasuda, Synthesis of 2oxazolidinone by N-heterocyclic carbene-catalyzed carboxylative cyclization of propargylic amine with CO₂, *Tetrahedron Letters*, 2016, **57**, 1282–1284.
- [22] A. Bacchi, G. P. Chiusoli, M. Costa, B. Gabriele, C. Righi and G. Salerno, Palladium-catalysed sequential carboxylation–alkoxycarbonylation of acetylenic amines, *Chem. Commun.*, 1997, 1209-1210.
- [23] S. M. Sadeghzadeh, Gold (III) phosphorus complex immobilized on fibrous nano-silica as a catalyst for the cyclization of propargylic amines with CO₂, *J. Mol. Catal. A: Chem.*, 2016, **423**, 216-223.
- [24] S. M. Sadeghzadeh, A green approach for the synthesis of 2-oxazolidinones using gold(I) complex immobilized on KCC-1 as nanocatalyst at room temperature, *Appl. Organometal. Chem.*, 2016, **30**, 835-842.
- [25] R. Maggi and C. Bertolotti, Synthesis of oxazolidinones in supercritical CO₂ under heterogeneous catalysis, *Tetrahedron Letters*, 2007, 48, 2131–2134.
- [26] Z. Chang, X. Jing, C. He, X. Liu and C. Duan, Silver Clusters as Robust Nodes and π -Activation Sites for the Construction of Heterogeneous Catalysts for the Cycloaddition of Propargylamines, *ACS Catal.*, 2018, **8**, 1384-1391.

- [27] Z.-H. Zhou, K.-H. Chen and L.-N. He, Efficient and Recyclable Cobalt(II)/Ionic Liquid Catalytic System for CO₂ Conversion to Prepare 2 - Oxazolinones at Atmospheric Pressure, *Chin. J. Chem.*, 2019, **37**, 1223-1228.
- [28] X. Wang, Z. Chang, X. Jing, C. He and C. Duan, Double-Helical Ag–S Rod-Based Porous Coordination Polymers with Double Activation: σ-Active and π-Active Functions, ACS Omega., 2019, 4, 10828-10833.
- [29] H. Matsuo, A. Fujii, J.-C. Choi, T. Fujitani and K. Fujita, Carboxylative Cyclization of Propargylic Amines with Carbon DioxideCatalyzed by Poly(amidoamine)-Dendrimer-Encapsulated Gold Nanoparticles, *Synlett*, 2019, 30, 1914-1918.
- [30] G. Zhang, H. Yang and H. Fei, Unusual Missing Linkers in an Organosulfonate-Based Primitive–Cubic (pcu)-Type Metal–Organic Framework for CO₂ Capture and Conversion under Ambient Conditions, ACS Catal., 2018, 8, 2519-2525.
- [31] H. Yang, X. Zhang, G. Zhang and H. Fei, An alkaline-resistant Ag(i)-anchored pyrazolate-based metal-organic framework for chemical fixation of CO₂, *Chem. Commun.*, 2018, 54, 4469-4472.
- [32] S. M. Sadeghzadeh, R. Zhiani and S. Emrani, Ni@Pd nanoparticles supported on ionic liquid - functionalized KCC-1 as robust and recyclable nanocatalysts for cycloaddition of propargylic amines and CO₂, *Appl. Organometal. Chem.*, 2018, 32, e39411.
- [33] S. M. Saadati and S. M. Sadeghzadeh, KCC-1 Supported Ruthenium-Salen-Bridged Ionic Networks as a Reusable Catalyst for the Cycloaddition of Propargylic Amines and CO₂, *Catal. Lett.*, 2018, **148**, 1692–1702.
- [34] F. Inagaki, K. Maeda, K. Nakazawa and C. Mukai, Construction of the Oxazolidinone Framework from Propargylamine and CO₂ in Air at Ambient Temperature: Catalytic Effect of a Gold Complex Featuring an L₂/Z - Type Ligand, *Eur. J. Org. Chem.*, 2018, 2972-2976.

- [35] A. Fujii, H. Matsuo, J.-C. Choi, T. Fujitani and K.-i. Fujita, Efficient synthesis of 2-oxazolidinones and quinazoline-2,4(1*H*,3*H*)-diones from CO₂ catalyzed by tetrabutylammonium fluoride, *Tetrahedron*, 2018, 74, 2914–2920.
- [36] C.-S. Cao, S.-M. Xia, Z.-J. Song, H. Xu, Y. Shi, L.-N. He, P. Cheng and B. Zhao, Highly Efficient Conversion of Propargylic Amines and CO₂ Catalyzed by Noble Metal Free [Zn₁₁₆] Nanocages, *Angew. Chem. Int. Ed.*, 2020, **59**, 8586-8593.
- [37] M. Zhao, S. Huang, Q. Fu, W. Li, R. Guo, Q. Yao, F. Wang, P. Cui, C.-H. Tung and D. Sun, Ambient Chemical Fixation of CO₂ Using a Robust Ag₂₇ Cluster Based Two Dimensional Metal–Organic Framework, *Angew. Chem. Int. Ed.*, 2020, **59**, 20031-20036.
- [38] S. Ghosh, T. S. Khan, A. Ghosh, A. H. Chowdhury, M. A. Haider, A. Khan and S. M. Islam, Utility of Silver Nanoparticles Embedded Covalent Organic Frameworks as Recyclable Catalysts for the Sustainable Synthesis of Cyclic Carbamates and 2-Oxazolidinones via Atmospheric Cyclizative CO₂ Capture, *ACS Sustainable Chem. Eng.*, 2020, 8, 5495-551.