Gradient valence distributed vanadium oxygen hydrate hybrid induce high-performance aqueous zinc-ion batteries

Jun Zhang,^a Mingshan Wang,^{*a,b} Jialun Zhong,^a Xu Wang,^a Xuezhen Huang,^a

Zhenliang Yang,^c Junchen Chen,^a Bingshu Guo,^a Zhiyuan Ma^a and Xing Li^{*a,b}

^a School of New Energy and Materials, Southwest Petroleum University, Chengdu,

Sichuan 610500, P.R. China

^b Energy Storage Research Institute, Southwest Petroleum University, Chengdu,
Sichuan 610500, P.R. China

^c Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan
621908, P.R. China

^{*} Corresponding author. E-mail: ustbwangmingshan@163.com (Mingshan Wang), E-mail: lixing198141@yahoo.com (Xing Li).

Figure S1 TG and DSC for G-VOH.

Figure S2 Fitting result of Raman spectrum for G-VOH.

Figure S3 (a) and (b) Typical nanowire morphology of G-VOH; (c-f) the EDS mapping for G-VOH.

Figure S4 Cycle performance for G-VOH tested at 0.1 A g^{-1} .

Figure S5 dQ/dV for G-VOH tested at 0.1 A g^{-1} for the second cycle.

Figure S6 Galvanostatic discharge–charge curves of G-VOH, tested at currents ranging from 0.3 to 3 A g^{-1} .

Figure S7 (a) TEM for G-VOH discharged to 0.4 V; (b) TEM for G-VOH recharged to 1.6 V; (c) HRTEM for G-VOH discharged to 0.4 V; (d) HRTEM for G-VOH recharged to 1.6 V.

Figure S8 High–resolution XPS V2p spectra of fully discharged after etching for 20 nm.

	fresh	50 th	1000 th
Rsol (Ω)	1.16	1.14	1.96
Rct+Rs (Ω)	152.2	39.46	25.38
$D zn^{2+} (cm^2 s^{-1})$	2.56*e-18	3.30*e-17	5.18*e-16

Table S1 Fitting results for EIS analyze