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Table S1 Oxidative desulfurization of dibenzothiophene in fuel oil over various zeolite-

based catalytic systems.

a Catalytic efficiency (CE), moles of dibenzothiophene sulfone formed hourly per mole 

of metal sites in catalyst per mole of H2O2. 

No. Catalyst O/S
Time 

(h)
Removal (%) CEa (h–1 mol–1) Ref.

1 W-MFI 3 2 20.0 580.2 1

2 V-impregnated ZSM-5 14 2 79.3 1428.0 2

3 Mn-impregnated ZSM-5 14 2 18.5 362.7 2

4 Ti-MWW 4 3 95.0 1916.7 3

5 TS-1 4 3 4.2 83.3 3

6 Ti-Beta 4 3 84.0 4375.0 4

7 Ti-MCM-41 4 3 94.0 5000.0 4

8 Ti-HMS 17 5 67.0 414.6 5

9 hierarchical Ti-MOR 6 2 99.0 3253.4 6

10 Ta-Beta 3 2 99.2 14319.4 7

11 hierarchical TS-1 2 2 95.0 10545.0 8

12 Ti-Beta-HT-0.5-50 3 0.5 98.3 56171.4 this work
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Fig. S1 XRD patterns of Al-Beta (a) and dealuminated Beta-DA (b) samples.



Fig. S2 XRD patterns of calcined solid products derived from different raw materials, 

Beta-DA and TEAOH (a); Beta-DA and NH4F (b); Beta-DA and TBOT (c); Beta-DA, 

TBOT, and TEAOH (d); Beta-DA, TBOT, and NH4F (e); Beta-DA, TBOT, TEAOH, 

and NH4F (f). Crystallization conditions: TBOT if added, TiO2/SiO2 = 0.02; H2O/SiO2 

= 7.0; TEAOH if added, TEAOH/SiO2 = 0.5; NH4F if added, NH4F/SiO2 = 0.5; temp., 

140 oC; time, 1 d.
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Fig. S3 XRD patterns of calcined Ti-Beta-HT crystallized at TEAOH/SiO2 molar ratio 

of 0.1 (a), 0.2 (b), 0.4 (c), 0.5 (d), and 0.7 (e). Other crystallization conditions: 

TiO2/SiO2 = 0.02; H2O/SiO2 = 7.0; NH4F/SiO2 = 0.5; temperature, 140 oC; time, 1 d. 
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Fig. S4 The catalytic activities of TEAOH-NH4F-free Ti-Beta-PS1-50 and Ti-Beta-HT-

0.5-50 samples. Reaction conditions: catalyst, 35 mg; model oil (S content, 500 ppm), 

10 mL; aqueous TBHP (70 wt%), 40 μL, TBHP/DBT = 2; temp., 60 oC; time, 30 min.
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Fig. S5 The dependence of DBT conversion on TEAOH amounts used in the 

hydrothermal process. Reaction conditions: catalyst, 35 mg; model oil (S content, 500 

ppm), 10 mL; aqueous TBHP (70 wt%), 60 μL, TBHP/DBT = 3; temp., 60 oC; time, 30 

min.
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Fig. S6 XRD patterns and SiO2/TiO2 molar ratio of calcined Ti-Beta-HT product 

crystallized at SiO2/TiO2 molar ratio of 50 (a), 100 (b), 150 (c), and 200 (d) in the 

synthesis gels. Other crystallization conditions: TEAOH/SiO2 = 0.5; H2O/SiO2 = 7.0; 

NH4F/SiO2 = 0.5; temperature, 140 oC; time, 1 d. 
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Fig. S7 UV-vis spectra of calcined Ti-Beta-HT crystallized at SiO2/TiO2 molar ratio of 

50 (a), 100 (b), 150 (c), and 200 (d). 
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Fig. S8 The effect of stirring rate on the DBT oxidation. Reaction conditions: Ti-Beta-

HT-0.5-50, 35 mg; model oil (S content, 500 μg mL–1), 10 mL; aqueous TBHP (70 

wt%), 40 μL, TBHP/DBT = 2; temp., 60 oC; time, 30 min.

As shown in Fig. S8, DBT conversion was nearly not changed with the increase of 

stirring rate from 800 to 900 rpm, suggesting that external diffusion did not exist in this 

systems.9
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Fig. S9 The dependence of initial reaction rate (R0) for DBT (a), 4,6-DMDBT (b), and 

BT (c) for on Ti content within Ti-Beta-PS zeolites. Reaction conditions: catalyst, 35 

mg; model oil (S content, 500 ppm), 10 mL; aqueous TBHP (70 wt%), 40 μL, TBHP/S 

= 2; temperature, 60 oC.
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Fig. S10 SEM image of Ti-Beta-HT-0.5-100 sample. 

500 nm



Fig. S11 SEM image of Ti-Beta-F-100 sample. 

500 nm



Fig. S12 TG curves of three Ti-Beta samples saturated with water vapor. 

TG measurement was employed to investigate the hydrophilicity/hydrophobicity of 

three Ti-Beta zeolites saturated with water vapor.10,11 The sample adsorbing more water 

exhibited higher hydrophilicity.10 Thus, as shown in Fig. S12, the hydrophilicity of Ti-

Beta-PS-100 was superior to that of Ti-Beta-HT-0.5-100, far beyond than that of Ti-

Beta-F-100.  
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Fig. S13 XRD patterns of fresh (a) and the fourth run followed by calcination (b) for 

Ti-Beta-HT-0.5-50.
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