Porous SiC ceramics via an active-filler catalyzed polymer-derived ceramic

method

Supporting Information

Advaith V. Rau^a, Ken Knott Jr.^b, Kathy Lu^{a*}

^a Department of Materials Science and Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, Virginia, 24061, USA

^b Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia, 24061, USA

*Corresponding author: Email: <u>klu@vt.edu</u>

Declarations of interest: none

S1. ICP-OES Experimental and Data Analysis

S1.1 Materials

Calibration solutions were prepared from single-element standards of silicon (Si, 1000 μ g/mL, ICP-014, Agilent Technologies Inc., Santa Clara, CA) and iron (Fe, 1000 μ g/mL, 5190-8471, Agilent Technologies Inc., Santa Clara, CA). A commercial blank standard was used in the preparation of calibration curves (5190-7001, Agilent Technologies Inc., Santa Clara, CA). Lithium tetraborate (Li₂B₄O₇, >99.995%, Sigma-Aldrich, St. Louis, MO) and lithium metaborate (LiBO₂, 99.997%, Thermo Fisher Scientific, Ward Hill, MA) were used in the borate flux. Lithium bromide (LiBr, 99%, Thermo Fisher Scientific, Ward Hill, MA) was used as a non-wetting agent. Cesium chloride (CsCl, 99.99%, Thermo Fisher Scientific, Ward Hill, MA) and boric acid (H₃BO₃, 99.99%, Thermo Fisher Scientific, Ward Hill, MA) were used in the digestion solution to stabilize

SiO₂. Concentrated nitric acid (HNO₃, Certified ACS Plus, Fisher Chemical, Hampton, NH) was used for digestion, dilution, and as a part of the analytical matrix. Nanopure water (18.2 M Ω ·cm) was used throughout the experiments. All chemicals were used without further purification. Polypropylene centrifuge tubes or beakers were used for solution preparation and storage.

S1.2 Sample Preparation

In a typical fusion and digestion process, a pyrolyzed SiO_xC_y sample was powdered with a mortar and pestle, passed through a 45 μ m sieve, and dried for 12 h at 120°C. The dried sample was thoroughly mixed with Li₂B₄O₇ and LiBO₂ in a 1:5:5 ratio by weight and charged to a platinum crucible with 0.5 mL of 0.2 M LiBr (aq) solution. The platinum crucible was placed in a muffle furnace at 1000°C for 10 min, after which the fused bead was transferred to a 50 mL solution of 20% HNO₃ (aq), 4 g/L CsCl (aq), and 50 g/L H₃BO₃ (aq) (volume ratio: 43:2:5) and vigorously stirred for 30 min. The solution was then sonicated (Cole-Parmer Model 08895-01, Vernon Hills, IL) until the bead was completely dissolved. Prior to analysis, 1 mL of the digested solution was diluted to 5 mL with 5% HNO₃ (aq). A matrix blank was prepared with the same borate flux amounts and dilution protocol but without the powdered SiOC sample.

Si and Fe calibration solutions were prepared in the range of 1.0-100.0 mg/L and 1.0-20.0 mg/L, respectively. In general, 20 μ L, 40 μ L, 100 μ L, 200 μ L, 400 μ L, 1000 μ L, or 2000 μ L of the respective stock solution (1000 μ g/mL) was diluted with corresponding volumes of 4 g/L CsCl (aq) (here, 160 μ L) and 50 g/L H₃BO₃ (aq) (here, 400 μ L) to a total volume of 20 mL with 5% HNO₃ (aq) to yield concentrations of 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, and 100.0 mg/L, respectively. The volumes of 4 g/L CsCl (aq) and 50 g/L H₃BO₃ (aq) were calculated to replicate the concentrations in the ICP analytical solutions.

S1.3 ICP-OES Analysis Conditions

The instrument settings for analysis of calibration solutions and the digested sample solutions are provided in Table S1. Emission spectra were collected at the following wavelengths: for Si, 251.611 nm, 288.158 nm, and 250.690 nm; for Fe, 238.204 nm, 259.940 nm, and 234.350 nm.

ICP-OES Instrument Settings	
Plasma Flow	12.0 L/min
Auxiliary Flow	1.00 L/min
Nebulizer	0.70 L/min
Make-up	0.00 L/min
RF Power	1.2 kW
Pump Flow Rate	12 rpm
Sample Replicates	3
Sample Read Time	10 s
Sample Uptake Delay	25 s
Drift Correction	Ar and C Emission Lines
Plasma View	Axial
Stabilization Time	60 s

Table S1: Instrument parameters for Agilent 5110 ICP-OES.

S1.4 Si and Fe Calibration Data

The calibration curves for Si and Fe are presented in Figure S1. The linear regression parameters are provided in Table S2.

Figure S1: Linear fit data of (a) Si emission lines (250.690 nm (blue), 251.611 nm (black), and 288.158 nm (red)) and (b) Fe emission lines (238.204 nm (black), 259.940 nm (red), and 234.350 nm (blue)). The dotted lines represent the linear fit through the data points.

C ¹ D							
Si and Fe Calibration Curve Data							
	Spectral Line	Linear Res	gression St	tatistics			
Element							
	(nm)	100	6	h	S.	P ²	G
		m	S _m		36	K	S_y
			<i></i>				600.60
	251.611	2440.18	6.71	77.54	270.76	0.99995	622.60
Si	288.158	7424.79	25.03	-47.40	1010.12	0.99993	2322.72
	250 690	2773 52	13.65	-370.20	550.83	0 99985	1266 60
	200.090	2,,5.52	10.00	2,0.20	220.05	0.77700	1200.00
						1	
Fe	238.204	32258.53	108.75	937.48	554.50	0.99997	878.10

Table S2: Linear regression statistics for Si and Fe calibration curves in Figure S1.

	259.940	15257.22	59.58	475.61	303.78	0.99995	481.05
	234.350	12681.74	44.80	343.28	228.44	0.99996	361.75

S2. ²⁹Si NMR Simulation and Peak Fitting

S3. Error Propagation Calculation for Sample Composition

The error propagation procedure is used to determine the overall errors in the elemental composition. The procedure should be performed at each wavelength of the analyzed elements. A sample calculation is provided for the 0POSS-0Fe_1100°C sample.

S3.1 ICP-OES Concentration Error from Calibration Curve

The error from the linear fit of calibration data is propagated to the calculated sample concentration:

$$s_{X} = \frac{s_{Y}}{|m|} \sqrt{\left(\frac{1}{k}\right) + \left(\frac{1}{n}\right) + \frac{(y - \bar{y})^{2}}{m^{2} \sum (x_{i} - \bar{x})^{2}}}$$
(S1)

in which *y* and *s_y* are the measured intensity and standard deviation, respectively, from ICP-OES; *m* is the slope of the calibration curve for the specified element and wavelength; *k* is the number of replicate measurements; *n* is the number of data points in the calibration line; \bar{x} and \bar{y} are the average of *x* and *y* values, respectively, of the calibration line; and *x_i* is the *x*-values of the calibration curve. For the 0POSS-0Fe_1100°C sample, for Si at 251.611 nm: *y* = 36173.04 cts and *s_y* = 89.24 cts. Then,

$$c_{Si,251.611\,nm} = \frac{36173.04 - 77.54\,cts}{2400.18\,cts\,L/mg} = 14.79\,mg/L$$

$$s_{c, Si, 251.611 nm} = \frac{622.60 cts}{|2440.18 cts \frac{L}{mg}|} \sqrt{\left(\frac{1}{3}\right) + \left(\frac{1}{8}\right) + \frac{(36173.04 - 57421.67 cts)^2}{\left(2440.18 cts \frac{L}{mg}\right)^2 \left[8612\frac{mg}{L}\right]^2} = 0.02 mg/L}$$

S3.2 Determination of Most Probable Mean Concentration and Error

The most probable mean concentration and error for the ICP analysis solution are determined from the three wavelengths for a single element.

$$\mu_{i} = \frac{\sum \begin{pmatrix} c_{i} \\ s_{ci}^{2} \end{pmatrix}}{\sum \begin{pmatrix} \frac{1}{s_{ci}^{2}} \end{pmatrix}}$$
(S2)

$$s_{\mu i} = \sqrt{\frac{1}{\sum \left(\frac{1}{s_{ci}^2}\right)}}$$
(S3)

For Si:

Si Wavelength (nm)	Concentration (<i>c_i</i>) (mg/L)	Error (s _{ci}) (mg/L)
251.611	14.79	0.02
288.158	14.70	0.01
250,690	14.65	0.01

Then,

$$\mu_{i} = \frac{\frac{14.79}{0.02^{2}} + \frac{14.70}{0.01^{2}} + \frac{14.65}{0.01^{2}}}{\frac{1}{0.02^{2}} + \frac{1}{0.01^{2}} + \frac{1}{0.01^{2}}} = 14.67 \ mg/L$$
$$s_{\mu i} = \sqrt{\frac{1}{\frac{1}{0.02^{2}} + \frac{1}{0.01^{2}} + \frac{1}{0.01^{2}}}} = 0.01 \ mg/L$$

S3.3 Determining Sample Elemental Concentration and Error

The elemental composition (wt%) is calculated from the mean probable concentration, dilutions, and original sample mass. Contributions from the borate flux matrix (matrix blank) are also subtracted after performing similar calculations as above.

Sample	Mean Concentration (µ _i) (mg/L)	Error $(s_{\mu i})$ (mg/L)
0POSS-0Fe_1100°C	14.67	0.01
Matrix Blank	0.15	0.00

0POSS-0Fe_1100°C - Corr.	14.53	0.01

The mean sample concentration and error are given by

$$w_i = \mu_i * DF * \frac{V_{digestion}}{m_i}$$
(S4)

$$s_{wi} = w_i \sqrt{\left(\frac{s_{\mu i}}{\mu_i}\right)^2}$$
(S5)

in which w_i is the elemental weight percentage, DF is the dilution factor between the digested solution and the ICP analysis solution ($DF = V_2/V_1$), $V_{digestion}$ is the volume of solution used for digestion, and m_i is the sample mass. Then for the 0POSS-0Fe_1100°C sample,

$$w_i = 14.53 \frac{mg}{L} * \frac{15 \, mL}{0.5 \, ml} * \frac{50 \, mL}{0.0884 \, g} * \frac{1 \, g}{1000 \, mg} * \frac{1 \, L}{1000 \, mL} = 24.64 \, wt\%$$
(S6)

$$s_{wi} = 24.64 \ wt\% \sqrt{\left(\frac{0.01 \ mg/L}{14.53 \ mg/L}\right)^2} = 0.01 \ wt\%$$
 (S7)

S3.4 Elemental Composition Calculation

From determined weight percentages of Si and Fe (ICP-OES) and C (combustion), the oxygen content was taken as the residual to 100%. The mole fraction of each element is then calculated as – with M_i the molar mass of element *i*:

$$n_i = \frac{\frac{w_i}{\overline{M}_i}}{\sum \frac{w_i}{\overline{M}_i}} = \frac{\frac{w_i}{\overline{M}_i}}{\frac{w_{Si}}{\overline{M}_{Si}} + \frac{w_{Fe}}{\overline{M}_{Fe}} + \frac{w_o}{\overline{M}_o} + \frac{w_c}{\overline{M}_c}}$$
(S8)

The general form of the propagated error is

$$s_{n_i}^2 = \left(\frac{\partial n_i}{\partial w_{Si}}\right)^2 s_{w_{Si}}^2 + \left(\frac{\partial n_i}{\partial w_{Fe}}\right)^2 s_{w_{Fe}}^2 + \left(\frac{\partial n_i}{\partial w_O}\right)^2 s_{w_O}^2 + \left(\frac{\partial n_i}{\partial w_C}\right)^2 s_{w_C}^2 \tag{S9}$$

For Si, the respective derivative terms are:

$$\frac{\partial n_{Si}}{\partial w_{Si}} = \left[\frac{1}{M_{Si}}\right] \left[\frac{1}{\sum \frac{w_i}{M_i}}\right] - \left[\frac{w_{Si}}{M_{Si}^2}\right] \left[\frac{1}{\sum \frac{w_i}{M_i}}\right]^2$$
(S10)

$$\frac{\partial n_{Si}}{\partial w_{Fe}} = -\left[\frac{w_{Si}}{M_{Si}}\right] \left[\frac{1}{\sum \frac{w_i}{M_i}}\right]^2 \left[\frac{1}{M_{Fe}}\right]$$
(S11)

$$\frac{\partial n_{Si}}{\partial w_0} = -\left[\frac{w_{Si}}{M_{Si}}\right] \left[\frac{1}{\sum \frac{w_i}{M_i}}\right]^2 \left[\frac{1}{M_0}\right]$$
(S12)

$$\frac{\partial n_{Si}}{\partial w_C} = -\left[\frac{w_{Si}}{M_{Si}}\right] \left[\frac{1}{\sum \frac{w_i}{M_i}}\right]^2 \left[\frac{1}{M_C}\right]$$
(S13)

After conversion to mole fraction/percent, the composition is determined by normalizing with respect to Si.

Element	Weight Percent (w _i) (%)	Mole Percent (n _i) (%)	Composition
Si	24.64 ± 0.01	13.80 ± 0.01	
Fe	0.01 ± 0.00	0.00 ± 0.00	Si Fe O _{2.733 ± 0.001}
0	38.36 ± 0.01	37.73 ± 0.01	C _{3.512±0.002}
С	37.00	48.47 ± 0.01	

S4. MATLAB Code

%% Gibbs Energy Minimization - Fe Catalyzed SiC Formation

%% Input Variables, Constants, and Reference Values

clear; close all;

% Input Temperature and Sample Composition

$T_{In} = 1100;$	% Temperature (°C)
alpha = 0.016;	% Mole/atom content of Fe (as decimal)
beta = 1.44;	% Mole/atom content of O (as decimal)
delta = $0.28;$	% Mole/atom content of C (as decimal)
%FORMAT: Si Fe_	alpha O_beta C_delta
$T = T_{In+273};$	% Temperature (K)
R = 0.008314;	% Gas Constant (kJ mol^-1 K^-1)
NAv = 6.022E23;	% Avogadro's Number (mol^-1)

K = R/NAv; % Boltzmann Constant (kJ K^-1)

% VLS/SLS Heterogenous Nucleation Parameters

GammaVL = 0.001;	% Vapor/Solid-Liquid(Fe3Si) Interfacial energy (kJ m^-2)
GammaLS = 0.001;	% Liquid(Fe3Si)-Solid(SiC) Interfacial energy (kJ m^-2)
Vm = 40.096/(3.21*100^3)); % SiC Molar Volume (m^3 mol^-1)
Theta = 135; %	Contact Angle (deg)

 $FTheta = (2-3*\cos(\deg 2rad(Theta))+\cos(\deg 2rad(Theta))^3)/4;$

% Contact Angle Parameter

d = [2 7]*1E-9; % SiC Nuclei Size (m)

- % [1]: Critical Nuclei Size (nm)
- % [2]: Observed Nucleite Size (nm)

sigma = 2*(Vm/NAv)*GammaLS*(d(2)-d(1))/(d(1)*d(2)*K*T);

% Supersaturation

gV = -K*T/(Vm*log(1+sigma));

% GFE per Unit Volume (kJ mol m^-3)

 $gNucl = (16*pi*GammaVL^3)*FTheta/(3*gV^2*NAv);$

% GFE for Nucleation (kJ/mol)

```
nNucl = alpha/((1+alpha+beta+delta)*(2+alpha+0.5*beta));
```

% Normalization Factor for gNucl related to Fe content and atomic

% equiv in stoichiometric SiFeOC composition

% Gibbs Energy of Si-O-C Components ((kJ mol⁻¹ Mfu⁻¹)

- Ga00 = -279.477 0.0436*T; % Amorphous SiO2
- Gc00 = -281.777 0.0436*T; % Crystalline SiO2
- Ga44 = 20.64 0.0445*T; % Amorphous SiC
- Gc44 = -6.36 0.0445*T; % Crystalline SiC
- G11 = 0.75*Ga00 + 0.25*Ga44; % Intermediate Si O1.5 C0.25
- G22 = 0.5*Ga00 + 0.5*Ga44; % Intermediate Si O C0.5
- G33 = 0.25*Ga00 + 0.75*Ga44; % Intermediate Si O0.5 C0.75

G0 = (a)(f0) Ga00*f0 + R*T*f0*log(f0); %f0: f(Si O2)

G1 = @(f1) G11*f1 + R*T*f1*log(f1); %f1: f(Si O1.5 C0.25) G2 = @(f2) G22*f2 + R*T*f2*log(f2); %f2: f(Si O C0.5) G3 = @(f3) G33*f3 + R*T*f3*log(f3); %f3: f(Si O0.5 C0.75) G4 = @(f4) (Ga44-gNucl*nNucl)*f4 + R*T*f4*log(f4); %f4: f(Si C)GTotal = @(f) G0(f(1))+G1(f(2))+G2(f(3))+G3(f(4))+G4(f(5));

%% Gibbs Free Energy Minimization Calculation

% fmincon Constraint Parameters

lb = zeros(1,5); % Lower bound values for f0,f1,f2,f3,f4

ub = ones(1,5); % Upper bound values for f0,f1,f2,f3,f4

Aeq = [2:-.5:0;0:0.25:1;ones(1,5)]; % Equality Constraint matrix for f0-f4 values

% Row 1: Effective O coefficients in stoichiometric SiOxCy compositions

% Row 2: Effective C coefficients in stoichiometric SiOxCy compositions

% Row 3: Phase Fraction balance: sum of f0-f4 is 1.

options = optimoptions('fmincon','display','none');

fInitial = 0.2*ones(1,5); % Initial value for f = [f0,f1,f2,f3,f4]

warning('off','all'); % Suppress warning for poorly conditioned matrix, doesn't affect results

% Calculate phase fractions for sample based on stoichiometric coefficients

fSample = (3*beta)/(4+beta); % fSiO parameter for sample

fC = (0.5*beta+delta-1)/(1+alpha+beta+delta); % Phase fraction of free C

fM = (alpha/3)/(1+alpha+beta+delta); % Phase fraction of Fe3Si

phasesSample = zeros(8,1);

% Rows: f0,f1,f2,f3,f4,f_freeC, f_Fe3Si, Gmin

bSample = [beta; 1-0.5*beta;1];

[phasesSample(1:5), phasesSample(8)] =

fmincon(GTotal,fInitial,[],[],Aeq,bSample,lb,ub,[],options);

phasesSample(6) = fC;

phasesSample(7) = fM;

% phasesSample(1:5)=(1-phasesSample(6)-phasesSample(7))*phasesSample(1:5);

% Uncomment if want to normalize SiOC phases to all phases.

% Generate matrix of phase fractions at different fSiO values for plotting

% Plotting Parameters

x = 2:-0.05:0; % Range of O_x Values

y = 1-0.5*x; % Corresponding Rnage of C_y Values

fSiO = (3*x)/(2*(1+x+y)); % f(SiO) Parameter

phasesPlot = zeros(8,size(fSiO,2)); % Master matrix with minimization data.

% Rows: f0,f1,f2,f3,f4,f_freeC, f_Fe3Si, Gmin.

% Columns: fSiO

phasesPlot(7,:) = alpha/3; % Phase fraction of Fe3Si (constant)

bPlot = [x;y;ones(1,size(fSiO,2))]; % Equality Constraint matrix for f0-f4 values

% Row 1: x for O from 0-2 in stiochiometric SiOxCy

% Row 2: y for C from 1-0 in stiochiometric SiOxCy

% Row 3: Phase Fraction balance: sum of f0-f4 is 1.

for i=1:size(phasesPlot,2)

[phasesPlot(1:5,i),phasesPlot(end,i)]=fmincon(GTotal,fInitial,[],[],Aeq,bPlot(:,i),lb,ub,[],options);

freeC = (0.5*x(i)+delta-1)/(1+x(i)+delta+alpha);

phasesPlot(6,i)=(abs(freeC)+freeC)/2;

% Determine free C amount from delta at given x and y value. If free C < 0 then changes to

0.

% phasesPlot(1:5,i)=(1-phasesPlot(6,i))*phasesPlot(1:5,i);

% Uncomment if want to normalize SiOC phases to all phases

end

```
phasesPlot = round(phasesPlot,3);
```

%% Plotting

figure('Name','SiOxCy Composition vs. Phase Fraction')

hold on

```
plot(fSiO,phasesPlot(1:6,:))
```

plot([fSample fSample],[0,1],'k--')

```
plot(fSample, phasesSample(1:6),'rx')
```

xlabel('Composition of SiO_xC_y (f_S_i_O)')

ylabel('Phase fraction (f_i)')

legend('f_0(SiO_2)','f_1(SiO_1_.5,C_0_25)','f_2(SiOC_0_5)','f_3(SiO_0_5C_0_75)','

f_4(SiC)','f_5 (Free C)',")

hold off

%% Gibbs Energy Minimization - Fe Catalyzed SiC Formation

%% Input Variables, Constants, and Reference Values

clear; close all; clc;

% Input Temperature and Sample Composition

$T_{In} = 1100;$	% Temperature (°C)
alpha = 0.013;	% Mole/atom content of Fe (as decimal)
beta = 1.483;	% Mole/atom content of O (as decimal)
delta = 4.924;	% Mole/atom content of C (as decimal)
dNucl = 5;	% Size of SiC nanodomains (here, XRD) (nm)
normalize = 1;	% 1 - normalizes all phase fractions (SiOC,fC, fM) to 1
%FORMAT: Si Fe_a	lpha O_beta C_delta
$T = T_{In+273};$	% Temperature (K)
R = 0.008314;	% Gas Constant (kJ mol^-1 K^-1)
NAv = 6.022E23;	% Avogadro's Number (mol^-1)
K = R/NAv;	% Boltzmann Constant (kJ K^-1)

% VLS/SLS Heterogenous Nucleation Parameters

GammaVL = 0.001;	% Vapor/Solid-Liquid(Fe3Si) Interfacial energy (kJ m^-2)
GammaLS = 0.001;	% Liquid(Fe3Si)-Solid(SiC) Interfacial energy (kJ m^-2)
Vm = 40.096/(3.21*100^3);	% SiC Molar Volume (m^3 mol^-1)

Theta = 135; % Contact Angle (deg)

 $FTheta = (2-3*\cos(\deg 2rad(Theta))+\cos(\deg 2rad(Theta))^3)/4;$

% Contact Angle Parameter

d = [2 dNucl]*1E-9; % SiC Nuclei Size (m)

% [1]: Critical Nuclei Size (nm)

% [2]: Observed Nucleite Size (nm)

sigma = 2*(Vm/NAv)*GammaLS*(d(2)-d(1))/(d(1)*d(2)*K*T);

% Supersaturation

gV = -K*T/(Vm*log(1+sigma));

% GFE per Unit Volume (kJ mol m^-3)

 $gNucl = (16*pi*GammaVL^3)*FTheta/(3*gV^2*NAv);$

% GFE for Nucleation (kJ/mol)

nNucl = alpha/((1+alpha+beta+delta)*(2+alpha+0.5*beta));

% Normalization Factor for gNucl related to Fe content and atomic

% equiv in stoichiometric SiFeOC composition

% Gibbs Energy of Si-O-C Components ((kJ mol^-1 Mfu^-1)

Ga00 = -279.477 - 0.0436*T; % Amorphous SiO2

Gc00 = -281.777 - 0.0436*T; % Crystalline SiO2

Ga44 = 20.64 - 0.0445*T; % Amorphous SiC

Gc44 = -6.36 - 0.0445*T; % Crystalline SiC

G11 = 0.75*Ga00 + 0.25*Ga44; % Intermediate Si O1.5 C0.25

G22 = 0.5*Ga00 + 0.5*Ga44; % Intermediate Si O C0.5

G33 = 0.25*Ga00 + 0.75*Ga44; % Intermediate Si O0.5 C0.75

G0 = (a)(f0) Ga00*f0 + R*T*f0*log(f0); %f0: f(Si O2)

G1 = @(f1) G11*f1 + R*T*f1*log(f1); %f1: f(Si O1.5 C0.25)

G2 = @(f2) G22*f2 + R*T*f2*log(f2); %f2: f(Si O C0.5)

G3 = @(f3) G33*f3 + R*T*f3*log(f3); %f3: f(Si O0.5 C0.75)

G4 = @(f4) (Gc44-gNucl*nNucl)*f4 + R*T*f4*log(f4); %f4: f(Si C)

GTotal = @(f) GO(f(1))+G1(f(2))+G2(f(3))+G3(f(4))+G4(f(5));

%% Gibbs Free Energy Minimization Calculation

- % fmincon Constraint Parameters
- lb = zeros(1,5); % Lower bound values for f0,f1,f2,f3,f4

ub = ones(1,5); % Upper bound values for f0,f1,f2,f3,f4

Aeq = [2:-.5:0;0:0.25:1;ones(1,5)]; % Equality Constraint matrix for f0-f4 values

- % Row 1: Effective O coefficients in stoichiometric SiOxCy compositions
- % Row 2: Effective C coefficients in stoichiometric SiOxCy compositions
- % Row 3: Phase Fraction balance: sum of f0-f4 is 1.
- options = optimoptions('fmincon','display','none');

fInitial = 0.2*ones(1,5); % Initial value for f = [f0,f1,f2,f3,f4]

warning('off','all'); % Suppress warning for poorly conditioned matrix, doesn't affect results

% Calculate phase fractions for sample based on stoichiometric coefficients

fSample = (3*beta)/(4+beta); % fSiO parameter for sample

fC = (0.5*beta+delta-1)/(1+alpha+beta+delta); % Phase fraction of free CfM = (alpha/3)/(1+alpha+beta+delta); % Phase fraction of Fe3Si

phasesSample = zeros(8,1);

% Rows: f0,f1,f2,f3,f4,f_freeC, f_Fe3Si, Gmin

bSample = [beta; 1-0.5*beta;1];

[phasesSample(1:5), phasesSample(8)] =

fmincon(GTotal,fInitial,[],[],Aeq,bSample,lb,ub,[],options);

phasesSample(6) = fC;

phasesSample(7) = fM;

if normalize == 1

phasesSample(1:5)=(1-phasesSample(6)-phasesSample(7))*phasesSample(1:5);

end

%% Generate matrix of phase fractions at different fSiO values for plotting

% Plotting Parameters

x = 2:-0.05:0; % Range of O_x Values

y = 1-0.5*x; % Corresponding Rnage of C_y Values

fSiO = (3*x)/(2*(1+x+y)); % f(SiO) Parameter

phasesPlot = zeros(8,size(fSiO,2)); % Master matrix with minimization data.

% Rows: f0,f1,f2,f3,f4,f_freeC, f_Fe3Si, Gmin.

% Columns: fSiO

phasesPlot(7,:) = alpha/3; % Phase fraction of Fe3Si (constant)

bPlot = [x;y;ones(1,size(fSiO,2))]; % Equality Constraint matrix for f0-f4 values

% Row 1: x for O from 0-2 in stiochiometric SiOxCy

% Row 2: y for C from 1-0 in stiochiometric SiOxCy

% Row 3: Phase Fraction balance: sum of f0-f4 is 1.

for i=1:size(phasesPlot,2)

[phasesPlot(1:5,i),phasesPlot(end,i)]=fmincon(GTotal,fInitial,[],[],Aeq,bPlot(:,i),lb,ub,[],options)

;

freeC = (0.5*x(i)+delta-1)/(1+x(i)+delta+alpha);

phasesPlot(6,i)=(abs(freeC)+freeC)/2;

% Determine free C amount from delta at given x and y value. If free C < 0 then changes to 0.

```
if normalize == 1
```

```
phasesPlot(1:5,i)=(1-phasesPlot(6,i)-phasesPlot(7,i))*phasesPlot(1:5,i);
```

end

end

phasesPlot = round(phasesPlot,3);

%% Plotting

figure('Name','SiOxCy Composition vs. Phase Fraction')

hold on

```
plot(fSiO,phasesPlot(1:6,:))
```

```
plot([fSample fSample],[0,1],'k--')

plot(fSample, phasesSample(1:6),'rx')

xlabel('Composition of SiO_xC_y (f_S_i_O)')

ylabel('Phase fraction (f_i)')

legend('f_0(SiO_2)','f_1(SiO_1_._5,C_0_._2_5)','f_2(SiOC_0_._5)','f_3(SiO_0_._5C_0_._7_5)','

f_4(SiC)','f_5 (Free C)','')
```

hold off

figure('Name','SiOxCy Composition vs. Crystallization Driving Energy')

hold on

GcMix = fSiO*Gc00+(1-fSiO)*Gc44;

GcSample = fSample*Gc00+(1-fSample)*Gc44;

plot(fSiO,phasesPlot(8,:)-GcMix,'k')

plot(fSample,phasesSample(8)-GcSample,'rx','MarkerSize',15)

```
xlabel('Composition of SiO_xC_y (f_S_i_O)')
```

ylabel('Driving Energy for crystallization (kJ/mol)')

hold off