Supporting Information (SI)

Efficient organic light-emitting diodes with narrow emission bandwidths based on iridium(III) complexes with pyrido[3',2':4,5]pyrrolo[3,2,1-*jk*]carbazole unit

Xiang-Ji Liao^{1#}, Jin-Jun Zhu^{1#}, Li Yuan¹, Zhi-Ping Yan¹, Zhen-Long Tu¹, Meng-Xi Mao¹, Jun-Jian Lu¹, Wen-Wei Zhang^{1*} and You-Xuan Zheng^{1,2*}

¹State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. E-mail: yxzheng@nju.edu.cn, wwzhang@nju.edu.cn

#Liao and Zhu have same contribution to this paper.

S1. General information

NMR measurements were conducted on a Bruker AM 400 spectrometer. High resolution electrospray mass spectra (HRMS) was measured on G6500 from Agilent for complexes. Absorption spectra were measured on a UV-3100 spectrophotometer and photoluminescence spectra were obtained from a Hitachi F-4600 photoluminescence spectrophotometer. Cyclic voltammetry measurements were conducted on a MPI-A multifunctional electrochemical and chemiluminescent system (Xi'an Remex Analytical Instrument Ltd. Co., China) at room temperature, with a polished Pt plate as the working electrode, platinum thread as the counter electrode and Ag-AgNO₃ (0.1 M) in CH₃CN as the reference electrode, tetra-*n*-butylammonium perchlorate (0.1 M) was used as the supporting electrolyte, using Fc^+/Fc as the external standard, the scan rate was 0.1 V/s. HOMO energy was calculated from the oxidation potential with the formula of HOMO = $-[E_{ox} - E_{(Fc/Fc+)} + 4.8]$ eV. The energy gap (E_g) of HOMO and LUMO was calculated from the onset of the absorption spectrum with the formula of $E_{g_2} = 1240 / \lambda_{onset}$ and LUMO energy was calculated from HOMO - E_{g_2} . The absolute photoluminescence quantum yields (Φ) and the decay lifetimes of the compounds was measured with HORIBA FL-3 fluorescence spectrometer. Thermogravimetric analysis (TGA) was performed on a Pyris 1 DSC under nitrogen at a heating rate of 10 °C min⁻¹. The single crystals of complexes were carried out on a Bruker SMART CCD diffractometer using monochromated Mo Ka radiation (λ = 0.71073 Å) at room temperature. Cell parameters were retrieved using SMART software and refined using SAINT on all observed reflections. HPLC Analysis Conditions: a) Column: Cat. No. EnantioPak®Y7, 5 μ m, 250 × 30 mm; b) Mobile phase: n-Hexane/Ethanol = 60/40(v/v); c) Flow rate: 24.0 mL/min; d) Abs. detector: 254 nm.

S2. OLEDs fabrication and measurement.

All OLEDs were fabricated on the pre-patterned ITO-coated glass substrate with a sheet resistance of 15 Ω sq⁻¹. The deposition rate for organic compounds is 1-2 Å s⁻¹. The phosphor and the host (2,6DCzPPy) was co-evaporated to form emitting layer from two separate sources. The cathode consisting of LiF / Al was deposited by evaporation of LiF with a deposition rate of 0.1 Å s⁻¹ and then by evaporation of Al metal with a rate of 3 Å s⁻¹. The characteristic curves of the devices were measured with a computer which controlled KEITHLEY 2400 source meter with a calibrated silicon diode in air without device encapsulation. On the basis of the uncorrected PL and EL spectra, the Commission Internationale de l'Eclairage (CIE) coordinates were calculated using a test program of the Spectra scan PR650 spectrophotometer, The EQE of EL devices were calculated based on the photo energy measured by the photodiode.

Fig. S1. ¹H NMR spectrum of Ir1.

Fig. S2. ¹H NMR Zoomed spectrum in 5-9 ppm regions of Ir1.

Fig. S3. HPLC profile of Ir1.

Fig. S4. ¹H NMR spectrum of Ir2.

Fig. S5. ¹H NMR Zoomed spectrum in 5-9 ppm regions of Ir2.

Fig. S6. HPLC profile of Ir2.

Fig. S7. ¹H NMR spectrum of Ir3.

Fig. S8. ¹H NMR Zoomed spectrum in 5-9 ppm regions of Ir3.

Fig. S9. HPLC profile of Ir3.

Fig. S10. ¹H NMR spectrum of Ir4.

Fig. S11. ¹H NMR Zoomed spectrum in 5-9 ppm regions of Ir4.

Fig. S12. HPLC profile of Ir4.

Fig. S13. HRMS spectrum of Ir1.

Fig. S14. HRMS spectrum of Ir2.

Fig. S15. HRMS spectrum of Ir3.

Fig. S16. HRMS spectrum of Ir4.

Table	S1 .	Crystal	information	of Ir1	and Ir2.

Formula $C_{55}H_{43}IrN_6O_2$ $C_{55}H_{43}IrN_6C_2$ Formula weight1012.151012.15T (K)193.01193.0Wavelength (Å)1.341391.34139Crystal systemMonoclinicMonoclinicSpace group $P2_1/n$ $P2_1/n$ a (Å)12.9988(5)15.1656(11)b (Å)17.4052(7)17.0198(13)	
Formula weight1012.151012.15 $T(K)$ 193.01193.0Wavelength (Å)1.341391.34139Crystal systemMonoclinicMonoclinicSpace group $P2_1/n$ $P2_1/n$ a (Å)12.9988(5)15.1656(11) b (Å)17.4052(7)17.0198(13)	2
$T(K)$ 193.01193.0Wavelength (Å)1.341391.34139Crystal systemMonoclinicMonoclinicSpace group $P2_1/n$ $P2_1/n$ a (Å)12.9988(5)15.1656(11) b (Å)17.4052(7)17.0198(13)	
Wavelength (Å) 1.34139 1.34139 Crystal systemMonoclinicMonoclinicSpace group $P2_1/n$ $P2_1/n$ a (Å) $12.9988(5)$ $15.1656(11)$ b (Å) $17.4052(7)$ $17.0198(13)$	
Crystal system Monoclinic Monoclinic Space group $P2_1/n$ $P2_1/n$ a (Å) 12.9988(5) 15.1656(11 b (Å) 17.4052(7) 17.0198(13)	
Space group $P2_1/n$ $P2_1/n$ a (Å)12.9988(5)15.1656(11) b (Å)17.4052(7)17.0198(13)	
a (Å) 12.9988(5) 15.1656(11 b (Å) 17.4052(7) 17.0198(13	
<i>b</i> (Å) 17.4052(7) 17.0198(13)
)
c(A) 19.7083(7) 19.2841(15)
α (deg) 90 90	
β (deg) 90.2110(10) 103.456(2)	
γ (deg) 90 90	
<i>V</i> (Å ³) 4458.9(3) 4840.9(6)	
Z 4 4	
$ \rho_{\text{calcd}} (\text{mg m}^{-3}) $ 1.508 1.389	
μ (Mo K α) (mm ⁻¹) 4.277 3.940	
<i>F</i> (000) 2032 2032	
Reflus collected3303533828	
Unique 8093 8828	
Data/restraints/params 8093 / 0 / 583 8828/78/61	ŀ
GOF on F^2 1.080 1.035	

CCDC NO	2052176	2052164
R_1^{a} , wR_2^{b} (all data)	0.0255, 0.0668	0.0289, 0.0684
$R_1^{a}, wR_2^{b}[I > 2\sigma(I)]$	0.0239,0.0657	0.0258,0.0666

 $\overline{R_1^{a} = \sum ||F_0| - |F_c|| / \sum F_0|} \cdot wR_2^{b} = \left[\sum w(F_0^{2} - F_c^{2})^2 / \sum w(F_0^{2})\right]^{1/2}$

 Table S2. Selected bond lengths and angles of Ir1.

Selected bonds (Å)								
Ir(01)-O(002)	2.1555(17)	Ir(01)-O(003)	2.1170(17)					
Ir(01)-N(004)	2.018(2)	Ir(01)-N(005)	2.037(2)					
Ir(01)-C(00A)	1.993(2)	Ir(01)-C(00C)	1.988(3)					
Selected angles (°)								
O(003)-Ir(01)-O(002)	87.57(7)	N(004)-Ir(01)-O(002)	85.25(7)					
N(004)-Ir(01)-O(003)	91.62(8)	N(004)-Ir(01)-N(005)	173.22(8)					
N(005)-Ir(01)-O(002)	91.40(8)	N(005)-Ir(01)-O(003)	82.34(7)					
C(00A)-Ir(01)-	90 41(9)	C(00.4) Ir(01) $O(002)$	172.20(8)					
O(002)	89.41(8)	C(00A)-II(01)-O(003)						
C(00A)-Ir(01)-		C(00.4) Ir(01) N(005)	104 04(0)					
N(004)	80.90(9)	C(00A)-II(01)-IN(003)	104.94(9)					
C(00C)-Ir(01)-O(002)	171.73(9)	C(00C)-Ir(01)-O(003)	88.84(8)					
C(00C)-Ir(01)-N(004)	102.30(9)	C(00C)-Ir(01)-N(005)	80.74(9)					
C(00C)-Ir(01)-	05.05(10)							
C(00A)	93.03(10)							

 Table S3. Selected bond lengths and angles of Ir2.

Selected bonds (Å)								
Ir(01)-O(002)	2.1117(18)	Ir(01)-O(003)	2.1364(18)					
Ir(01)-N(004)	2.025(2)	Ir(01)-N(005)	2.026(2)					
Ir(01)-C(00A)	1.989(3)	Ir(01)-C(00C)	2.002(3)					
	Selected angles (°)							
O(002)-Ir(01)-O(003)	87.75(7)	N(004)-Ir(01)-O(002)	92.96(8)					
N(004)-Ir(01)-O(003)	82.49(8)	N(004)-Ir(01)-N(005)	174.53(9)					
N(005)-Ir(01)-O(002)	82.53(8)	N(005)-Ir(01)-O(003)	94.19(8)					
C(00A)-Ir(01)-O(002)	84.31(9)	C(00A)-Ir(01)-O(003)	171.16(9)					
C(00A)-Ir(01)-N(004)	101.77(10)	C(00A)-Ir(01)-N(005)	80.94(10)					
C(00A)-Ir(01)-C(00C)	99.82(10)	C(00C)-Ir(01)-O(002)	173.22(9)					
C(00C)-Ir(01)-O(003)	88.46(9)	C(00C)-Ir(01)-N(004)	80.98(10)					

C(00C)-Ir(01)-N(005) 103.35(10)

Table	S4 .	HOMO	and	LUMO	electron	cloud	density	distributions	of each	fragment	of	two
Ir(III)	com	plexes.										

Orbital	Energy/	$E_{\rm g}/$	Composition (%)				
	eV	eV	Ir	Main ligand	Ancillary ligand		
НОМО	-5.04	3.54	37.17	58.80	4.03		
LUMO	-2.50		3.31	91.91	4.78		
HOMO	-5.33	2.70	32.24	63.17	4.59		
LUMO	-2.63		2.14	92.67	5.19		
	Orbital HOMO LUMO HOMO LUMO	Orbital Energy/ eV HOMO -5.04 LUMO -2.50 HOMO -5.33 LUMO -2.63	Orbital Energy/ $E_g/$ eV eV eV HOMO -5.04 3.54 LUMO -2.50	Orbital Energy/ $E_g/$ eV eV eV Ir HOMO -5.04 3.54 37.17 LUMO -2.50 3.31 HOMO -5.33 2.70 32.24 LUMO -2.63 2.14	Orbital Energy/ $E_g/$ Compositi eV eV eV Ir Main ligand HOMO -5.04 3.54 37.17 58.80 LUMO -2.50 3.31 91.91 HOMO -5.33 2.70 32.24 63.17 LUMO -2.63 2.14 92.67		

Fig. S17. TGA curves of Ir1-Ir4.

Fig. S18. The 77 K phosphorescent spectra of Ir1-Ir4 in dilute DCM (10⁻⁵ M).

Fig. S19. Phosphorescence lifetime curves of the Ir(III) complexes in dilute DCM (10^{-5} M) at RT.

Fig. S20. The photoluminescence quantum yield of Ir1 in the doped film.

Fig. S21. The photoluminescence quantum yield of Ir2 in the doped film.

Fig. S22. The photoluminescence quantum yield of Ir3 in the doped film.

Fig. S23. The photoluminescence quantum yield of Ir4 in the doped film.

Fig. S24. Cyclic voltammetry curves of the Ir(III) complexes in acetonitrile with ferrocene as the external standard. $E_{\text{Fc+/Fc}} = 0.17 \text{ V}.$

Fig. S25. Current density - voltage curves of devices S1 and S2.

Molecular Structure	CIE (x, y)	EQE _{max} (%)	$L_{\rm max}$ (cd m ⁻²)	$\eta_{c,max}$ (cd A ⁻ 1)	REF.
	(0.22, 0.60)	19.8	57185	60.6	J. Mater. Chem. C, 2016, 4 , 5469.
$\begin{bmatrix} CF_3 \\ F_3C \\ C \\$	(0.33, 0.62)	26.5		91.9	ACS Appl. Mater. Interfaces, 2019, 11 , 7184.
$\begin{bmatrix} & & \\ & $	(0.24, 0.58)	23.1	12270	73.9	<i>Dyes and</i> <i>Pigments</i> , 2019, 164 , 206.
	(0.34, 0.60)	26.0	89480		<i>Eur. J.</i> <i>Inorg. Chem,</i> 2018 , 4614
	(0.19, 0.61)	23.8	31318	76.9	This Work
$\begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \\ \mathbf{r}_{4} \\ \mathbf{r}_{5} \\ \mathbf{r}_{5$	(0.44, 0.53)	13.5	> 27300	40.7	ACS Photonics, 2018, 5 , 3428.
$\begin{bmatrix} F_3C \\ S \\ S \\ F_3C \end{bmatrix}$	(0.46,0.53)	18.2	18290	58.5	Dalton Trans., 2020, 49 , 13797.

Table S5. Summary of recently reported OLED performances based on Ir(III) complexes vs this work with similar CIE coordinates.

$ \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	(0.47, 0.50)	22.7	33571	67.5	Adv. Funct. Mater., 2016, 26 , 881.
$\begin{bmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{1} \\ \mathbf{y}_{1} \end{bmatrix}_{1}^{1} \mathbf{o}_{1}$	(0.45, 0.52)	19.0	65633	58.4	ACS Appl. Mater. Interfaces., 2013, 5 , 4937.
$ \begin{bmatrix} F_3C & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	(0.46, 0.54)	24.5	33018	87.6	This Work