Interfacial electron modulation of MoS$_2$/black phosphorus heterostructure toward high-rate and high-energy density half/full sodium-ion batteries

Chenrui Zhanga, Tingting Liangc, Huilong Donga, Junjun Lid, Junyu Shena, Wenjin Yange, Xuhong Wanga,*, Hongbo Genga,*, Zhicheng Zhangb,*

aSchool of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China

bTianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China

cState Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 China

dTianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China

eSchool of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

E-mail address: wangxuhongjp@cslg.edu.cn (X. Wang), hbgeng@cslg.edu.cn (H. Geng), zczhang19@tju.edu.cn (Z. Zhang).
\textbf{Fig. S1} (a-c) Various magnification SEM patterns of BP basic material. (d) Raman spectrum of BP basic material.

\textbf{Fig. S2} The SEM pattern of MoS$_2$.
Fig. S3 (a) XRD patterns of MoS$_2$, BP and MoS$_2$/BP composite.

Fig. S4 (a) Raman spectrum of the MoS$_2$/BP composite and (b) MoS$_2$ basic material.
Fig. S5 (a) XPS survey and the high-resolution XPS spectra of (b) Mo 3d, (c) S 2p and (d) P 2p of the MoS$_2$/BP composite.
Fig. S6 (a, b) Low- and high-magnification SEM patterns of the MoS$_2$/BP composite. (c, d) Various magnification TEM and HRTEM pictures of the MoS$_2$/BP composite.

Fig. S7 (a), (b) Other magnifications SEM patterns of the MoS$_2$/BP composite.
Fig. S8 Schematic diagram of the growth process of vertical MoS$_2$ nanosheets on BP: (a) nucleation, (b) diffusion, (c) forming arch structure, and (d) model of MoS$_2$/BP heterostructure.

Fig. S9. The nitrogen adsorption-desorption isotherms curve of MoS$_2$/BP composite.
Fig. S10 Nyquist plots of the MoS$_2$, BP and MoS$_2$/BP electrodes. The inset is corresponding equivalent circuit. R_s is the ohmic resistance, R_{ct} is the charge transfer resistance, CPE$_1$ is the constant phase element, and W is the Warburg impedance.

Fig. S11 The XRD pattern of the Na$_3$V$_2$(PO$_4$)$_2$O$_2$F cathode material.