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1. General methods and materials

Unless the special instructions, all the reagents were provided from commercial suppliers and 

used without further purifications (J&K, Energy Chemical, Acros, TCI, etc.). All the obtained 

products were characterized by 1H-NMR, 13C-NMR and referenced to DMSO-d6 (2.50 ppm for 1H, 

and 39.5 ppm for 13C) or CDCl3 (7.26 ppm for 1H, and 77.1 ppm for 13C) with tetramethylsilane as 

internal standard (0 ppm). 1H-NMR and 13C-NMR spectra were obtained on Varian 400 or 101 

MHz respectively on Bruker Advance III HD 400 MHz spectrometer. Analytical thin layer 

chromatography (TLC) was performed using commercially prepared 100-400 mesh silica gel 

plates (SGF254). Flash column chromatography was performed on 230-430 mesh silica gel. High 

resolution mass spectra (HRMS) were recorded on LTQ-FTUHRA mass spectrometer. GC-MS 

recorded on GCMS-QP2010Ultra. 

2. Synthesis of PCP-BTA-Cu and PCP-BTA-Ir

2.1 Procedure for synthesis of 1-(6-bromo-2-pyridinyl)-1H-benzotriazole (1a)

N
H

N
N

+
NBr Br

N
N

N

N
Br

solvent-free
180 oC, 2 h, N2

1-(6-Bromo-2-pyridinyl)-1H-benzotriazole (1a) was synthesized according to literature1. A 

mixture of benzotriazole (3.570 g, 30.0 mmol) and 2,6-dibromopyridine (4.740 g, 20.0 mmol) was 

heated to 180 oC under N2 and allowed to stir for 2 h. After the reaction mixture was cooled to 

room temperature, the reaction mixture was added water and extracted with dichloromethane three 

times. The organic phases were dried over anhydrous Na2SO4 and concentrated by removing the 

solvent under vacuum to give a crude product. Finally, the residue was subjected to purification by 

silica gel column chromatography with eluent petroleum ether/ethyl acetate to afford the desired 

product (1a, 70% yield, 3.861 g, Mp.80.1−82.6 °C). 

2.2. Procedure for synthesis of 1-(6-(4-vinylphenyl)pyridin-2-yl)-1H-benzo[d] 

[1,2,3]triazole (1b). 
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N
N
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Br

toluene/EtOH, 100 oC, 6 h
+

(HO)2B

Cs2CO3, Pd(PPh3)4, N2

1a 1b

1-(6-(4-vinylphenyl) pyridin-2-yl)-1H-benzo[d] [1,2,3] triazole (1b) was synthesized 

according to literature.2 A mixture of triazole intermediate (1a, 1.38 g, 5 mmol), 4-vinylbenzyl 

boronic acid (1.030 g, 7 mmol) and Cs2CO3 (2.600 g, 8 mmol) were dissolved in solvent mixture 

of toluene/EtOH (10:1 mixture, 40 mL) and Pd(PPh3)4 (0.290 g, 0.25 mmol) was added 

subsequently. The resulting mixture was stirred at 100 °C for 6 hours under N2 atmosphere. After 

the reaction mixture was cooled to room temperature, the reaction mixture was added water and 

extracted with ethyl acetate three times. The organic phases were dried over anhydrous MgSO4 

and concentrated by removing the solvent under vacuum to give a crude product. The crude 

product was purified by column chromatography, eluting with petroleum ether/ethyl acetate to 

afford the desired product (1b, 80% yield, 1.190 g, Mp.166.5-168.3 °C). 

1-(6-(4-vinylphenyl) pyridin-2-yl)-1H-benzo[d] [1,2,3] triazole (1b) 

N
N

N
N

1b

White solid, Mp.166.5-168.3 °C, 80% yield; 1H NMR (400 MHz, CDCl3) δ 8.78 (d, J = 8.4 Hz, 

1H), 8.25 (d, J = 8.1 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.3 Hz, 2H), 8.00 (t, J = 7.9 Hz, 

1H), 7.77 (d, J = 7.7 Hz, 1H), 7.64 (dd, J = 15.5, 8.0 Hz, 3H), 7.50 (t, J = 7.5 Hz, 1H), 6.83 (dd, J 

= 17.6, 10.9 Hz, 1H), 5.90 (d, J = 17.6 Hz, 1H), 5.38 (d, J = 10.9 Hz, 1H). 13C NMR (101 MHz, 

CDCl3) δ 156.09, 151.54, 146.81, 139.70, 138.83, 137.65, 136.22, 131.53, 128.89, 127.14, 126.85, 

124.94, 119.92, 118.58, 115.08, 114.80, 112.71. HRMS Calculated for C19H15N4 [M+H]+ 

299.1297, found 299.1293. 

2.3 Procedure for synthesis of PCP-BTA

1b

N N
N N DVB, AIBN, DMF

polymerization
PCP-BTA

N N
N N

n

n
m
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The polymer monomer 1b (0.500 g) and Divinylbenzene (DVB, 2.000 g) were dissolved in 

DMF (20 mL), followed by the addition of 2,2'-azobis (2-methylpropionitrile) (AIBN, 0.050 g). 

After stirring for 2 h at room temperature, the solution was transferred into an autoclave for 24 h 

at 100 °C. Subsequently, the mixture solution was cooled to room temperature and the obtained 

solid was washed three times with anhydrous ethanol, a white solid product was obtained, which 

was PCP‐BTA. 

2.4.1 Procedure for synthesis of PCP-BTA-Cu

Under N2 atmosphere, PCP-BTA (1.000 g), Cu(CH3COOH)2⋅H2O (200 mg) and dry DMF (20 

mL) was added to 50 mL Schlenk tube. Then, the resulting mixture was stirred at 70 °C for 12 h. 

After cooling down to room temperature centrifugation, washing with water three times, and 

drying at 80°C, the dark green solid was obtained, which was denoted as PCP-BTA-Cu.

2.4.2 Procedure for synthesis of PCP-BTA-Ir

Under N2 atmosphere, PCP-BTA (1.000 g), [Cp*IrCl2]2 (200 mg) and dry methanol (20 mL) 

was added to 50 mL Schlenk tube. Then, the resulting mixture was stirred at 60°C for 12 h. After 

cooling down to room temperature centrifugation, washing with methanol three times, and drying 

at 75 °C, the yellow solid was obtained, which was denoted as PCP-BTA-Ir.

3. Characterization of PCP-BTA-Cu and PCP-BTA-Ir
Fig.S1 showed SEM and TEM images of PCP-BTA-Cu, PCP-BTA-Ir after five runs.

Fig.S1. (a) SEM images of PCP-BTA-Cu after five runs, (b) TEM images of PCP-BTA-Cu after 
five runs, (c) SEM images of PCP-BTA-Ir after five runs, (d) TEM images of PCP-BTA-Ir after 
five runs. 
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Fig.S2 showed SEM EDS image of PCP-BTA-Cu (a), (b), and corresponding elemental 

mapping images of (c) C, (d) N, (e) Cu, (f) O, which revealed cooper complex was supported on 

PCP-BTA successfully.

Fig.S2. SEM EDS image of PCP-BTA-Cu (a), (b), and corresponding elemental mapping images of 

(c) C, (d) N, (e) Cu, (f) O. 

Fig.S3 showed SEM EDS image of PCP-BTA-Ir (a), (b), and corresponding elemental mapping 

images of (c) C, (d) N, (e) Ir, (f) Cl, which revealed iridium complex was supported on PCP-BTA 

successfully.

Fig.S3. SEM EDS image of PCP-BTA-Ir (a), (b), and corresponding elemental mapping images of 

(c) C, (d) N, (e) Ir, (f) Cl. 
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Table.S1. Quantitative elemental composition of C, O, N and Cu from the PCP-BTA-Cu XPS 

data.

Name 
Start 
(BE)

Peak 
(BE)

End 
(BE)

Height 
(CPS)

FWHM 
(eV)

Area (P) 
CPS. (eV)

Area (N) TPP-
2M

Atomic 
(%)

N 1s 408 398.39 394 1365.59 1.62 3463.98 31.27 2.08
Cu 2p 967.63 932.78 929 2486.65 3.34 20790.11 19.54 1.3
O 1s 540 531.44 526 2152.85 2.86 8187.33 47.48 3.16
C 1s 296 283.99 281 54853.37 1.56 100163.22 1403.8 93.46

Table.S2. Quantitative elemental composition of C, Ir, N and Cl from the PCP-BTA-Ir XPS data.

Name 
Start 
(BE)

Peak 
(BE)

End 
(BE)

Height 
(CPS)

FWHM 
(eV)

Area (P) 
CPS.(eV)

Area (N) TPP-
2M

Atomic 
(%)

Ir 4f 72.58 62.65 56.78 1627.32 1.78 5656.54 0.01 0.55
Cl 2p 210.58 198.89 190.78 822.88 3.02 3032.98 0.02 1.54
C 1s 296.58 284.77 279.78 35275.94 1.63 66563.14 1.52 94.19
N 1s 410.58 399.15 392.78 965.46 1.53 4286.15 0.06 3.72

4. General procedure for 4 from diamines

To 25 mL pressure tube was added 1,2-diamine (1.0 mmol), vicinal diol (2.5 mmol), PCP-

BTA-Cu (15 mg), CsOH·H2O (0.75 equiv.). Then, the pressure tube was placed in oil bath (150 
oC) for 12 h. After the reaction mixture was cooled to room temperature, the reaction mixture was 

added water and extracted with ethyl acetate three times. The organic phases were dried over 

anhydrous MgSO4 and concentrated by removing the solvent under vacuum to give a crude 

product. The crude product was purified by column chromatography, eluting with petroleum 

ether/ethyl acetate to afford the desired product 4.

5. General procedure for 4 from nitroanilines  

To 25 mL pressure tube was added 2-nitroaniline (1.0 mmol), vicinal diol (3.0 mmol), PCP-

BTA-Cu (15 mg), CsOH·H2O (0.75 equiv.). Then, the pressure tube was placed in oil bath (150 
oC) for 12 h. After the reaction mixture was cooled to room temperature, the reaction mixture was 

added water and extracted with ethyl acetate three times. The organic phases were dried over 

anhydrous MgSO4 and concentrated by removing the solvent under vacuum to give a crude 

product. The crude product was purified by column chromatography, eluting with petroleum 

ether/ethyl acetate to afford the desired product 4.

6. General procedure for 8



S7

To 25 mL reaction tube was added secondary alcohol (1.0 mmol), primary alcohol (3.0 mmol), 

PCP-BTA-Ir (15 mg), KOH (0.5 equiv.). Then, the mixture was heated at 100 oC for 12 h. After 

the reaction mixture was cooled to room temperature, the reaction mixture was added water and 

extracted with ethyl acetate three times. The organic phases were dried over anhydrous MgSO4 

and concentrated by removing the solvent under vacuum to give a crude product. The crude 

product was purified by column chromatography, eluting with petroleum ether/ethyl acetate to 

afford the desired product 8. Please see Table S3 for the optimization of reaction conditions.  

Table S3. Optimization of reaction conditions. a

OH

OH Cat. additive

O

6a 7a 8aa

Entry Catalyst Base Time [h] Solvent Temperature [ oC ] Yield [%]b

1 － KOH 12 toluene 100 15
2 PCP-BTA-Ir KOH 12 toluene 100 88
3 PCP-BTA-Ir KOH 12 - 100 92
4 PCP-BTA-Ir K2CO3 12 toluene 100 25
5 PCP-BTA-Ir NaOH 12 toluene 100 80
6 PCP-BTA-Ir KOtBu 12 toluene 100 45
7 PCP-BTA-Ir CsOH·H2O 12 toluene 100 81
8 PCP-BTA-Ir KOH 12 H2O 100 10
9 PCP-BTA-Ir KOH 12 1,4-dioxane 100 75
10 PCP-BTA-Ir KOH 12 - 130 91
11 PCP-BTA-Ir KOH 12 - 90 87
12 PCP-BTA-Ir KOH 8 - 100 84
13 PCP-BTA-Ir KOH 16 - 100 92

a Reagents and conditions: 6a (1.0 mmol), 7a (3.0 mmol), KOH (0.5 mmol), PCP-BTA-Ir (15 mg), 100 ℃, 12 h. b 

Yields of isolated product.

7. Hammett plot equation

+

3f

PCP-BTA-Cu, CsOH H2O

150 oC, 1 h
42

R

NH2

NH2
HO

Me

OH

Me

R N

N Me

Me

Experimental procedure: To 25 mL pressure tube was added 1,2-diamine (1.0 mmol), 2,3-

butanediol (3f, 2.5 mmol), PCP-BTA-Cu (15 mg), CsOH·H2O (0.75 equiv.). Then, the pressure 
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tube was heated at 150 oC for 1 h. After centrifugation and recycle the catalyst, the water mixture 

was extracted with ethyl acetate three times. Next, the yield of product 4 was determined by GC. 

R OMe Me H F Cl

Yield 22% 18% 14% 8% 6%

8. Reusability of the catalyst
To 25 mL pressure tube was added o-phenylenediamine (1.0 mmol), 1,2-propanediol (2.5 

mmol), PCP-BTA-Cu (15 mg), CsOH·H2O (0.75 equiv.) and NaOAc (0.2 equiv.). Then, the 
pressure tube was placed in oil bath (150 oC) for 12 h. After the reaction mixture was cooled to 
room temperature, the catalyst was separated by centrifugation with ethyl acetate, washed with 
methanol and ethanol, dried in a vacuum, and reused for the next time.

9. Analytical data of the obtained compounds

1-(6-(4-vinylphenyl) pyridin-2-yl)-1H-benzo[d] [1,2,3] triazole (1b) 

N
N

N
N

1b
White solid, Mp.166.5-168.3 °C, 80% yield; 1H NMR (400 MHz, CDCl3) δ 8.78 (d, J = 8.4 Hz, 
1H), 8.25 (d, J = 8.1 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.3 Hz, 2H), 8.00 (t, J = 7.9 Hz, 
1H), 7.77 (d, J = 7.7 Hz, 1H), 7.64 (dd, J = 15.5, 8.0 Hz, 3H), 7.50 (t, J = 7.5 Hz, 1H), 6.83 (dd, J 
= 17.6, 10.9 Hz, 1H), 5.90 (d, J = 17.6 Hz, 1H), 5.38 (d, J = 10.9 Hz, 1H). 13C NMR (101 MHz, 
CDCl3) δ 156.09, 151.54, 146.81, 139.70, 138.83, 137.65, 136.22, 131.53, 128.89, 127.14, 126.85, 
124.94, 119.92, 118.58, 115.08, 114.80, 112.71. HRMS Calculated for C19H15N4 [M+H]+ 
299.1297, found 299.1293. 

(1) 2-methylquinoxaline (4aa) 3.

N

N Me

Yellow liquid, 90% from diamine, 91% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 8.72 (s, 1H), 

8.05 (d, J = 7.7 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.74 – 7.65 (m, 2H), 2.75 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 153.76, 145.99, 142.04, 140.94, 130.00, 129.15, 128.91, 128.64, 22.57.

(2) 2-ethylquinoxaline (4ab) 3.

N

N
Me
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Yellow liquid, 88% from diamine, 89% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 8.64 (s, 1H), 

7.97 – 7.91 (m, 2H), 7.59 (ddd, J = 9.6, 7.8, 1.6 Hz, 2H), 2.93 (q, J = 7.6 Hz, 2H), 1.32 (t, J = 7.6 Hz, 

3H). 13C NMR (101 MHz, CDCl3) δ 158.38, 145.51, 142.08, 141.16, 129.84, 129.11, 128.83, 128.80, 

29.56, 13.35.

(3) 2-propylquinoxaline (4ac) 4.

N

N Me

Yellow liquid, 80% from diamine, 83% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 8.76 (s, 1H), 

8.12 – 8.04 (m, 2H), 7.79 – 7.68 (m, 2H), 3.05 – 2.98 (m, 2H), 1.91 (h, J = 7.4 Hz, 2H), 1.06 (t, J = 7.4 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 157.48, 145.85, 142.19, 141.23, 129.94, 129.17, 128.94, 

128.85, 38.42, 22.85, 13.93.

(4) 2-butylquinoxaline (4ad) 3.

N

N
Me

Yellow dense liquid, 77% from diamine, 79% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 8.77 (s, 

1H), 8.14 – 8.04 (m, 2H), 7.81 – 7.68 (m, 2H), 3.09 – 3.00 (m, 2H), 1.86 (t, J = 7.7 Hz, 2H), 1.49 (q, J 

= 7.5 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 157.70, 145.84, 142.14, 141.20, 

129.98, 129.16, 128.96, 128.81, 36.24, 31.66, 22.59, 13.90.

(5) 2-phenylquinoxaline (4ae) 3.

N

N Ph

Yellow dense liquid, 86% from diamine, 82% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 9.36 (s, 

1H), 8.30 – 8.10 (m, 4H), 7.86 – 7.74 (m, 2H), 7.63 – 7.51 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 

151.89, 143.36, 142.33, 141.57, 136.79, 130.33, 130.22, 129.65, 129.59, 129.19, 129.13, 127.58.

(6) 2,3-dimethylquinoxaline (4af) 3.

N

N Me

Me

Yellow solid, Mp.104.2-106.8 °C, 85% from diamine, 92% from nitroaniline; 1H NMR (400 MHz, 
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CDCl3) δ 7.99 (dd, J = 6.3, 3.5 Hz, 2H), 7.67 (dd, J = 6.4, 3.4 Hz, 2H), 2.74 (s, 6H). 3C NMR (101 

MHz, CDCl3) δ 153.41, 141.04, 128.78, 128.28, 23.14.

(7) 1,2,3,4-tetrahydrophenazine (4ag) 5. 

N

N

Yellow solid, Mp.91.9-93.3 °C, 92% from diamine, 80% from nitroaniline; 1H NMR (400 MHz, CDCl3) 

δ 7.98 (dd, J = 6.3, 3.5 Hz, 2H), 7.67 (dd, J = 6.4, 3.4 Hz, 2H), 3.22 – 3.13 (m, 4H), 2.05 (p, J = 3.3 Hz, 

4H). 13C NMR (101 MHz, CDCl3) δ 154.14, 141.19, 128.93, 128.32, 33.19, 22.79.

(8) 2,6-dimethylquinoxaline and 2,7-dimethylquinoxaline (4ah) 3.

N

N

Me

Me

N

N

Me Me
and

Yellow solid, the two regio-isomers were inseparable in column chromatography. 83% isolated yield 

from diamine; 1H NMR (400 MHz, CDCl3) δ 8.68 (d, J = 10.3 Hz, 1H), 7.96 – 7.88 (m, 1H), 7.84 – 

7.75 (m, 1H), 7.54 (ddd, J = 15.4, 8.6, 2.0 Hz, 1H), 2.75 (s, 3H), 2.57 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 153.61, 152.76, 145.87, 145.08, 142.07, 141.00, 140.55, 140.47, 139.43, 139.33, 132.28, 

131.20, 128.65, 128.13, 128.02, 127.52, 22.52, 22.42, 21.84, 21.68. 

(9) 6-methyl-2-phenylquinoxaline and 7-methyl-2-phenylquinoxaline (4ai) 3.

N

N

Me

Ph

and
N

N

Me Ph

Yellow solid, the two regio-isomers were inseparable in column chromatography. 83% isolated yield 

from diamine; 1H NMR (400 MHz, CDCl3) δ 9.29 (d, J = 9.8 Hz, 1H), 8.20 (dd, J = 7.3, 1.7 Hz, 2H), 

8.04 (dd, J = 16.2, 8.6 Hz, 1H), 7.97 – 7.89 (m, 1H), 7.66 – 7.50 (m, 4H), 2.63 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 151.81, 151.10, 143.26, 142.48, 142.40, 141.64, 140.87, 140.79, 140.17, 136.97, 

132.65, 131.91, 130.08, 129.99, 129.14, 128.62, 128.48, 127.97, 127.53, 127.44, 21.89, 21.86.

(10) 2,3,6-trimethylquinoxaline (4aj) 3.

Me N

N Me

Me
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Yellow solid, Mp.92.3-94.9 °C, 86% from diamine, 87% from nitroaniline; 1H NMR (400 MHz, CDCl3) 

δ 7.86 (d, J = 8.5 Hz, 1H), 7.75 (s, 1H), 7.49 (dd, J = 8.5, 1.9 Hz, 1H), 2.71 (s, 6H), 2.55 (s, 3H). 13C 

NMR (101 MHz, CDCl3) δ 153.28, 152.42, 141.09, 139.45, 139.14, 131.03, 127.79, 127.26, 23.14, 

23.04, 21.73.

(11) 7-methyl-1,2,3,4-tetrahydrophenazine (4ak) 5.

N

N

Me

Yellow solid, Mp.80.5.3-82.1 °C, 78% from diamine, 73% from nitroaniline; 1H NMR (400 MHz, 

CDCl3) δ 7.84 (d, J = 8.5 Hz, 1H), 7.72 (s, 1H), 7.48 (dd, J = 8.5, 2.0 Hz, 1H), 3.12 (d, J = 6.0 Hz, 4H), 

2.55 (s, 3H), 2.02 (p, J = 3.4 Hz, 4H). 13C NMR (101 MHz, CDCl3) δ 153.91, 153.06, 143.44, 139.63, 

138.75, 130.17, 127.81, 126.57, 33.16, 33.06, 22.84, 22.82, 21.75.

(12) 2,6,7-trimethylquinoxaline (4al) 3.

N

NMe

Me

Me

Yellow solid, Mp.115.9-117.2 °C, 86% from diamine, 86% from nitroaniline; 1H NMR (400 MHz, 

CDCl3) δ 8.54 (s, 1H), 7.69 (s, 1H), 7.64 (s, 1H), 2.64 (s, 3H), 2.36 (s, 6H). 13C NMR (101 MHz, 

CDCl3) δ 152.56, 144.91, 140.87, 140.30, 139.80, 139.10, 128.10, 127.65, 22.36, 20.27, 20.11.

(13) 2-ethyl-6,7-dimethylquinoxaline (4am) 5.

N

NMe

Me

Me

Yellow solid, Mp.115.2-116.8 °C, 74% from diamine, 77% from nitroaniline; 1H NMR (400 MHz, 

CDCl3) δ 8.66 (s, 1H), 7.80 (d, J = 6.9 Hz, 2H), 3.02 (q, J = 7.6 Hz, 2H), 2.49 (s, 6H), 1.43 (t, J = 7.6 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 157.46, 144.53, 141.05, 140.37, 140.16, 139.24, 128.18, 

127.93, 29.52, 20.34, 20.21, 13.53.

(14) 2,3,6,7-tetramethylquinoxaline (4an) 5.

N

NMe

Me

Me

Me
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Yellow solid, Mp.181.1-183.7 °C, 88% from diamine, 88% from nitroaniline; 1H NMR (400 MHz, 

CDCl3) δ 7.72 (s, 2H), 2.70 (s, 6H), 2.46 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 152.32, 139.95, 

139.05, 127.46, 23.05, 20.25.

(15) 7,8-dimethyl-1,2,3,4-tetrahydrophenazine (4ao) 6.

N

NMe

Me

Yellow solid, Mp.147.2-148.2 °C, 80% from diamine, 70% from nitroaniline; 1H NMR (400 MHz, 

CDCl3) δ 7.70 (s, 2H), 3.16 – 3.09 (m, 4H), 2.45 (s, 6H), 2.02 (p, J = 3.2 Hz, 4H). 13C NMR (101 MHz, 

CDCl3) δ 152.93, 140.12, 139.22, 127.39, 33.06, 22.88, 20.28.

(16) 6,7-dimethyl-2-phenylquinoxaline (4ap) 3.

N

N

Me

PhMe

Yellow solid, Mp.121.3-123.1 °C, 85% from diamine, 80% from nitroaniline; 1H NMR (400 MHz, 

CDCl3) δ 9.15 (s, 1H), 8.13 – 8.06 (m, 2H), 7.84 (s, 1H), 7.78 (s, 1H), 7.51 – 7.43 (m, 3H), 2.44 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 151.06, 142.39, 141.26, 140.91, 140.50, 140.24, 137.12, 129.89, 129.12, 

128.66, 128.11, 127.42, 20.44, 20.40.

(17) 6-(tert-butyl)-2-methylquinoxaline and 7-(tert-butyl)-2-methylquinoxaline (4aq) 5.

N

N

tBu

Me

and
N

N

tBu Me

Yellow solid, the two regio-isomers were inseparable in column chromatography, 65% isolated yield 

from diamine; 1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 8.0 Hz, 1H), 8.03 – 7.94 (m, 2H), 7.86 – 7.78 

(m, 1H), 2.76 (d, J = 2.1 Hz, 3H), 1.44 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 153.57, 153.55, 153.02, 

152.36, 145.81, 145.30, 144.87, 144.32, 141.92, 140.86, 140.40, 139.36, 128.98, 128.44, 127.93, 

127.89, 124.36, 123.91, 35.24, 35.11, 31.11, 22.52, 22.44.

(18) 6-(tert-butyl)-2,3-dimethylquinoxaline (4ar) 5.

N

N

tBu

Me

Me
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Yellow solid, Mp.52.4-53.8 °C, 70% from diamine; 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 2.2 Hz, 

1H), 7.91 (d, J = 8.8 Hz, 1H), 7.76 (dd, J = 8.8, 2.2 Hz, 1H), 2.71 (d, J = 1.9 Hz, 6H), 1.43 (s, 9H). 13C 

NMR (101 MHz, CDCl3) δ 153.20, 152.67, 152.23, 140.89, 139.38, 127.68, 127.60, 123.63, 35.11, 

31.18, 23.14, 23.07.

(19) 7-methoxy-1,2,3,4-tetrahydrophenazine (4as) 5.

N

N

MeO

Yellow solid, Mp.114.9-115.3 °C, 86% from diamine; 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 9.0 

Hz, 1H), 7.29 (dd, J = 9.2, 2.8 Hz, 1H), 7.24 (d, J = 2.8 Hz, 1H), 3.92 (s, 3H), 3.11 (d, J = 4.6 Hz, 4H), 

2.03 – 1.98 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 159.89, 153.77, 151.12, 142.46, 137.13, 129.17, 

121.96, 105.75, 55.56, 33.02, 32.72, 22.82, 22.75.

(20) 6-methoxy-2-phenylquinoxaline and 7-methoxy-2-phenylquinoxaline (4at) 3.

N

N

MeO

Ph

and
N

N

MeO Ph

Yellow solid, the two regio-isomers were inseparable in column chromatography, 77% isolated yield 

from diamine; 1H NMR (400 MHz, CDCl3) δ 9.12 (s, 1H), 8.17 – 8.11 (m, 2H), 7.96 (d, J = 9.2 Hz, 

1H), 7.57 – 7.49 (m, 3H), 7.40 (dd, J = 14.6, 2.8 Hz, 2H), 3.96 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 

161.08, 151.95, 143.98, 140.74, 137.75, 136.98, 130.02, 129.15, 128.46, 127.54, 122.95, 106.87, 55.86.

(21) 6-methoxy-2,3-dimethylquinoxaline (4au) 3.

N

N

MeO

Me

Me

Yellow solid, Mp.99.3-100.9 °C, 89% from diamine; 1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.8 Hz, 

1H), 7.35 – 7.27 (m, 2H), 3.95 (s, 3H), 2.72 (s, 3H), 2.70 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 

159.97, 153.36, 150.64, 142.43, 136.99, 129.24, 121.70, 106.15, 55.69, 23.10, 22.80.

(22) 7-chloro-1,2,3,4-tetrahydrophenazine (4av) 6.

N

N

Cl
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Yellow dense liquid, 78% from diamine, 82% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 7.90 (d, 

J = 2.3 Hz, 1H), 7.84 (d, J = 8.9 Hz, 1H), 7.54 (dd, J = 8.9, 2.3 Hz, 1H), 3.09 (td, J = 4.7, 2.3 Hz, 4H), 

2.00 – 1.95 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 155.26, 154.46, 141.44, 139.63, 134.64, 130.00, 

129.55, 127.30, 33.17, 33.11, 22.67, 22.65.

(23) 6-chloro-2,3-dimethylquinoxaline (4aw) 5.

N

N

Cl

Me

Me

Yellow solid, Mp.91.0-92.5 °C, 78% from diamine, 75% from nitroaniline; 1H NMR (400 MHz, CDCl3) 

δ 7.84 (d, J = 2.3 Hz, 1H), 7.78 (d, J = 8.9 Hz, 1H), 7.49 (dd, J = 8.9, 2.3 Hz, 1H), 2.61 (s, 3H), 2.61 (s, 

3H). 13C NMR (101 MHz, CDCl3) δ 153.48, 152.68, 140.26, 138.44, 133.29, 128.67, 128.49, 126.27, 

22.15, 22.09.

(24) 6-fluoro-2,3-dimethylquinoxaline (4ax) 6.

N

N

F

Me

Me

Yellow solid, Mp.108.2-110.3 °C, 70% from diamine, 74% from nitroaniline; 1H NMR (400 MHz, 

CDCl3) δ 7.95 (dd, J = 9.2, 5.7 Hz, 1H), 7.59 (dd, J = 9.3, 2.8 Hz, 1H), 7.46 – 7.39 (m, 1H), 2.71 (d, J 

= 3.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 162.07 (d, J = 249.8 Hz), 154.41, 152.73 (d, J = 3.0 Hz), 

141.71 (d, J = 12.9 Hz), 138.17, 130.23 (d, J = 10.1 Hz), 118.84 (d, J = 25.6 Hz), 111.99 (d, J = 21.5 

Hz), 23.13, 22.97. 19F NMR (376 MHz, CDCl3) δ -110.26. 

(25) 6-bromo-8-methyl-2-phenylquinoxaline and 7-bromo-5-methyl-2-

phenylquinoxaline (4ba) 5.

N

N

Br

Ph
Me

and
N

N

Br

Me

Ph

Yellow solid, the two regio-isomers were inseparable in column chromatography, 85% from 

nitroaniline; 1H NMR (400 MHz, CDCl3) δ 9.28 (s, 1H), 8.27 – 7.96 (m, 3H), 7.66 (d, J = 17.6 Hz, 1H), 

7.59 – 7.48 (m, 3H), 2.79 (d, J = 18.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 152.03, 150.36, 143.39, 
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143.02, 142.11, 139.87, 139.56, 139.25, 136.59, 136.39, 133.49, 132.45, 130.43, 130.33, 129.67, 

129.20, 129.16, 129.13, 127.55, 127.42, 124.05, 123.20, 17.36, 17.09.

(26) 7-bromo-2,3,5-trimethylquinoxaline (4bb) 3.

Br

Me

N

N Me

Me

Yellow solid, Mp.66.1-68.6 °C,79% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 

7.57 (s, 1H), 2.72 (s, 3H), 2.70 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 153.90, 152.58, 141.65, 139.05, 

138.68, 132.01, 128.40, 122.08, 23.35, 23.08, 16.91.

(27) 6-chloro-2-phenylquinoxaline (4bc) 3.

N

N

Cl

Ph

White solid, Mp.125.3-127.1 °C,two regio-isomers were separated by column chromatography, 80% 

from nitroaniline, 1H NMR (400 MHz, CDCl3) δ 9.29 (s, 1H), 8.39 – 8.14 (m, 2H), 8.13 – 7.97 (m, 2H), 

7.69 (dd, J = 8.9, 2.3 Hz, 1H), 7.55 (qd, J = 7.8, 6.8, 3.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

150.71, 143.47, 141.80, 140.82, 135.98, 135.24, 131.31, 130.84, 130.45, 129.23, 128.08, 127.51.

(28) 7-chloro-2-phenylquinoxaline (4bc’) 3.

N

N

Cl Ph

White solid, Mp.146.3-148.2 °C, two regio-isomers were separated by column chromatography, 80% 

from nitroaniline, 1H NMR (400 MHz, CDCl3) δ 9.32 (s, 1H), 8.26 – 8.11 (m, 3H), 8.06 (d, J = 6.1 Hz, 

1H), 7.69 (dd, J = 8.9, 2.5 Hz, 1H), 7.63 – 7.49 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 152.51, 143.46, 

142.64, 140.11, 136.32, 136.14, 130.60, 130.57, 130.38, 129.26, 128.52, 127.64.

(29) 2,3-dimethylpyrido[3,4-b] pyrazine (4bd) 6.

N
N

N Me

Me

Gray solid; Mp.109.8-111.4 °C, 65% from nitroaniline; 1H NMR (400 MHz, CDCl3) δ 9.34 (s, 1H), 
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8.67 (d, J = 5.7 Hz, 1H), 7.75 (d, J = 5.7 Hz, 1H), 2.72 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 158.82, 

155.73, 153.36, 146.60, 143.76, 136.50, 120.91, 23.70, 23.33.

(30) 1,3-diphenylpropan-1-one (8aa) 7.

O

White solid, Mp.72.3-73.9 °C, 92% yield; 1H NMR (400 MHz, CDCl3) δ 8.07 – 8.00 (m, 2H), 7.60 (d, 

J = 7.4 Hz, 1H), 7.51 (dd, J = 8.5, 7.0 Hz, 2H), 7.39 – 7.31 (m, 4H), 7.29 (d, J = 6.9 Hz, 1H), 3.36 (dd, 

J = 8.5, 6.9 Hz, 2H), 3.15 (dd, J = 8.5, 6.9 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 199.23, 141.32, 

136.92, 133.07, 128.63, 128.55, 128.45, 128.07, 126.16, 40.46, 30.17.

(31) 3-(4-methoxyphenyl)-1-phenylpropan-1-one (8ab) 7.

O

OMe

White solid, Mp.59.1-61.2 °C, 86% yield; 1H NMR (400 MHz, CDCl3) δ 8.02 – 7.95 (m, 2H), 7.57 (d, 

J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.23 – 7.17 (m, 2H), 6.91 – 6.85 (m, 2H), 3.82 (s, 3H), 3.30 

(dd, J = 8.4, 6.9 Hz, 2H), 3.05 (t, J = 7.7 Hz, 2H).13C NMR (101 MHz, CDCl3) δ 197.81, 163.48, 

141.50, 130.32, 130.04, 128.52, 128.44, 126.09, 113.76, 55.46, 40.11, 30.37.

(32) 3-(3-methoxyphenyl)-1-phenylpropan-1-one (8ac) 7.

O
OMe

White solid, Mp.66.7-68.2 °C, 84% yield; 1H NMR (400 MHz, CDCl3) δ 7.59 – 7.51 (m, 2H), 7.38 (t, J 

= 7.9 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.31 – 7.27 (m, 2H), 7.26 – 7.23 (m, 1H), 7.13 (ddd, J = 8.2, 2.7, 

1.0 Hz, 1H), 3.88 (s, 3H), 3.32 (dd, J = 8.5, 7.0 Hz, 2H), 3.10 (dd, J = 8.5, 6.9 Hz, 2H). 13C NMR (101 

MHz, CDCl3) δ 199.95, 157.57, 137.06, 132.86, 130.16, 129.59, 128.52, 128.12, 127.51, 120.56, 

110.31, 55.21, 38.96, 25.75.

(33) 3-(2-methoxyphenyl)-1-phenylpropan-1-one (8ad) 7.
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O

MeO

Colorless liquid, 81% yield; 1H NMR (400 MHz, CDCl3) δ 8.05 – 7.97 (m, 2H), 7.61 – 7.54 (m, 1H), 

7.51 – 7.45 (m, 2H), 7.24 (ddd, J = 7.2, 4.4, 2.6 Hz, 2H), 6.96 – 6.87 (m, 2H), 3.86 (s, 3H), 3.30 (dd, J 

= 8.9, 6.9 Hz, 2H), 3.09 (dd, J = 8.7, 6.8 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 199.02, 159.91, 

141.30, 138.32, 129.59, 128.54, 128.44, 126.15, 120.68, 119.57, 112.35, 55.45, 40.55, 30.23.

(34) 1-phenyl-3-(o-tolyl) propan-1-one (8ae) 8.

O Me

Colorless liquid, 88% yield; 1H NMR (400 MHz, CDCl3) δ 8.07 – 7.97 (m, 2H), 7.65 – 7.56 (m, 1H), 

7.50 (t, J = 7.6 Hz, 2H), 7.26 – 7.16 (m, 4H), 3.34 – 3.26 (m, 2H), 3.14 – 3.07 (m, 2H), 2.40 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 199.38, 139.42, 136.91, 136.02, 133.11, 130.38, 128.77, 128.66, 128.08, 

126.36, 126.21, 39.14, 27.56, 19.38.

(35) 3-([1,1'-biphenyl]-4-yl)-1-phenylpropan-1-one (8af) 8.

O

Ph

White solid, Mp.68.3-70.2 °C,83% yield; 1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.0 Hz, 2H), 7.63 

(d, J = 7.2 Hz, 2H), 7.60 (dd, J = 7.8, 3.6 Hz, 3H), 7.49 (dt, J = 10.1, 7.8 Hz, 4H), 7.42 – 7.35 (m, 3H), 

3.39 (t, J = 7.6 Hz, 2H), 3.17 (t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 199.21, 141.03, 140.47, 

139.18, 136.92, 133.15, 128.93, 128.80, 128.68, 128.11, 127.32, 127.17, 127.06, 40.41, 29.79.

(36) 3-(4-chlorophenyl)-1-phenylpropan-1-one (8ag) 7.

O

Cl

White solid, Mp.58.2-59.9 °C,82% yield; 1H NMR (400 MHz, CDCl3) δ 8.01 – 7.94 (m, 2H), 7.62 – 

7.56 (m, 1H), 7.52 – 7.45 (m, 2H), 7.28 (dt, J = 6.8, 2.2 Hz, 2H), 7.23 – 7.19 (m, 2H), 3.31 (t, J = 7.5 

Hz, 2H), 3.07 (t, J = 7.5 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 198.82, 139.74, 136.79, 133.15, 
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131.89, 129.82, 128.64, 128.60, 128.01, 40.13, 29.40.

(37) 3-(2-bromophenyl)-1-phenylpropan-1-one (8ah) 7.

O Br

Colorless liquid, 80% yield; 1H NMR (400 MHz, CDCl3) δ 8.04 – 7.97 (m, 2H), 7.58 (dd, J = 7.9, 1.4 

Hz, 2H), 7.48 (dd, J = 8.4, 7.0 Hz, 2H), 7.35 (dd, J = 7.6, 1.8 Hz, 1H), 7.27 (td, J = 7.5, 1.3 Hz, 1H), 

7.11 (td, J = 7.6, 1.8 Hz, 1H), 3.35 (dd, J = 8.3, 6.3 Hz, 2H), 3.22 (t, J = 7.9 Hz, 2H). 13C NMR (101 

MHz, CDCl3) δ 198.91, 140.60, 136.81, 133.14, 132.92, 130.83, 128.64, 128.10, 128.01, 127.67, 

124.40, 38.63, 30.83.

(38) 1-phenyl-3-(thiophen-2-yl) propan-1-one (8ai) 7.

O
S

Yellow liquid, 88% yield; 1H NMR (400 MHz, CDCl3) δ 8.00 (dd, J = 8.4, 1.3 Hz, 2H), 7.64 – 7.56 (m, 

1H), 7.49 (dd, J = 8.3, 6.9 Hz, 2H), 7.16 (dd, J = 5.1, 1.2 Hz, 1H), 6.96 (dd, J = 5.1, 3.4 Hz, 1H), 6.90 

(dd, J = 3.4, 1.1 Hz, 1H), 3.40 (ddd, J = 7.5, 6.2, 1.8 Hz, 2H), 3.36 – 3.30 (m, 2H). 13C NMR (101 MHz, 

CDCl3) δ 198.59, 143.91, 136.79, 133.18, 128.66, 128.06, 126.88, 124.70, 123.40, 40.46, 24.17.

(39) 3-(4-chlorophenyl)-1-(4-methoxyphenyl) propan-1-one (8aj) 9.

O

MeO Cl

Colorless liquid, 77% yield; 1H NMR (400 MHz, CDCl3) δ 7.99 – 7.91 (m, 2H), 7.30 – 7.25 (m, 2H), 

7.21 – 7.18 (m, 2H), 6.97 – 6.91 (m, 2H), 3.87 (s, 3H), 3.24 (t, J = 7.7 Hz, 2H), 3.04 (t, J = 7.6 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 197.41, 163.61, 139.96, 137.93, 131.80, 130.31, 129.86, 128.58, 113.79, 

55.49, 39.78, 29.58.

(40) 1-(4-methoxyphenyl)-3-(m-tolyl) propan-1-one (8ak) 9.
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O

MeO

Me

Colorless liquid, 78% yield; 1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 8.9 Hz, 2H), 7.25 (t, J = 7.5 Hz, 

1H), 7.15 – 7.06 (m, 3H), 7.00 – 6.95 (m, 2H), 3.89 (s, 3H), 3.31 – 3.25 (m, 2H), 3.11 – 3.04 (m, 2H), 

2.40 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 197.83, 163.50, 141.48, 138.07, 130.35, 130.08, 129.29, 

128.47, 126.88, 125.46, 113.78, 55.45, 40.19, 30.33, 21.44.

(41) 3-(2-bromophenyl)-1-(4-methoxyphenyl) propan-1-one (8al) 10.

O

MeO

Br

Yellow oil, 73% yield; 1H NMR (400 MHz, CDCl3) δ 8.00 – 7.90 (m, 2H), 7.43 (s, 1H), 7.35 (dt, J = 

7.3, 1.9 Hz, 1H), 7.22 – 7.13 (m, 2H), 6.99 – 6.91 (m, 2H), 3.87 (s, 3H), 3.25 (t, J = 7.6 Hz, 2H), 3.04 

(t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 197.17, 163.56, 143.91, 132.02, 131.51, 130.30, 

130.07, 129.22, 127.22, 122.52, 113.80, 55.48, 39.64, 29.84.

(42) 1-(4-methoxyphenyl)-3-(thiophen-2-yl) propan-1-one (8am) 10.

O

MeO

S

Yellow oil, 75% yield; 1H NMR (400 MHz, CDCl3) δ 8.00 – 7.96 (m, 2H), 7.15 (dd, J = 5.1, 1.2 Hz, 

1H), 6.98 – 6.93 (m, 3H), 6.88 (dd, J = 3.4, 1.1 Hz, 1H), 3.88 (s, 3H), 3.32 (d, J = 2.0 Hz, 4H). 13C 

NMR (101 MHz, CDCl3) δ 197.13, 163.56, 144.12, 130.33, 129.90, 126.86, 124.64, 123.34, 113.79, 

55.48, 40.19, 24.41.

(43) 1-(4-chlorophenyl)-3-(4-methoxyphenyl) propan-1-one (8an) 11.

O

Cl OMe

Yellow oil, 78% yield; 1H NMR (400 MHz, CDCl3) δ 7.94 – 7.88 (m, 2H), 7.47 – 7.42 (m, 2H), 7.20 – 

7.16 (m, 2H), 6.90 – 6.84 (m, 2H), 3.81 (s, 3H), 3.26 (t, J = 7.4 Hz, 2H), 3.03 (t, J = 7.6 Hz, 2H). 13C 
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NMR (101 MHz, CDCl3) δ 198.15, 158.08, 139.47, 135.24, 133.09, 129.48, 129.36, 128.92, 114.00, 

55.29, 40.69, 29.23.

(44) 1-(4-chlorophenyl)-3-(m-tolyl) propan-1-one (8ao) 11.

O

Cl
Me

Yellow oil, 82% yield; 1H NMR (400 MHz, CDCl3) δ 7.97 – 7.90 (m, 2H), 7.48 – 7.43 (m, 2H), 7.25 (t, 

J = 7.5 Hz, 1H), 7.16 – 7.08 (m, 3H), 3.30 (dd, J = 8.5, 6.9 Hz, 2H), 3.09 (d, J = 8.0 Hz, 2H), 2.40 (s, 

3H). 13C NMR (101 MHz, CDCl3) δ 197.99, 141.08, 139.47, 138.17, 135.26, 129.52, 129.29, 128.94, 

128.54, 127.03, 125.46, 40.52, 30.04, 21.47.

10. NMR spectra of obtained compounds
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