Supporting Information For

Porous cross-linked polymer copper and iridium catalyzed thesynthesis of quinoxalines and functionalized ketones under solvent- free conditions \dagger

Jiahao Li, ${ }^{a}$ Minyi Yu, ${ }^{\text {a }}$ Zheng-Chao Duan, ${ }^{\text {a,b }}$ Haiyan Zhu, ${ }^{a}$ Wei Yao, ${ }^{a}$ Dawei Wang*a

${ }^{a}$ The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemicaland Material Engineering, Jiangnan University, Wuxi 214122, China.
${ }^{b}$ School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China.
Contents

1. General methods and materials S2
2. Synthesis of PCP-BTA-Cu and PCP-BTA-Ir S2-S4
3. Characterization of PCP-BTA-Cu and PCP-BTA-Ir S4-S6
4. General procedure for $\mathbf{4}$ from diamines S6
5. General procedure for $\mathbf{4}$ from nitroanilines S6
6. General procedure for $\mathbf{8}$ S7
7. Hammett plot equation S7
8. Reusability of the catalyst. S8
9. Analytical data of the obtained compounds S8-S20
10. NMR spectra of obtained compounds S21-S66
11. References S67

1. General methods and materials

Unless the special instructions, all the reagents were provided from commercial suppliers and used without further purifications (J\&K, Energy Chemical, Acros, TCI, etc.). All the obtained products were characterized by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and referenced to $\mathrm{DMSO}-d_{6}\left(2.50 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$, and 39.5 ppm for ${ }^{13} \mathrm{C}$) or $\mathrm{CDCl}_{3}\left(7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$, and 77.1 ppm for $\left.{ }^{13} \mathrm{C}\right)$ with tetramethylsilane as internal standard (0 ppm). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were obtained on Varian 400 or 101 MHz respectively on Bruker Advance III HD 400 MHz spectrometer. Analytical thin layer chromatography (TLC) was performed using commercially prepared 100-400 mesh silica gel plates (SGF254). Flash column chromatography was performed on 230-430 mesh silica gel. High resolution mass spectra (HRMS) were recorded on LTQ-FTUHRA mass spectrometer. GC-MS recorded on GCMS-QP2010Ultra.

2. Synthesis of PCP-BTA-Cu and PCP-BTA-Ir

2.1 Procedure for synthesis of 1-(6-bromo-2-pyridinyl)-1H-benzotriazole (1a)

1-(6-Bromo-2-pyridinyl)-1H-benzotriazole (1a) was synthesized according to literature ${ }^{1}$. A mixture of benzotriazole ($3.570 \mathrm{~g}, 30.0 \mathrm{mmol}$) and 2,6-dibromopyridine ($4.740 \mathrm{~g}, 20.0 \mathrm{mmol}$) was heated to $180{ }^{\circ} \mathrm{C}$ under N_{2} and allowed to stir for 2 h . After the reaction mixture was cooled to room temperature, the reaction mixture was added water and extracted with dichloromethane three times. The organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by removing the solvent under vacuum to give a crude product. Finally, the residue was subjected to purification by silica gel column chromatography with eluent petroleum ether/ethyl acetate to afford the desired product (1a, 70% yield, $3.861 \mathrm{~g}, \mathrm{Mp} .80 .1-82.6^{\circ} \mathrm{C}$).
2.2. Procedure for synthesis of 1-(6-(4-vinylphenyl)pyridin-2-yl)-1H-benzo[d] [1,2,3]triazole (1b).

1-(6-(4-vinylphenyl) pyridin-2-yl)-1H-benzo[d] [1,2,3] triazole (1b) was synthesized according to literature. ${ }^{2}$ A mixture of triazole intermediate (1a, $1.38 \mathrm{~g}, 5 \mathrm{mmol}$), 4-vinylbenzyl boronic acid ($1.030 \mathrm{~g}, 7 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.600 \mathrm{~g}, 8 \mathrm{mmol})$ were dissolved in solvent mixture of toluene/EtOH ($10: 1$ mixture, 40 mL) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.290 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added subsequently. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 6 hours under N_{2} atmosphere. After the reaction mixture was cooled to room temperature, the reaction mixture was added water and extracted with ethyl acetate three times. The organic phases were dried over anhydrous MgSO_{4} and concentrated by removing the solvent under vacuum to give a crude product. The crude product was purified by column chromatography, eluting with petroleum ether/ethyl acetate to afford the desired product ($\mathbf{1 b}, 80 \%$ yield, $1.190 \mathrm{~g}, \mathrm{Mp} .166 .5-168.3^{\circ} \mathrm{C}$).

1-(6-(4-vinylphenyl) pyridin-2-yl)-1H-benzo[d] [1,2,3] triazole (1b)

1b
White solid, Mp.166.5-168.3 ${ }^{\circ} \mathrm{C}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=15.5,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J$ $=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.09,151.54,146.81,139.70,138.83,137.65,136.22,131.53,128.89,127.14,126.85$, $124.94,119.92,118.58,115.08,114.80$, 112.71. HRMS Calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 299.1297, found 299.1293.
2.3 Procedure for synthesis of PCP-BTA

The polymer monomer $\mathbf{1 b}(0.500 \mathrm{~g})$ and Divinylbenzene (DVB, 2.000 g) were dissolved in DMF (20 mL), followed by the addition of 2,2'-azobis (2-methylpropionitrile) (AIBN, 0.050 g). After stirring for 2 h at room temperature, the solution was transferred into an autoclave for 24 h at $100^{\circ} \mathrm{C}$. Subsequently, the mixture solution was cooled to room temperature and the obtained solid was washed three times with anhydrous ethanol, a white solid product was obtained, which was PCP-BTA.

2.4.1 Procedure for synthesis of PCP-BTA-Cu

Under N_{2} atmosphere, PCP-BTA (1.000 g), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(200 \mathrm{mg})$ and dry DMF (20 mL) was added to 50 mL Schlenk tube. Then, the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature centrifugation, washing with water three times, and drying at $80^{\circ} \mathrm{C}$, the dark green solid was obtained, which was denoted as PCP-BTA-Cu.

2.4.2 Procedure for synthesis of PCP-BTA-Ir

Under N_{2} atmosphere, PCP-BTA (1.000 g), $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}(200 \mathrm{mg})$ and dry methanol (20 mL) was added to 50 mL Schlenk tube. Then, the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature centrifugation, washing with methanol three times, and drying at $75^{\circ} \mathrm{C}$, the yellow solid was obtained, which was denoted as PCP-BTA-Ir.

3. Characterization of PCP-BTA-Cu and PCP-BTA-Ir

Fig.S1 showed SEM and TEM images of PCP-BTA-Cu, PCP-BTA-Ir after five runs.

Fig.S1. (a) SEM images of PCP-BTA-Cu after five runs, (b) TEM images of PCP-BTA-Cu after five runs, (c) SEM images of PCP-BTA-Ir after five runs, (d) TEM images of PCP-BTA-Ir after five runs.

Fig.S2 showed SEM EDS image of PCP-BTA-Cu (a), (b), and corresponding elemental mapping images of (c) C , (d) N , (e) Cu , (f) O , which revealed cooper complex was supported on PCP-BTA successfully.

Fig.S2. SEM EDS image of PCP-BTA-Cu (a), (b), and corresponding elemental mapping images of (c) C, (d) N , (e) Cu, (f) O .

Fig.S3 showed SEM EDS image of PCP-BTA-Ir (a), (b), and corresponding elemental mapping images of (c) C, (d) N , (e) Ir, (f) Cl, which revealed iridium complex was supported on PCP-BTA successfully.

Fig.S3. SEM EDS image of PCP-BTA-Ir (a), (b), and corresponding elemental mapping images of (c) C , (d) N , (e) Ir, (f) Cl .

Table.S1. Quantitative elemental composition of $\mathrm{C}, \mathrm{O}, \mathrm{N}$ and Cu from the PCP-BTA-Cu XPS data.

Name	Start (BE)	Peak (BE)	End (BE)	Height (CPS)	FWHM (eV)	Area (P) CPS. (eV)	Area (N) TPP- 2 M	Atomic $(\%)$
	408	398.39	394	1365.59	1.62	3463.98	31.27	2.08
Cu 2 p	967.63	932.78	929	2486.65	3.34	20790.11	19.54	1.3
$\mathrm{O} \mathrm{1s}$	540	531.44	526	2152.85	2.86	8187.33	47.48	3.16
$\mathrm{C} \mathrm{1s}$	296	283.99	281	54853.37	1.56	100163.22	1403.8	93.46

Table.S2. Quantitative elemental composition of $\mathrm{C}, \mathrm{Ir}, \mathrm{N}$ and Cl from the PCP-BTA-Ir XPS data.

	Start Name (BE)	Peak (BE)	End (BE)	Height (CPS)	FWHM (eV)	Area (P) CPS.(eV)	Area (N) TPP- 2 M	Atomic $(\%)$
Ir 4f	72.58	62.65	56.78	1627.32	1.78	5656.54	0.01	0.55
Cl 2p	210.58	198.89	190.78	822.88	3.02	3032.98	0.02	1.54
C 1s	296.58	284.77	279.78	35275.94	1.63	66563.14	1.52	94.19
N 1s	410.58	399.15	392.78	965.46	1.53	4286.15	0.06	3.72

4. General procedure for $\mathbf{4}$ from diamines

To 25 mL pressure tube was added 1,2-diamine (1.0 mmol), vicinal diol (2.5 mmol), PCP-BTA- $\mathrm{Cu}(15 \mathrm{mg}), \mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.75$ equiv.). Then, the pressure tube was placed in oil bath (150 ${ }^{\circ} \mathrm{C}$) for 12 h . After the reaction mixture was cooled to room temperature, the reaction mixture was added water and extracted with ethyl acetate three times. The organic phases were dried over anhydrous MgSO_{4} and concentrated by removing the solvent under vacuum to give a crude product. The crude product was purified by column chromatography, eluting with petroleum ether/ethyl acetate to afford the desired product 4.

5. General procedure for 4 from nitroanilines

To 25 mL pressure tube was added 2-nitroaniline (1.0 mmol), vicinal diol (3.0 mmol), PCP-BTA- $\mathrm{Cu}(15 \mathrm{mg}), \mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.75$ equiv.). Then, the pressure tube was placed in oil bath (150 ${ }^{\circ} \mathrm{C}$) for 12 h . After the reaction mixture was cooled to room temperature, the reaction mixture was added water and extracted with ethyl acetate three times. The organic phases were dried over anhydrous MgSO_{4} and concentrated by removing the solvent under vacuum to give a crude product. The crude product was purified by column chromatography, eluting with petroleum ether/ethyl acetate to afford the desired product 4.

6. General procedure for 8

To 25 mL reaction tube was added secondary alcohol (1.0 mmol), primary alcohol (3.0 mmol), PCP-BTA- $\operatorname{Ir}(15 \mathrm{mg})$, KOH (0.5 equiv.). Then, the mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction mixture was cooled to room temperature, the reaction mixture was added water and extracted with ethyl acetate three times. The organic phases were dried over anhydrous MgSO_{4} and concentrated by removing the solvent under vacuum to give a crude product. The crude product was purified by column chromatography, eluting with petroleum ether/ethyl acetate to afford the desired product $\mathbf{8}$. Please see Table S3 for the optimization of reaction conditions.

Table S3. Optimization of reaction conditions. ${ }^{a}$

Entry	Catalyst	Base	Time $[\mathrm{h}]$	Solvent	Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	Yield [\%] ${ }^{b}$
1	-	KOH	12	toluene	100	15
2	PCP-BTA-Ir	KOH	12	toluene	100	88
$\mathbf{3}$	PCP-BTA-Ir	$\mathbf{K O H}$	$\mathbf{1 2}$	-	$\mathbf{1 0 0}$	$\mathbf{9 2}$
4	PCP-BTA-Ir	$\mathrm{K}_{2} \mathrm{CO}_{3}$	12	toluene	100	25
5	PCP-BTA-Ir	NaOH	12	toluene	100	80
6	PCP-BTA-Ir	KOtBu	12	toluene	100	45
7	PCP-BTA-Ir	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	12	toluene	100	81
8	PCP-BTA-Ir	KOH	12	$\mathrm{H}_{2} \mathrm{O}$	100	10
9	PCP-BTA-Ir	KOH	12	$1,4-$ dioxane	100	75
10	PCP-BTA-Ir	KOH	12	-	130	91
11	PCP-BTA-Ir	KOH	12	-	90	87
12	PCP-BTA-Ir	KOH	8	-	100	84
13	PCP-BTA-Ir	KOH	16	-	100	92
${ }^{a}$ Reagents and conditions: $\mathbf{6 a}(1.0 \mathrm{mmol}), \mathbf{7 a}(3.0 \mathrm{mmol}), \mathrm{KOH}(0.5 \mathrm{mmol})$, PCP-BTA-Ir $(15 \mathrm{mg}), 100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b}$						
Yields of isolated product.						

7. Hammett plot equation

Experimental procedure: To 25 mL pressure tube was added 1,2-diamine (1.0 mmol), 2,3butanediol (3f, 2.5 mmol), PCP-BTA- $\mathrm{Cu}(15 \mathrm{mg}), \mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.75 equiv.). Then, the pressure
tube was heated at $150{ }^{\circ} \mathrm{C}$ for 1 h . After centrifugation and recycle the catalyst, the water mixture was extracted with ethyl acetate three times. Next, the yield of product $\mathbf{4}$ was determined by GC.

R	OMe	Me	H	F	Cl
Yield	22%	18%	14%	8%	6%

8. Reusability of the catalyst

To 25 mL pressure tube was added o-phenylenediamine (1.0 mmol), 1,2-propanediol (2.5 mmol), PCP-BTA- $\mathrm{Cu}\left(15 \mathrm{mg}\right.$), $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.75 equiv.) and NaOAc (0.2 equiv.). Then, the pressure tube was placed in oil bath $\left(150{ }^{\circ} \mathrm{C}\right)$ for 12 h . After the reaction mixture was cooled to room temperature, the catalyst was separated by centrifugation with ethyl acetate, washed with methanol and ethanol, dried in a vacuum, and reused for the next time.

9. Analytical data of the obtained compounds

1-(6-(4-vinylphenyl) pyridin-2-yl)-1H-benzo[d] [1,2,3] triazole (1b)

White solid, Mp.166.5-168.3 ${ }^{\circ} \mathrm{C}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=15.5,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J$ $=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.09,151.54,146.81,139.70,138.83,137.65,136.22,131.53,128.89,127.14,126.85$, 124.94, 119.92, 118.58, 115.08, 114.80, 112.71. HRMS Calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 299.1297, found 299.1293.
(1) 2-methylquinoxaline (4aa) ${ }^{3}$.

Yellow liquid, 90% from diamine, 91% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~s}, 1 \mathrm{H})$, $8.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.76,145.99,142.04,140.94,130.00,129.15,128.91,128.64,22.57$.

(2) 2-ethylquinoxaline (4ab) ${ }^{3}$.

Yellow liquid, 88% from diamine, 89% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~s}, 1 \mathrm{H})$, $7.97-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{ddd}, J=9.6,7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.38,145.51,142.08,141.16,129.84,129.11,128.83,128.80$, 29.56, 13.35 .
(3) 2-propylquinoxaline (4ac) ${ }^{4}$.

Yellow liquid, 80% from diamine, 83% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H})$, $8.12-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.68(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.48,145.85,142.19,141.23,129.94,129.17,128.94$, 128.85, 38.42, 22.85, 13.93.
(4) 2-butylquinoxaline (4ad) ${ }^{3}$.

Yellow dense liquid, 77% from diamine, 79% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77$ (s, $1 \mathrm{H}), 8.14-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.68(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.70,145.84,142.14,141.20$, $129.98,129.16,128.96,128.81,36.24,31.66,22.59,13.90$.
(5) 2-phenylquinoxaline (4ae) ${ }^{3}$.

Yellow dense liquid, 86% from diamine, 82% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.36(\mathrm{~s}$, $1 \mathrm{H}), 8.30-8.10(\mathrm{~m}, 4 \mathrm{H}), 7.86-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.89,143.36,142.33,141.57,136.79,130.33,130.22,129.65,129.59,129.19,129.13,127.58$.

(6) 2,3-dimethylquinoxaline (4af) ${ }^{3}$.

Yellow solid, Mp.104.2-106.8 ${ }^{\circ} \mathrm{C}$, 85% from diamine, 92% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dd}, J=6.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=6.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{3} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.41,141.04,128.78,128.28,23.14$.

(7) 1,2,3,4-tetrahydrophenazine (4ag) ${ }^{5}$.

Yellow solid, Mp. $91.9-93.3^{\circ} \mathrm{C}$, 92% from diamine, 80% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=6.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=6.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.13(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{p}, J=3.3 \mathrm{~Hz}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.14,141.19,128.93,128.32$, 33.19, 22.79.
(8) 2,6-dimethylquinoxaline and 2,7-dimethylquinoxaline (4ah) ${ }^{3}$.

Yellow solid, the two regio-isomers were inseparable in column chromatography. 83% isolated yield from diamine; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.84-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=15.4,8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.61,152.76,145.87,145.08,142.07,141.00,140.55,140.47,139.43,139.33,132.28$, $131.20,128.65,128.13,128.02,127.52,22.52,22.42,21.84,21.68$.
(9) 6-methyl-2-phenylquinoxaline and 7-methyl-2-phenylquinoxaline (4ai) ${ }^{3}$.

Yellow solid, the two regio-isomers were inseparable in column chromatography. 83% isolated yield from diamine; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.29(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $8.04(\mathrm{dd}, J=16.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.50(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.81,151.10,143.26,142.48,142.40,141.64,140.87,140.79,140.17,136.97$, $132.65,131.91,130.08,129.99,129.14,128.62,128.48,127.97,127.53,127.44,21.89,21.86$.
(10) 2,3,6-trimethylquinoxaline (4aj) ${ }^{3}$.

Yellow solid, Mp.92.3-94.9 ${ }^{\circ} \mathrm{C}$, 86% from diamine, 87% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 153.28,152.42,141.09,139.45,139.14,131.03,127.79,127.26,23.14$, 23.04, 21.73.
(11) 7-methyl-1,2,3,4-tetrahydrophenazine (4ak) ${ }^{5}$.

Yellow solid, Mp.80.5.3-82.1 ${ }^{\circ} \mathrm{C}$, 78% from diamine, 73% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{p}, J=3.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.91,153.06,143.44,139.63$, $138.75,130.17,127.81,126.57,33.16,33.06,22.84,22.82,21.75$.
(12) 2,6,7-trimethylquinoxaline (4al) ${ }^{3}$.

Yellow solid, Mp.115.9-117.2 ${ }^{\circ} \mathrm{C}$, 86% from diamine, 86% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.56,144.91,140.87,140.30,139.80,139.10,128.10,127.65,22.36,20.27,20.11$.

(13) 2-ethyl-6,7-dimethylquinoxaline (4am) ${ }^{5}$.

Yellow solid, Mp.115.2-116.8 ${ }^{\circ} \mathrm{C}$, 74% from diamine, 77% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.46,144.53,141.05,140.37,140.16,139.24,128.18$, 127.93, 29.52, 20.34, 20.21, 13.53.
(14) 2,3,6,7-tetramethylquinoxaline (4an) ${ }^{5}$.

Yellow solid, Mp.181.1-183.7 ${ }^{\circ} \mathrm{C}$, 88% from diamine, 88% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 6 \mathrm{H}), 2.46(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.32,139.95$, $139.05,127.46,23.05,20.25$.

(15) 7,8-dimethyl-1,2,3,4-tetrahydrophenazine (4ao) ${ }^{6}$.

Yellow solid, Mp.147.2-148.2 ${ }^{\circ} \mathrm{C}$, 80% from diamine, 70% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~s}, 2 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{p}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.93,140.12,139.22,127.39,33.06,22.88,20.28$.
(16) 6,7-dimethyl-2-phenylquinoxaline (4ap) ${ }^{3}$.

Yellow solid, Mp.121.3-123.1 ${ }^{\circ} \mathrm{C}$, 85% from diamine, 80% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.06,142.39,141.26,140.91,140.50,140.24,137.12,129.89,129.12$, 128.66, 128.11, 127.42, 20.44, 20.40.
(17) 6-(tert-butyl)-2-methylquinoxaline and 7-(tert-butyl)-2-methylquinoxaline (4aq) ${ }^{5}$.
 and

Yellow solid, the two regio-isomers were inseparable in column chromatography, 65% isolated yield from diamine; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.78$ $(\mathrm{m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.57,153.55,153.02$, $152.36,145.81,145.30,144.87,144.32,141.92,140.86,140.40,139.36,128.98,128.44,127.93$, $127.89,124.36,123.91,35.24,35.11,31.11,22.52,22.44$.
(18) 6-(tert-butyl)-2,3-dimethylquinoxaline (4ar) ${ }^{5}$.

Yellow solid, Mp.52.4-53.8 ${ }^{\circ} \mathrm{C}, 70 \%$ from diamine; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 153.20,152.67,152.23,140.89,139.38,127.68,127.60,123.63,35.11$, 31.18, 23.14, 23.07.

(19) 7-methoxy-1,2,3,4-tetrahydrophenazine (4as) ${ }^{5}$.

Yellow solid, Mp.114.9-115.3 ${ }^{\circ} \mathrm{C}$, 86% from diamine; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H})$, $2.03-1.98(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.89,153.77,151.12,142.46,137.13,129.17$, 121.96, 105.75, 55.56, 33.02, 32.72, 22.82, 22.75.
(20) 6-methoxy-2-phenylquinoxaline and 7-methoxy-2-phenylquinoxaline (4at) ${ }^{3}$.

Yellow solid, the two regio-isomers were inseparable in column chromatography, 77% isolated yield from diamine; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, J=14.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $161.08,151.95,143.98,140.74,137.75,136.98,130.02,129.15,128.46,127.54,122.95,106.87,55.86$.
(21) 6-methoxy-2,3-dimethylquinoxaline (4au) ${ }^{3}$.

Yellow solid, Mp.99.3-100.9 ${ }^{\circ} \mathrm{C}, 89 \%$ from diamine; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 159.97, 153.36, 150.64, 142.43, 136.99, 129.24, 121.70, 106.15, 55.69, 23.10, 22.80.
(22) 7-chloro-1,2,3,4-tetrahydrophenazine (4av) ${ }^{6}$.

Yellow dense liquid, 78% from diamine, 82% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{td}, J=4.7,2.3 \mathrm{~Hz}, 4 \mathrm{H})$, $2.00-1.95(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.26,154.46,141.44,139.63,134.64,130.00$, $129.55,127.30,33.17,33.11,22.67,22.65$.

(23) 6-chloro-2,3-dimethylquinoxaline (4aw) ${ }^{5}$.

Yellow solid, Mp. $91.0-92.5^{\circ} \mathrm{C}, 78 \%$ from diamine, 75% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.48,152.68,140.26,138.44,133.29,128.67,128.49,126.27$, 22.15, 22.09 .

(24) 6-fluoro-2,3-dimethylquinoxaline (4ax) ${ }^{6}$.

Yellow solid, Mp.108.2-110.3 ${ }^{\circ} \mathrm{C}$, 70% from diamine, 74% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{dd}, J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.07(\mathrm{~d}, J=249.8 \mathrm{~Hz}), 154.41,152.73(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $141.71(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 138.17,130.23(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 118.84(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 111.99(\mathrm{~d}, J=21.5$ Hz), 23.13, 22.97. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.26$.

(25) 6-bromo-8-methyl-2-phenylquinoxaline and 7-bromo-5-methyl-2-

 phenylquinoxaline (4ba) ${ }^{5}$.

Yellow solid, the two regio-isomers were inseparable in column chromatography, 85% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 8.27-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.48(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.03,150.36,143.39$,
$143.02,142.11,139.87,139.56,139.25,136.59,136.39,133.49,132.45,130.43,130.33,129.67$, $129.20,129.16,129.13,127.55,127.42,124.05,123.20,17.36,17.09$.
(26) 7-bromo-2,3,5-trimethylquinoxaline (4bb) ${ }^{3}$.

Yellow solid, Mp.66.1-68.6 ${ }^{\circ} \mathrm{C}, 79 \%$ from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~s}, 1 \mathrm{H})$, $7.57(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.90,152.58,141.65,139.05$, $138.68,132.01,128.40,122.08,23.35,23.08,16.91$.
(27) 6-chloro-2-phenylquinoxaline (4bc) ${ }^{3}$.

White solid, Mp.125.3-127.1 ${ }^{\circ} \mathrm{C}$,two regio-isomers were separated by column chromatography, 80% from nitroaniline, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.39-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.13-7.97(\mathrm{~m}, 2 \mathrm{H})$, $7.69(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{qd}, J=7.8,6.8,3.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $150.71,143.47,141.80,140.82,135.98,135.24,131.31,130.84,130.45,129.23,128.08,127.51$.
(28) 7-chloro-2-phenylquinoxaline (4bc') ${ }^{3}$.

White solid, Mp.146.3-148.2 ${ }^{\circ} \mathrm{C}$, two regio-isomers were separated by column chromatography, 80% from nitroaniline, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.11(\mathrm{~m}, 3 \mathrm{H}), 8.06(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.51,143.46$, $142.64,140.11,136.32,136.14,130.60,130.57,130.38,129.26,128.52,127.64$.

(29) 2,3-dimethylpyrido[3,4-b] pyrazine (4bd) ${ }^{6}$.

Gray solid; Mp.109.8-111.4 ${ }^{\circ} \mathrm{C}$, 65% from nitroaniline; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34(\mathrm{~s}, 1 \mathrm{H})$,
$8.67(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.82$, $155.73,153.36,146.60,143.76,136.50,120.91,23.70,23.33$.
(30) 1,3-diphenylpropan-1-one (8aa) ${ }^{7}$.

White solid, Mp.72.3-73.9 ${ }^{\circ} \mathrm{C}, 92 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}$, $J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.23,141.32$, $136.92,133.07,128.63,128.55,128.45,128.07,126.16,40.46,30.17$.

(31) 3-(4-methoxyphenyl)-1-phenylpropan-1-one (8ab) ${ }^{7}$.

White solid, Mp.59.1-61.2 ${ }^{\circ} \mathrm{C}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.30$ (dd, $J=8.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.81, 163.48, $141.50,130.32,130.04,128.52,128.44,126.09,113.76,55.46,40.11,30.37$
(32) 3-(3-methoxyphenyl)-1-phenylpropan-1-one (8ac) ${ }^{7}$.

White solid, Mp.66.7-68.2 ${ }^{\circ} \mathrm{C}, 84 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=8.2,2.7$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=8.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.95,157.57,137.06,132.86,130.16,129.59,128.52,128.12,127.51,120.56$, 110.31, 55.21, 38.96, 25.75.
(33) 3-(2-methoxyphenyl)-1-phenylpropan-1-one (8ad) ${ }^{7}$.

Colorless liquid, 81% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{ddd}, J=7.2,4.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{dd}, J$ $=8.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=8.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.02, 159.91, $141.30,138.32,129.59,128.54,128.44,126.15,120.68,119.57,112.35,55.45,40.55,30.23$.
(34) 1-phenyl-3-(o-tolyl) propan-1-one (8ae) ${ }^{8}$.

Colorless liquid, 88% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 199.38,139.42,136.91,136.02,133.11,130.38,128.77,128.66,128.08$, 126.36, 126.21, 39.14, 27.56, 19.38.
(35) 3-([1,1'-biphenyl]-4-yl)-1-phenylpropan-1-one (8af) ${ }^{8}$.

White solid, Mp.68.3-70.2 ${ }^{\circ} \mathrm{C}, 83 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=7.8,3.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.49(\mathrm{dt}, J=10.1,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H})$, $3.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.21, 141.03, 140.47, $139.18,136.92,133.15,128.93,128.80,128.68,128.11,127.32,127.17,127.06,40.41,29.79$.
(36) 3-(4-chlorophenyl)-1-phenylpropan-1-one (8ag) ${ }^{7}$.

White solid, Mp.58.2-59.9 ${ }^{\circ} \mathrm{C}, 82 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.62-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dt}, J=6.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.82,139.74,136.79,133.15$, S17
131.89, 129.82, 128.64, 128.60, 128.01, 40.13, 29.40.
(37) 3-(2-bromophenyl)-1-phenylpropan-1-one (8ah) ${ }^{7}$.

Colorless liquid, 80% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=7.9,1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=8.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.91,140.60,136.81,133.14,132.92,130.83,128.64,128.10,128.01,127.67$, 124.40, 38.63, 30.83.
(38) 1-phenyl-3-(thiophen-2-yl) propan-1-one (8ai) ${ }^{7}$.

Yellow liquid, 88% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (dd, $J=3.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=7.5,6.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.59,143.91,136.79,133.18,128.66,128.06,126.88,124.70,123.40,40.46,24.17$.
(39) 3-(4-chlorophenyl)-1-(4-methoxyphenyl) propan-1-one (8aj) ${ }^{9}$.

Colorless liquid, 77% yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.41,163.61,139.96,137.93,131.80,130.31,129.86,128.58,113.79$, 55.49, 39.78, 29.58.
(40) 1-(4-methoxyphenyl)-3-(m-tolyl) propan-1-one (8ak) ${ }^{9}$.

Colorless liquid, 78% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.83,163.50,141.48,138.07,130.35,130.08,129.29$, $128.47,126.88,125.46,113.78,55.45,40.19,30.33,21.44$.
(41) 3-(2-bromophenyl)-1-(4-methoxyphenyl) propan-1-one (8al) ${ }^{10}$.

Yellow oil, 73% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=$ $7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.17,163.56,143.91,132.02,131.51,130.30$, 130.07, 129.22, 127.22, 122.52, 113.80, 55.48, 39.64, 29.84.
(42) 1-(4-methoxyphenyl)-3-(thiophen-2-yl) propan-1-one (8am) ${ }^{10}$.

Yellow oil, 75% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=3.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.13,163.56,144.12,130.33,129.90,126.86,124.64,123.34,113.79$, 55.48, 40.19, 24.41.
(43) 1-(4-chlorophenyl)-3-(4-methoxyphenyl) propan-1-one (8an) ${ }^{11}$.

Yellow oil, 78% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (101 MHz, CDCl_{3}) $\delta 198.15,158.08,139.47,135.24,133.09,129.48,129.36,128.92,114.00$, 55.29, 40.69, 29.23.
(44) 1-(4-chlorophenyl)-3-(m-tolyl) propan-1-one (8ao) ${ }^{11}$.

Yellow oil, 82% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 3.30(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.99,141.08,139.47,138.17,135.26,129.52,129.29,128.94$, 128.54, 127.03, 125.46, 40.52, 30.04, 21.47.

10. NMR spectra of obtained compounds

${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

$|1|$
${ }^{1} \mathrm{H}$ NMR， 400 MHz

룯

${ }^{13} \mathrm{C}$ NMR， 101 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

$\xrightarrow{\text { N゙NN }}$

$\underbrace{\text { m゙ゥ }}$

4ag
${ }^{1} \mathrm{H}$ NMR， 400 MHz

$\stackrel{\circ}{\stackrel{\circ}{\infty}} \stackrel{\text { N }}{\sim}$

4ag
${ }^{13} \mathrm{C}$ NMR， 101 MHz

[^0]

ছ゙

4ai and

${ }^{13} \mathrm{C}$ NMR, 101 MHz

さすか

ヘึ่ Mi

4aj
${ }^{13} \mathrm{C}$ NMR， 101 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

[^1]

4al
${ }^{1} \mathrm{H}$ NMR, 400 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

[^2]

N M N Ni in が

4am
${ }^{13} \mathrm{C}$ NMR, 101 MHz

$\stackrel{N}{\text { N/ }}$

4an
${ }^{13} \mathrm{C}$ NMR, 101 MHz

$$
\begin{array}{lll}
\circ & \infty \\
\infty \\
& \text { N } \\
& \text { NiN }
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR, 101 MHz

$\ddagger q$
瓷尔

${ }^{13} \mathrm{C}$ NMR, 101 MHz

 $\stackrel{\sim}{\sim}$

N上F～す

${ }^{13} \mathrm{C}$ NMR， 101 MHz

$$
\underbrace{1} \mathrm{H} \text { NMR, } 400 \mathrm{MHz}
$$

 $\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \stackrel{ \pm}{\sim}$

${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz

$\stackrel{8}{\infty}$

n
$\stackrel{\circ}{6}$
1
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$

4au
${ }^{13} \mathrm{C}$ NMR, 101 MHz

 \mid

${ }^{1} \mathrm{H}$ NMR, 400 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

$\stackrel{m}{\square}$
ヘั๋ ํ

${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{19} \mathrm{~F}$ NMR, 376 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz

4bc
${ }^{13} \mathrm{C}$ NMR, 101 MHz

4bc'
${ }^{1} \mathrm{H}$ NMR, 400 MHz

反

${ }^{13} \mathrm{C}$ NMR, 101 MHz

4bd

${ }^{13} \mathrm{C}$ NMR, 101 MHz

8aa
${ }^{1} \mathrm{H}$ NMR, 400 MHz

8aa
${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz

$\stackrel{\square}{\stackrel{0}{\square}}$
$\stackrel{\infty}{\stackrel{\infty}{\infty}}$

8ab
${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

8ad

$\begin{aligned} & \stackrel{\text { o}}{\dot{\sigma}} \\ & \stackrel{\circ}{\sigma} \end{aligned}$	$\begin{aligned} & \text { 흥 } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	○ల 	?	$\stackrel{8}{6}$

8ad
${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

8ag
${ }^{1} \mathrm{H}$ NMR, 400 MHz

芯

${ }^{13} \mathrm{C}$ NMR, 101 MHz

$\bar{\square}$		
$\stackrel{\text { a }}{\text { a }}$		¢

8ah
${ }^{13} \mathrm{C}$ NMR, 101 MHz

8ai
${ }^{1} \mathrm{H}$ NMR, 400 MHz

©ion

8ai
${ }^{13} \mathrm{C}$ NMR, 101 MHz

8al
${ }^{1} \mathrm{H}$ NMR, 400 MHz

8al
${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{1} \mathrm{H}$ NMR, 400 MHz


```
~~
```


${ }^{13} \mathrm{C}$ NMR, 101 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz

10. References

(1) W. Du, P. Wu, Q. Wang and Z. Yu, Ruthenium (II) Complex Catalysts Bearing a Pyridyl-Based Benzimidazolyl-Benzotriazolyl Ligand for Transfer Hydrogenation of Ketones. Organometallics, 2013, 32, 3083.
(2) M. V. Rojo, L. Guetzoyan and I. R. Baxendale, A monolith immobilised iridium Cp^{*} catalyst for hydrogen transfer reactions under flow conditions. Org. Biomol. Chem., 2015, 13, 1768
(3) K. Chakrabarti, M. Maji and S. Kundu, Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chem., 2019, 21, 1999.
(4) M. J. Climent, A. Corma, J. C. Hernández, A. B. Hungría, S. Iborra and S. Martínez-Silvestre, Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2dinitrobenzene derivatives using supported gold nanoparticles as catalysts. J. Catal., 2012, 292, 118.
(5) S. Shee, D. Panja and S. Kundu, Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst. J. Org. Chem., 2020, 85, 2775.
(6) F. Xie, M. Zhang, H. Jiang, M. Chen, W. Lv, A. Zheng and X. Jian, Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy. Green Chem., 2015, 17, 279.
(7) X. N. Cao, X. M. Wan, F. L. Yang, K. Li, X. Q. Hao, T. Shao, X. Zhu and M. P. Song, NNN Pincer Ru (II)-Complex-Catalyzed α-Alkylation of Ketones with Alcohols. J. Org. Chem., 2018, 83, 3657.
(8) W. Chang, X. Gong, S. Wang, L. P. Xiao and G. Song, Acceptorless dehydrogenation and dehydrogenative coupling of alcohols catalysed by protic NHC ruthenium complexes. Org. Biomol. Chem., 2017, 15, 3466.
(9) A. Maji, A. Singh, N. Singh and K. Ghosh, Efficient Organoruthenium Catalysts for α-Alkylation of Ketones and Amide with Alcohols: Synthesis of Quinolines via Hydrogen Borrowing Strategy and their Mechanistic Studies. ChemCatChem, 2020, 12, 3108.
(10) C. Seck, M. D. Mbaye, S. Coufourier, A. Lator, J.-F. Lohier, A. Poater, T. R. Ward, S. Gaillard and J.-L. Renaud, Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application. ChemCatChem, 2017, 9, 4410.
(11) A. Verma, S. Hazra, P. Dolui and A. J. Elias, Ruthenium-Catalyzed Synthesis of α-Alkylated Ketones and Quinolines in an Aqueous Medium via a Hydrogen-Borrowing Strategy Using Ketones and Alcohols. Asian J. Org. Chem., 2021, 10, 626.

[^0]: 10
 200

[^1]:

[^2]:

