Supplementary information for

Atomic Fe–N₅ Catalytic Site Embedded in N-doped Carbon as Highly Efficient Oxygen Electrocatalyst for Zinc–Air Batteries

Huinian Zhang^{*}, Suping Jia, Xiaolin Shi, Ziyuan Li, Bin Liu, Ning Li, Ying Li, Shengliang Hu and Huiqi Wang^{*}

School of Energy and Power Engineering, North University of China, Taiyuan 030051, P. R. China.

E-mail: <u>zhanghuinian123@163.com</u> (Huinian Zhang);

hqiwang@163.com (Huiqi Wang)

ABSTRACT

Atomically dispersed transition metal– N_x –C-based catalysts with abundant Fe– N_x active sites have demonstrated good prospects for oxygen-reduction reaction (ORR) and are promising alternatives to Pt-based electrocatalysts. However, further improving their ORR activity by precise modulation of the Fe– N_x site structure remains challenging. Herein, we synthesize a single-iron-atom electrocatalyst embedded in Ndoped carbon with active and robust five-coordinated Fe– N_5 moieties by a simple synthetic approach. The FeN₅-C/G catalyst is obtained through prolonged calcination of melamine and hemin co-adsorbed on oxide graphene. The catalyst exhibits an enhanced ORR activity in alkaline mediums with an admirable half-wave potential of 0.84 V, outperforming FeN₄-C, which has four-coordinated Fe– N_4 moieties. Zn–air batteries with FeN₅-C/G air cathode further demonstrates excellent ORR performance and stability of the catalyst, outperforming the commercial Pt/C catalyst. The remarkable ORR performance demonstrates the significant roles of mono-dispersed ${\rm FeN}_5$ active sites embedded in N-doped carbon, in which N-doped graphene supplies enough N sites to axially coordinate with FeN₄.

Keywords

single-atom electrocatalyst, Fe–N $_5$ active site, oxygen reduction reaction, hemin, Zn– air battery

Additional Figures

Figure S1 SEM, EDS and correspondingly quantified elemental percentage of the FeN₅-C/G catalyst.

Figure S2 SEM images of different catalysts: (a) FeN₅-C/G catalyst, (b) FeN₄-C

catalyst, (c) Fe NP-C catalyst and (d) N-G catalyst.

Figure S3 TEM (inset: HR-TEM) images of different catalysts: (a) FeN₅-C/G catalyst,

(b) FeN₄-C catalyst, (c) Fe NP-C catalyst and (d) N-G catalyst.

Figure S4 XPS full spectra of FeN5-C/G catalyst compared to FeN4-C, N-G and Fe

NP-C.

Sample	C content (at%)	N content (at%)	Fe content (at%)	O content (at%)	
N-G	86.08%	11.47%	-	2.45%	
FeN ₅ -C/G	74.11%	15.86%	1.40%	8.63%	
FeN ₄ -C	71.78%	16.02%	1.24%	10.97%	
Fe NP-C	86.80%	5.37%	0.59%	7.24%	

Table S1 Atomic ratios (at. %) of O, Fe, N and C elements in FeN₅-C/G, FeN₄-C, N-G and Fe NP-C catalysts based on XPS analysis.

Figure S5 XPS spectra of FeN_5 -C/G catalyst compared with control samples. (a) XPS spectra of N1s peaks with the deconvolution, (b) XPS spectra of Fe2p peaks with the deconvolution.

Figure S6 EXAFS-fitting curves at R space of FeN₄-C with Fe–N₄ model.

Figure S7 (a) XRD spectra and (b) Raman spectra of FeN₅-C/G compared with FeN₄-

C, Fe NP-C and N-G samples.

Figure S8 N_2 adsorption-desorption isotherm (inset: pore size distribution) of FeN₅-C/G compared with FeN₄-C, N-G and Fe NP-C catalysts.

Table S2 The size and volume distribution of the pores for the FeN_5 -C/G catalystcompared with FeN_4 -C, N-G and Fe NP-C catalysts.

Sample	S _{BET} (m²/g)	V _{total} (cm ³ /g)	V _{meso} (cm ³ /g)	V _{micro} (cm³/g)	V _{micro} /V _{total}	D (nm)
FeN ₅ -C/G	21	0.063	0.0552	0.0078	12%	12.046
FeN ₄ -C	19	0.049	0.0418	0.0072	15%	10.398
N-G	36	0.114	0.1029	0.0111	9.7%	12.607
Fe NP-C	18	0.048	0.0419	0.0061	13%	10.873

Figure S9 LSV curves of various catalysts with various rotation rates (a) Pt/C, (b) FeN₄-C, (c) N-G and (d) Fe NP-C.

Figure S10 Onset potentials (E_{onset}) and half-wave potentials ($E_{1/2}$) of Pt/C, FeN₅-C/G,

FeN₄-C, N-G and Fe NP-C catalysts.

Figure S11 CV curves at different scan rates (2, 4, 6, 8, 10 mV/s) of (a) FeN₅-C/G and (b) FeN₄-C, (c) N-G, (d) Fe NP-C. (e) C_{dl} calculations of FeN₅-C/G and FeN₄-C.

Figure S12 ECSA normalized LSV curves of FeN₅-C/G and FeN₄-C.