Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2021 ## **Supporting Information** Coupling of ReS₂ nanosheet arrays with hollow NiCoS₄ nanocubes enables ultrafast Na⁺ diffusion kinetics and super Na⁺ storage of NiCoS₄@ReS₂ heterostructure Zhiyong Li^{a, b}, Rui Sun^{a, b}, Zhaoxia Qin^a, Xinlong Liu^b, Caihong Wang^a, Shengjun Lu^{a*}, Yufei Zhang^{c*} and Haosen Fan^{b*} ^a College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China ^b School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China ^c School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China E-mail: sjlu@gzu.edu.cn; yfzhang@gdut.edu.cn; hsfan@gzhu.edu.cn Fig. S1 N_2 adsorption/desorption isotherm with surface area evaluated from BET analysis. Inset depicts the pore size distribution of NiCoS₄@ReS₂. $Fig. \ S2\ (a,b)\ SEM\ images\ of\ NiCoS_4@ReS_2\ after\ cycling.\ (c)\ EIS\ spectra\ of\ NiCoS_4@ReS_2\ after\ different\ cycles.$