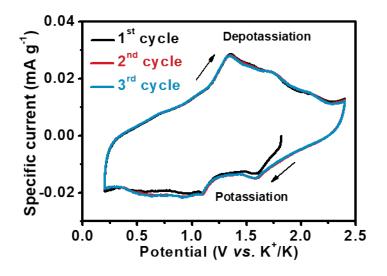
Supplementary Information

Porous Polyimide Frameworks Based on Perylene and Triazine for Reversible Potassium Ion Storage

Jialing Wu^{1,2}, Sijia Di², Wei Huang², Yunling Wu², Qiliang Huang², Xuan Zhao², Xiaohan Yu², Mochun Zhang², Hualin Ye^{*3}, Yanguang Li^{*1,2}

¹ Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China

² Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China


³ Department of Chemical and Biomolecular Engineering, National University of Singapore, 119260, Singapore

*Corresponding authors:

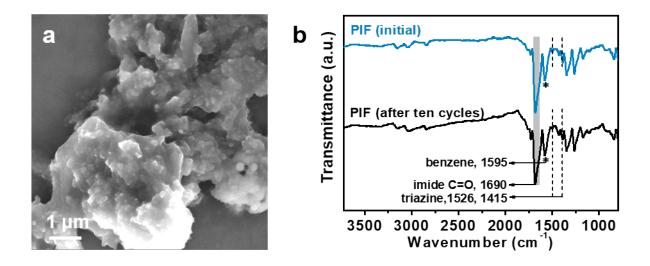

yanguang@suda.edu.cn (Y. G. Li); hualinye@u.nus.edu (H. L. Ye);

Figure S1. Photograph of 20 mg PIF suspended in 2 mL of blank electrolyte.

Figure S2. CV curves of PIF at 0.1 mV s⁻¹ for the first three cycles.

Figure S3. (a) SEM image of PIF recollected after cycles, its surface was covered by SEI films; (b) FT-IR spectrum of PIF before and after cycling.

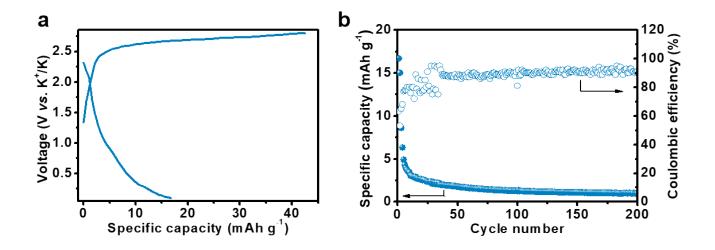



Figure S4. (a) Galvanostatic charge-discharge curves and (b) cycling stability of PTCDA at 0.2 A g⁻¹.

Figure S5. Electrochemical performances of PIF in different electrolytes. (a, c) Voltage profiles of the 2nd cycle at 0.2 A g⁻¹; (b, d) cycling stability at 0.2 A g⁻¹.

Materials	Specific capacity (mAh g ⁻¹)	Capacity retention (%) at specific current	Reference
PIF	190 at 0.2 A g ⁻¹	75% after 200 cycles at 0.2 A g ⁻¹	This work
	120 at 1 A g ⁻¹		
	95 at 5 A g ⁻¹		
K ₂ TP	110 at 0.22 A g ⁻¹	96% after 100 cycles at 0.044 A g ⁻¹ Nano Energy 2016, 33 , 355	Nano Energy 2016, 33 , 350-
	79 at 0.44 A g ⁻¹		355
K ₂ PC	94 at 0.22 A g ⁻¹	88% after 100 cycles at 0.044 A $g^{\mbox{-}1}$	
	55 at 0.44 A g ⁻¹		
ADAPTS	105 at 0.155 A g ⁻¹	67% after 1000 cycles at 0.155 A $g^{\text{-1}}$	<i>Adv. Energy Mater.</i> 2019, 9 , 1802986
	90 at 0.31 A g ⁻¹	57% after 1000 cycles at 0.31 A $g^{\mbox{-}1}$	
K₄PTC	132 at 0.05 A g ⁻¹	73% after 500 cycles at 0.05 A $g^{\mbox{-}1}$	<i>Chem. Commun.</i> 2019, 55 , 1801-1804
	73 at 0.5 A g ⁻¹	57% after 2500 cycles at 0.5 A $g^{\text{-1}}$	
PyBT	220 at 0.2 A g ⁻¹	82% after 500 cycles at 0.05 A g ⁻¹ $ACS N$	ACS Nano 2019, 13 , 745-754
	104 at 0.5 A g ⁻¹		
VK (Vitamin K)	200 at 0.01 A g ⁻¹	37.5% after 100 cycles at 0.1 A $\rm g^{\text{-}1}$	J. Mater. Chem. A 2018, 6 , 12559-12564
HC-B (hard carbon)	148 at 1 A g ⁻¹	49% after 1000 cycles at 1 A g^{-1}	Small 2021, 17, 2100397
Graphite	273 at 0.007 A g ⁻¹	50% after 50 cycles at 0.14 A $g^{\mbox{-}1}$	J. Am. Chem. Soc. 2015, 137
Soft carbon	210 at 0.28 A g ⁻¹	81.4% after 50 cycles at 0.558 A $\rm g^{\text{-}1}$	11566-11569 58 A g ⁻¹
	185 at 0.14 A g ⁻¹		

Table S1. Comparison of the electrochemical performance of our PIF with earlier literature results for KIBs.