Facial synthesis of two-dimensional $In_2S_3/Ti_3C_2T_x$ heterostructures with boosted photoactivity for the hydrogenation of nitroaromatic compounds

Yisong Zhu^a, Guanshun Xie^a, Guohao Li^a, Fei Song^a, Changqiang Yu^a, Zhenjun

Wu^{b,*}, Xiuqiang Xie^{a,*}, Nan Zhang ^{a,*}

^a College of Materials Science and Engineering, Hunan Joint International Laboratory

of Advanced Materials and Technology for Clean Energy, Hunan University, P. R.

China.

^b College of Chemistry and Chemical Engineering, Hunan University, P. R. China.

*Corresponding authors.

E-mail: xiuqiang_xie@hnu.edu.cn; nanzhang@hnu.edu.cn; wooawt@163.com.

Contents list

Fig. S1. SEM images of bare In_2S_3 .

Fig. S2. Contact angle of $Ti_3C_2T_x$ nanosheets.

Fig. S3. SEM images of $In_2S_3/Ti_3C_2T_x$ -1% at 95 °C for different refluxing time: (a) 0.5

h; (b) 4 h; (c) 5 h and different content $Ti_3C_2T_x$: (d) 5%, (e) 20%, (f) 30%.

Fig. S4. Raman spectra of bare In_2S_3 and $In_2S_3/Ti_3C_2T_x-1\%$.

Fig. S5. UV-vis DRS of as-obtained samples (the inset: photographs of each sample).

Fig. S6. XPS spectra of $Ti_3C_2T_x$ and $In_2S_3/Ti_3C_2T_x$ -1%.

Fig. S7. Transient photocurrent spectra of as as-obtained samples.

Fig. S8. The XPS spectra of $In_2S_3/Ti_3C_2T_x$ -1% before and after photocatalysis.

Fig. S9. Nitrogen (N₂) adsorption-desorption isotherms of bare In_2S_3 and $In_2S_3/Ti_3C_2T_x-1\%$.

Fig. S10. Decay curves of photovoltage of In_2S_3 and $In_2S_3/Ti_3C_2T_x-1\%$.

Fig. S11. The estimated band gap energy (a) of In_2S_3 based on the Kubelka-Munk function plot transformed from the absorbance; VB-XPS spectra (b) and Mott-Schottky curves (c) of In_2S_3 .

Fig.S1. SEM images of bare In₂S₃.

Fig.S2. Contact angle of $Ti_3C_2T_x$ nanosheets.

Fig.S3. SEM images of $In_2S_3/Ti_3C_2T_x$ -1% at 95 °C for different refluxing time: (a) 0.5 h; (b) 4 h; (c) 5 h and different content $Ti_3C_2T_x$: (d) 5%, (e) 20%, (f) 30%.

Fig. S4. Raman spectra of bare In_2S_3 and $In_2S_3/Ti_3C_2T_x-1\%$.

Fig. S5. UV-vis DRS of as-obtained samples (the inset: photographs of each sample).

Fig. S6. XPS spectra of $Ti_3C_2T_x$ and $In_2S_3/Ti_3C_2T_x$ -1%.

Fig.S7. Transient photocurrent spectra of as as-obtained samples.

Fig. S8. The XPS spectra of $In_2S_3/Ti_3C_2T_x$ -1% before and after photocatalysis.

Fig. S9. Nitrogen (N₂) adsorption-desorption isotherms of bare In_2S_3 and $In_2S_3/Ti_3C_2T_x$ -1%.

Fig. S10. Decay curves of photovoltage of In_2S_3 and $In_2S_3/Ti_3C_2T_x-1\%$.

Fig. S11. The estimated band gap energy (a) of In_2S_3 based on the Kubelka-Munk function plot transformed from the absorbance; VB-XPS spectra (b) and Mott-Schottky curves (c) of In_2S_3 .