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1. Computational method

All geometries were fully optimized using B3LYP 1 density functional in 

conjunction with 6-31G(d, p) basis sets 2, which was applied in previous research on 

the ORR reactions on N/S dual doped graphene 3. During optimization, SMD 4 solvation 

model was utilized to model the water environment. The harmonic frequency analysis 

was performed for each structure to identify whether the stationary point was a local 

minimum and to obtain the Gibbs free energy. NPA charge densities were calculated 

by natural population analysis. All the calculations were carried out using Gaussian 09 

package 5.

In alkaline medium, the four-electron ORR mechanisms are defined as follows,

                           (S1)- -
2 2 2 2O + 2H O + 4e *O + 2H O + 3e

                  (S2)- - -
2 2 2*O + 2H O + 4e *OOH + OH + H O + 3e

            (S3)- - - -
2 2*OOH + OH + H O + 3e *O + 2OH + H O + 2e

                     (S4)- - - -
2*O + 2OH + H O + 2e *OH + 3OH + e

                                        (S5)- - -*OH + 3OH + e 4OH

                               (S6)- -
2 2Overall : O + 2H O + 4e 4OH

The first step of O2 adsorption involves none electron transfer and thus the Eq. (1) and 

(2) are considered as a combined step.

Nørskov et al. presented that the free energy diagrams of ORR can be estimated by 

the following equation 6,

                (S7)U pH fieldΔG = ΔE + ΔZPE - TΔS + ΔG + ΔG + ΔG

where ∆E, ∆ZPE and ∆S were the total energy, zero-point energy and entropy 

difference of the products and reactants, respectively; T was the temperature which was 

considered as 298.15 K here; (∆E + ∆ZPE − T∆S) was the free Gibbs energy difference 

which can be obtained by DFT calculations directly; ∆GU was defined as eU where U 

and e were the electrode potential with respect to standard hydrogen electrode and the 

charge transferred, respectively; ∆GpH = 2.303 kBT × pH, where kB was the Boltzmann 



constant and the pH was 13 in the present work; ∆Gfield was the free energy correction 

resulting from the electrochemical double layer and was neglected in the present study 

according to previous studies 6-9. The free energy of O2 was not calculated by DFT 

simulation but was obtained from the known free energy change of the reaction O2 + 

2H2 = 2H2O under the standard condition, which was −4.92 eV. The free energy of OH− 

was derived from the reaction H+ + OH− = H2O. 

According to Eq. (7), the free Gibbs energy differences for the four-electron 

reaction steps can be presented as follows,

                                 (S8)1 *OOH 1ΔG = ΔG + eU - 4.15

                         (S9)2 *O *OOH 2ΔG = ΔG - ΔG + eU + 0.77

                         (S10)3 *OH *O 3ΔG = ΔG - ΔG + eU + 0.77

                                (S11)4 *OH 3ΔG = -ΔG + eU + 0.77

where the ∆G*OOH, ∆G*O, and ∆G*OH were calculated according to the following 

reactions:

                            (S12)2 2* + 2H O *OOH + 3 2 H

                                    (S13)2 2* + H O *O + H

                               (S14)2 2* + H O *OH + 1 2 H



2. Supplementary Figures and Tables

Figure S1 TEM image of FHCNSs.

Figure S2 TEM images of (a) N-PHCNSs-700, (b) N-PHCNSs-800, (c) N-PHCNSs-
900 and (d) N-PHCNSs-1000.



Figure S3 XRD patterns of N-PHCNSs-700, N-PHCNSs-800, N-PHCNSs-900 and N-
PHCNSs-1000.

Figure S4 Raman spectra of N-PHCNSs-700, N-PHCNSs-800, N-PHCNSs-900 and N-
PHCNSs-1000.



Figure S5 (a) N2 adsorption/desorption isotherms and (b) the corresponding pore size 
distribution profiles of N-PHCNSs-700, N-PHCNSs-800, N-PHCNSs-900 and N-
PHCNSs-1000.

Figure S6 BET surface area survey of N-PHCNSs-700, N-PHCNSs-800, N-PHCNSs-
900 and N-PHCNSs-1000, respectively.

Figure S7 (a) N2 adsorption/desorption isotherms and (b) the corresponding pore size 
distribution profiles of N,S-PHCNSs-25, N,S-PHCNSs-50, N,S-PHCNSs-75 and N,S-
PHCNSs-100, respectively.



Figure S8 Full XPS spectra of N-PHCNSs-700, N-PHCNSs-800, N-PHCNSs-900 and 
N-PHCNSs-1000, respectively.

Table S1 Surface composition of N-PHCNSs catalysts under study.

Sample C (at.%) N (at.%) O (at.%)

N-PHCNSs-700 86.64 6.30 7.06

N-PHCNSs-800 90.01 4.88 5.11

N-PHCNSs-900 91.77 2.90 5.33

N-PHCNSs-1000 92.16 1.65 6.19

Figure S9 (a) High-resolution N 1s spectra and (b) the corresponding relative contents 
of various N species for N-PHCNSs-700, N-PHCNSs-800, N-PHCNSs-900 and N-
PHCNSs-1000.



Figure S10 Full XPS spectra of N,S-PHCNSs-25, N,S-PHCNSs-50, N,S-PHCNSs-75 
and N,S-PHCNSs-100, respectively.

Table S2 Surface composition of the N,S-PHCNSs catalysts under study.

Sample C (at.%) N (at.%) S (at.%) O (at.%)

N,S-PHCNSs-25 88.87 3.94 2.66 4.53

N,S-PHCNSs-50 88.23 2.96 4.25 4.56

N,S-PHCNSs-75 88.99 2.71 4.46 3.84

N,S-PHCNSs-100 89.47 1.29 5.58 3.66

Table S3 Element analysis of N,S-PHCNSs.

Sample C (wt.%) N (wt.%) S (wt.%) H (wt.%)

N,S-PHCNSs-25 82.33 4.02 5.82 1.33

N,S-PHCNSs-50 80.54 3.04 8.89 1.51

N,S-PHCNSs-75 81.02 2.88 9.29 1.19

N,S-PHCNSs-100 80.63 1.26 11.74 1.07



Figure S11 Tafel plots of N-PHCNSs-700, N-PHCNSs-800, N-PHCNSs-900 and N-
PHCNSs-1000, respectively.

Table S4 The total contents (ppm) of metal elements in different samples detected by 

ICP-MS.

Sample Fe Co Ni Mn Pt

Pristine C60 powder 0.3856 0.1784 0.2186 0.1881 /

FHCNSs 0.3903 0.1829 0.2578 0.2058 /

N,S-PHCNSs-75 0.4775 0.2523 0.3470 0.2826 /

N,S-PHCNSs-75-0 0.4240 0.2076 0.2757 0.2228 0.4454

Table S5 ORR activities of N-PHCNSs-800 and N,S-PHCNSs.

Catalysts E0 (V) E0 (V) E0 (V)

N-PHCNSs-800 0.917 0.779 5.58

N,S-PHCNSs-25 0.929 0.776 5.05

N,S-PHCNSs-50 0.932 0.811 5.42

N,S-PHCNSs-75 0.954 0.827 5.64

N,S-PHCNSs-100 0.934 0.803 5.09



Figure S12 CV curves of N,S-PHCNSs-75 in O2- and N2-saturated 0.1 M KOH 
electrolyte. Scan rate: 50 mV s-1.

Figure S13 LSV curves with a scan rate of 10 mV s-1 at different rotation rates from 
400 rpm to 1600 rpm and the corresponding K-L plots (insets) of (a) N-PHCNSs-800, 
(b) N,S-PHCNSs-25, (c) N,S-PHCNSs-50 and (d) N,S-PHCNSs-100, respectively.



Figure S14 (a) RRDE tests of N,S-PHCNSs-75 and Pt/C catalysts. (b) The calculated 
H2O2 yield and calculated electron transfer number.



Figure S15 (a1-a4) Charge density and (b1-b4) the possible active sites of (1) PD, (2) 
gN-PD, (3) prN-PD and (4) pN-PD.



Figure S16 (a1) Charge density and (a2) the possible active sites of pNS-PD; (b1) spin 
density, (b2) charge density and (c3) the possible active sites of gNS-PD.



Table S6 Electrocatalytic ORR properties of different catalysts in 0.1 M KOH 

solution.*

Catalyst
Loading mass 

(mg cm-2)
E0 (V) E1/2 (V) JL (mA cm-2) Ref.

N,S-PHCNSs-75 0.25 0.954 0.827 -5.64
This 

work

N,S-PHCNSs-50 0.25 0.932 0.811 -5.42
This 

work

NSCNT-6 0.245 0.92 0.78 - 10

NS-CD@gf_a900 ~0.28 0.93 0.75 -7.71 11

hSNCNC 0.12 0.898 0.793 - 12

PAC-5S 0.5 - 0.792 -6.19 13

CF-K-A 0.4 0.948 0.835 - 14

MNCNT-2 0.245 - 0.77 -3.90 15

LHNHPC 0.4 - 0.86 -4.4 16

NGM ~0.25 0.89 0.77 -6.41 17

NSPC-0.2-900 0.212 0.93 0.83 -5.8 18

N-hG6 0.25 0.91 0.833 -5.28 19

HHPC ~0.256 0.90 0.78 -5.34 20

NPCN-900 0.2 0.92 0.78 -5.50 21

NSG 0.25 0.835 0.785 -5.41 22

XWB-CMP-1000 0.306 0.866 0.786 -5.2 23
* For comparison, all the potential values above are vs. RHE. In 0.1 M KOH electrolyte 
(pH=13), E (vs. RHE) = E (vs. Ag/AgCl) + 0.197 V + 0.059 pH.
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