Electronic Supplementary Information

AIE-based Donor-Acceptor-Donor Fluorenone Compound as multi-functional luminescence materials

Xianchao Du^{a,b,d‡}, Huifang Su^{c‡}, Li Zhao^{b‡}, Xiaojing Xing^a, Bingnan Wang^d, Dongfang Qiu^{*a}, Jinyi

Wang*b and Mao-Sen Yuan*b

^a College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang,

Henan 473061, P. R. China

^b College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shanxi 712100, P. R. China

^c Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China.

^d State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China.

Synthesis of MBPF

Scheme S1. Synthetic routes to MBPF.

8.04 7.75 7.77 7.77 7.77 7.77 7.71 7.76 7.76 7.76 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.75 7.75 7.75 7.75 7.77 7.76 7.75 7.76 7.75 7.76 7.75

Fig. S1 ¹H NMR spectrum (500 MHz, CDCl₃) of compound MBPF.

Fig. S2 ¹³C NMR spectrum (126 MHz, CDCl₃) of compound MBPF.

Fig. S3 HRMS spectrum of MBPF.

Fig. S4 Normalized PL spectra (A) and absorbance spectra (B) of **MBPF** in different solvents. Tol, toluene; Dio, dioxane; THF, tetrahydrofuran; DCM, dichloromethane; DMSO, dimethylsulfoxide.

Solvent ^a	$\lambda_{ m abs}{}^{ m b}$	$\lambda_{ m em}{}^{ m c}$	Φ(%) ^d	τ^{e}	
Tol	297	530	0.25	6.19	
Dio	297	527	0.15	9.26	
THF	298	529	0.16	9.86	
DCM	299	559	0.07	2.91	
DMSO	303	563	0.07	3.01	

Table S1. Photophysical properties of MBPF in various solvents

^a Abbreviations: Tol, Toluene; Dio, Dioxane; THF, Tetrahydrofuran; DCM, Dichloromethane; DMSO, Dimethyl sulfoxide; ^b λ_{abs} , absorption maximum, ^c λ_{ex} , emission maximum, ^d Fluorescence quantum yield, ^e Fluorescence lifetime.

		Solution in T	THF ^a			Crysta	lline pov	wder
	$\lambda_{abs}(nm)$	$\lambda_{\rm em}({\rm nm})$	$arPsi^c$	$\tau^d(ns)$		$\lambda_{em}(nm)$	Φ	τ(ns)
Y-MBPF ^b					•	532	0.43	11.41
O-MBPF	298, 340	530	0.16	9.86		558	0.35	9.05
R-MBPF						590	0.36	9.55

Table S2. Spectroscopic data for compound MBPF

^{*a*} With $c = 1.0 \times 10^{-5}$ mol L⁻¹. ^{*b*} The amorphous, red crystal and orange crystal of compound **MBPF** are named **Y-MBPF**, **O-MBPF** and **R-MBPF**, respectively. ^{*c*} Fluorescence quantum yield. ^{*d*} Fluorescence lifetime.

Fig. S5 The absorbance spectra of MBPF in pure THF and 80% water/THF.

Fig. S6 The SEM of MBPF in water/THF (90 vol% water).

Fig. S7 The fluorescence decay profiles of MBPF in THF, Orange crystal O-MBPF, Red crystal R-MBPF and amorphous Y-MBPF.

crystals	O-MBPF	R-MBPF	
formula	$C_{39} H_{28} O_3$	$C_{39} H_{28} O_3$	
fw[g·mol ⁻¹]	544.61	544.61	
crystal color	Orange	Red	
crystal system	Monoclinic	Triclinic	
space group	$P2_{I}/c$	P-1	
<i>a</i> [Å]	10.028(11)	10.0977(9)	
b[Å]	17.169(19)	13.5881(12)	
<i>c</i> [Å]	32.96(4)	22.1586(19)	
β[°]	94.169(19)	78.4920(10)	
<i>V</i> [Å ³]	5660(11)	2853.9(4)	
Ζ	8	4	
$ ho_{ m calcd} \left[{ m g/cm^3} ight]$	1.278	1.268	
μ [mm ⁻¹]	0.080	0.079	
T[K]	298(2)	298(2)	
$ heta_{\min} ext{-} heta_{\max}$ [°]	2.20-25.02 2.29 - 25.02		
$R/wR[I > 2\sigma_{(1)}]$	0.1058/0.1393 0.0507/0.0607		

Table S3. Selected crystallographic data for O-MBPF and R-MBPF.

Fig. S8 The single crystal structure of O-MBPF.

Fig. S9 The single crystal structure of R-MBPF.

Fig. S10 Calculated HOMO and LUMO electron cloud for orange crystal **O-MBPF** and red crystal **O-MBPF** with their relative energy according to TD-DFT calculation.

Fig. S11 Powder XRD profiles of the Orange crystal O-MBPF, Red crystal R-MBPF and amorphous Y-MBPF.

Fig. S12 DSC profiles of the orange crystal O-MBPF, red crystal R-MBPF and amorphous Y-MBPF.

Fig. S13 The PL intensity of MBPF after release.

Fig, S14 Changes of PL intensity and wavelength of **R-MBPF** with increasing pressure (A) and decreasing pressure (B).

Fig. S15 Photostability of MBPF in 90% water/THF vs. storage time.

Scheme S2. Fabrication of MBPF-C225 NPs.

Fig. S16 Particle size distribution of MBPF-C225 NPs studied by dynamic light scattering.

Fig. S17 Cell viability of HCC 827 cells treated with different concentrations of MBPF-C225 NPs.

Fig. S18 The CLSM images of HCC827 cells after incubation with **MBPF-C225** NPs at 37 °C for 6 h. (A) Bright-field images; (B) fluorescence images; (C) the merged image of (A) and (B). Scale bar = $20 \ \mu m$.

Fig. S19 Retained signal (%) of fluorescence of HCC827 cells stained with Lysotracker red with increasing number of scans. Inset: Fluorescence images of HCC827 cells with increasing number of scans (1 and 40 scans; the number of scans shown in upper left corner).