Supporting Information

Highly Sensitive Detection of Paraquat with Pillar[5]arene as an aptamer in α -Hemolysin Nanopore

Xiaojia Jiang,^a Mingsong Zang,^a Fei Li,^a Chunxi Hou,^a Quan Luo,^a Jiayun, Xu^b and Junqiu Liu^{*a,b}

Scheme S1: The synthetic route of Carboxylatopillar[5]arene (CP[5]A)

Fig S1. ¹H-NMR spectrum of CP[5]A. (500 MHz $\,^{,}$ D₂O, δ 6.71 (s 10H), 4.22 (m, 20H) $\,^{,}$ 3.86 (s, 10H).

Fig S2. a) Agarose gel electrophoresis of PCR product of $(E111R/K147R)_7 \alpha HL$ (left lane: DNA marker; right lane: the plasmid of $(E111R/K147R)_7 \alpha HL$; b) the SDS-PAGE analysis of $(E111R/K147R)_7 \alpha HL$ protein monomer, the lanes indicated protein marker, induced without IPTG, induced with IPTG, precipitation, supernatant, eluted solution in 20 mM imidazole and purified $(E111R/K147R)_7 \alpha HL$ protein monomer, respectively.

Fig S3. MALDI-TOF-MS spectra of wild-type α HL (a) and mutant (E111R/K147R)7 α HL protein (b).

Fig S4. a) The characteristic current of state2 of CP[5]A . b) Event histogram of the current reduction of state2 in 30min single-channel current recordings. Gaussian fitting is performed for binding events of state2.

Concentration (µM)	1/t _{on} (s ⁻¹)	k _{on} (M ⁻¹ s ⁻¹)	$k_{\rm off}$ (s ⁻¹)	Kd (M)
2.5	4.89 ± 0.01	(1.96 ± 3.11) x10 ⁶	8.87 ± 0.03	4.53 × 10 ⁻⁵
5	5.41 ± 0.02	(1.08 ± 2.02) x10 ⁶	8.19 ± 0.04	7.58 × 10 ⁻⁵
10	11.57 ± 0.01	(1.57 ± 2.03) x10 ⁶	8.53 ± 0.01	5.43 × 10 ⁻⁵

Table S1. The constant for CP[5]A with the mutant $(E111R/K147R)_7 \alpha HL$ nanopore.

Fig S5. The characteristic current of CP[5]A lodged into wild-type α HL nanopore. a) The open current of wild- type α HL nanopore without CP[5]A. b, c) The current reduction amplitude of CP[5]A under different concentrations (1 μ M and 5 μ M) respectively. Conditions: wild-type α HL nanopore and CP[5]A were added in cis side, +100 mV.

Fig S6. a, b and c) Represented the τ_{on} and the τ_{off} of 5 μ M CP[5]A binding events lodged into wild-type α HL nanopore. d) Represented the τ_{on} of 1 μ M CP[5]A binding events lodged into wild-type α HL nanopore. The statistical data were from a continuous 30min recording. τ_{on} , τ_{off} are from three independent experiments (n = 3) with 20 min recording for each condition. Conditions: wild-type α HL nanopore and CP[5]A were added in cis side, +100 mV.

Fig S7. The ITC analysis of CP[5]A and PQ. a) The titration curve of CP[5]A and PQ. b) The representation of CP[5]A and PQ. c) The thermodynamic parameters between CP[5]A and PQ.

Fig S8. a) The characteristic current of PQ when 2 nM PQ was added in trans and 5 μ M CP[5]A added in cis. Conditions: 1.5 M KCl, +100 mV.