Chemical affinity assisted H₂ isotope separation using Ca-rich onion-peel-derived nanoporous carbon composite

Raeesh Muhammad,a,† Suhwan Kim,a,† Jaewoo Park,a Minji Jung,a Myoung Eun Lee,b Jaewoo Chung,* b Haenam Jang* a,c and Hyunchul Oh,* a,c

aDepartment of Energy Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea

bDepartment of Environmental Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea

cFuture Convergence Technology Research Institute, Jinju 52725, Republic of Korea

Email* oh@gnu.ac.kr (Prof. Hyunchul Oh)

Email* jhn@gnu.ac.kr (Prof. Haenam Jang)

Email* jwchung@gnu.ac.kr (Prof. Jaewoo Chung)
Fig. S1. Pore size distribution of OPC-AC.

Fig. S2. Elemental analysis of (a) OPC and (b) OPC-AC, and SEM images (c) OPC and (d) OPC-AC.
Table S1 EDS Data of OPC and OPC-AC

<table>
<thead>
<tr>
<th>Sample</th>
<th>C [wt%]</th>
<th>O [wt%]</th>
<th>Ca [wt%]</th>
<th>Mg [wt%]</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>73.95</td>
<td>19.66</td>
<td>6.39</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>OPC-AC</td>
<td>52.16</td>
<td>30.25</td>
<td>17.24</td>
<td>0.34</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. S3. FT-IR of OPC-AC.

Fig. S4. Pure gas (a) H₂ and (b) D₂ thermal desorption spectra measured with heating rate of 3 K min⁻¹
Fig. S5. D$_2$/H$_2$ thermal desorption spectrum measured at 25 K with a heating rate of 3 K min$^{-1}$.

Fig. S6. Comparison of H$_2$ and D$_2$ desorbed amount when using pure gas and 1:1 mixture, respectively at various exposure temperatures: 25 K (black), 40 K (red), 60 K (blue), and pure H$_2$ and D$_2$ TDS (olive) for a comparison of gas uptake.

Note that one mixture measurement of TDS at a given T$_{exp}$ provides each hydrogen and deuterium signal individually. The hydrogen (Figure S6a) and deuterium (Figure S6b) signals are presented separately to show temperature dependence. All olive dot-curves in Figure S6 imply the pure gas TDS (loading at room temperature and then cooling below 20 K; Figure S4), in which all adsorption sites are assumed to be accessible for both isotopes.
Fig. S7. S_{D_2/H_2} at 20 mbar and various exposure temperatures.

Fig. S8. D_2/H_2 thermal desorption spectrum measured at 60 K with a heating rate of 3 K min$^{-1}$.
Fig. S9. D₂/H₂ thermal desorption spectrum measured at different heating rates.