Supporting Information for

Poly(3,4-ethylenedioxythiophene) Bearing Fluoro-containing Phenylboronic Acid For Specific Recognition of Glucose

Wenji Bao¹ Wenfeng Hai^{1*}, Layue Bao¹, Fan Yang¹, Yushuang Liu^{1*} Tatsuro Goda^{1,2} Jinghai Liu^{1*}

- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, 350-8585 Saitama, Japan

Fig. S1 ¹H-NMR spectra of EDOT-FPBA (500 MHz in D₂O)

¹H NMR (500 MHz, D₂O) δ 7.35 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 12.7 Hz, 1H), 7.11 (d, *J* = 12.7 Hz, 1H), 6.24 (s, 2H), 6.24 (s, 2H), 4.25 - 4.16 (m, 1H), 4.08 (dd, *J* = 11.9, 2.1 Hz, 1H), 3.85 (dd, *J* = 12.0, 6.7 Hz, 1H), 3.49 (d, *J* = 5.7 Hz, 2H), 3.16 (s, 2H).

Fig. S2 High-resolution ESI-MS for EDOT-FPBA. Calculated m/z for $C_{14}H_{14}BFNO_5S^+$ (M+H⁺) at 338.07, peak found at 338.26.

Figure S3 (a) The oxidation current of EDOT-FPBA and capacitance of poly(EDOT-FPBA)/GCE when the constant voltage of 1.5 V is applied to GCE working electrode for 10 seconds in the dichloromethane solution containing 10 mM EDOT-FPBA and 100 mM ammonium perchlorate. (b) EIS Nyquist curve of GCE, PEDOT/GCE, poly(EDOT-FPBA)/GCE in PBS containing a redox couple of 5 mM $K_3Fe(CN)_6/K_4Fe(CN)_6$) redox pairs.

Fig.S4 (a) The XPS broad spectrum and the corresponding high-resolution XPS spectra of Poly (EDOT-FPBA) and PEDOT films prepared from CH₂Cl₂. The Poly (EDOT-FPBA) film shows that in addition to O1, C1s, and S2p peaks, it also shows (b) F1, (c) B1, (d) N1 (red) peaks.

Table S1. The atomic percentage of poly(EDOT-FPBA) and PEDOT films.

	F	В	С	Ν	О	S
Poly(EDOT-	2.95%	6.00%	46.68%	5.52%	35.39%	3.46%
FPBA)						
PEDOT	0%	0%	68.19%	0.88%	23.77%	7.16%

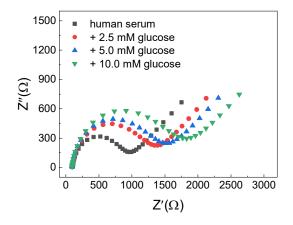


Figure S5. EIS Nyquist curves showing continuous monitoring of glucose concentration in the human serum sample using poly(EDOT-FPBA)/GCE.

Ref	Glucose	Substrate/	Method of	Chemical	Real Sample Test	Linear Range	LOD	sensitivity	Selectivity
	Biding moiety	Electrode	detection	Environment		(mM)	(mM)	-	
1	BA	f-PEI-Au	PT	BB	HBS	0.5-50	0.025	N/A	AA,DA,UA
		NP/GCE		(0.1M, pH9)	(diluted)				
2	BA	PABA NT	PT	PBS	-	2-14	0.50	1.5mV	N/A
		Array/Au		(0.1M, Ph7.4)				mM^{-1}	
3	BA	MIP/GCE	PT	PB	Frult	0.75-18	0.23	0.686mV	Fru,Gal,Suc,Xyl
				(0.1M, pH7.4)	Juiice(unspecified)			mM^{-1}	
4	BA	f-Au	CV	PBS	-	0.00001-0.01	0.000004	N/A	AA,DA,UA,NaC
		NP/PazA/GCE		(0.1M, pH7.4)					1
5	BA	f-Au	PT	BRB	-	0.31-33	0.20	+47mV	DA,UA
		NP/PANI/Pt		(0.008M, Ph12)				Decade ⁻¹	
6	BA	f-PTh/GCE	DPV	PB	HS	0.0009-	0.00045	N/A	N/A
				(0.1M, pH7.4)	(diluted)	0.0091			
7	BA	f-polymer	CA	PB	HBS	1-15	N/A	N/A	AA,AP,UA,Fru,
		NF/ITO		(Unspecifled.pH7.5)	(unspecified)				Gal,Mal,Man
This Work	BA	PFBA/GCE	EIS	1×DPBS(pH 7.0)	Human Serum	0.05-25	0.05	66.4 $\Omega \cdot cm^2 \cdot$	Gal, Man, DA,
					(diluted)			Decade ⁻¹	UA, Na ⁺ , and K^+

Table S2. Comparison of glucose selective binding-based electrochemical non enzymatic glucose sensors

 $^{a}BA = boronic acid.$

^b f- = functionalized (with Glucose Binding Moieties a), PEI = polyethyleneimine, NP = nanoparticle, GCE = glassy carbon electrode, PABA = poly(4-amino - phenylboronic acid), NT = nanotube, PTh = polythiophene, PANI = poly(aniline), MIP =molecularly-imprinted polymer film, ITO = indium tin oxide, PFBA= poly(EDOT-FPBA), $^{\circ}$ PT = potentiometry, DPV = differential pulse voltammetry, CV = cyclic voltammetry, EIS = electrochemical impedance spectroscopy, CA = chronoamperometry. ^d BB = borate buffer, BRB = Britton-Robinson buffer, PBS = phosphate buffered saline, PB = phosphate buffer. ^d HBS = human blood serum, HS = human saliva. ^e AA = ascorbic acid, AP = 4-acetamidophenol, DA = dopamine, UA = uric acid, Fru = fructose, Gal = galactose, Xyl = xylose, Mal = maltose, Man = mannose, CA = citric acid

[1]H. Ciftci, E. Alver, F. Celik, A.U. Metin, U. Tamer, Non-enzymatic sensing of glucose using a glassy carbon lectrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid, Microchim Acta, 183 (2016) 1479-1486.

[2] J. Li, L.L. Liu, P.G. Wang, J.B. Zheng, Potentiometric Detection of Saccharides Based on Highly Ordered Poly(aniline boronic acid) Nanotubes, Electrochim Acta, 121 (2014) 369-375.

[3] Y. Wu, Q. Wang, M. Chen, C. Dong, X. Zhang, S. Wang, An Enzyme Free Potentiometric Detection of Reducing Sugars Based on a Poly(3-hydroxyphenylboronic acid-co-phenol) Molecularly Imprinted Polymer Modified Electrode, Am J Biomed Sci, 8 (2016) 82-96.

[4] W. Wang, L.Y. Kong, J.M. Zhu, L. Tan, One-pot preparation of conductive composite containing boronic acidderivative for non-enzymatic glucose detection, Colloid Interf Sci, 498 (2017) 1-8.

[5] T.V. Shishkanova, P. Fitl, V. Kral, J. Barek, Nanoparticles functionalized with phenylboronic acid for the potentiometric detection of saccharides, J Electroanal Chem, 761 (2016) 106-111.

[6] D. Das, D.M. Kim, D.S. Park, Y.B. Shim, A Glucose Sensor Based on an Aminophenyl Boronic Acid BondedConducting Polymer, Electroanal, 23 (2011) 2036-2041.

[7] K.M. Manesh, P. Santhosh, A. Gopalan, K.P. Lee, Electrospun poly(vinylidenefluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor, AnalBiochem, 360 (2007) 189-195.