Supporting Information

Graphene *ⓐ* framework polymer derived from addition polymerization of phthalocyanine/dicarboxaldehyde as a negative material for lithium-ion batteries

Lihong Tao^[a], Jianjun Zhao^[a], Jun Chen*^[a], He Zhang^[a], Luyi Wang^[a], Shengwen Zhong*^[a], Hua Wang^[b], Jianbing Chen^[b], Lijue Wu^[b]

[a] School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000. China, E-mail: chenjun@jxust.edu.cn, zhongshw@126.com.

^[b] Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China.

Fig. S1. Mechanism for Li⁺ intercalation for a BDC-NiPc monomer.

Fig. S2. SEM images of (a,b) **BDC-NiPc@GN** with ethanol as the dispersant; EDS images (c,d) of N/Ni in **BDC-NiPc@GN**

Fig. S3. (a) The initial charge/discharge performance and cycle performance of a **BDC-NiPc/NCM-811** full battery; (c) CV curves for the **BDC-NiPc/NCM-811** full battery; (d) photograph of an LED light powered by a **BDC-NiPc/NCM-811** full battery