Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2021

Structural Fine-tuning of Zwitterionic Salts for the discovery of LCST-Type

Thermoresponsive Materials

Yen-Ho Chu* and Chien-Yuan Chen

Department of Chemistry and Biochemistry, National Chung Cheng University

Chiayi 62102, Taiwan, Republic of China

Synthesis of ZIL 1a-1e and ZIL 2a-2e

Synthesis of

potassium N-(3-chloropropylsulfonyl) trifluoromethylsulfonamide (3)

$$\begin{array}{c|c}
 & SOCI_2, DMF \\
\hline
SOCI_2, DMF \\
\hline
 & reflux, 12 h
\end{array}$$

$$\begin{array}{c|c}
 & CI \\
\hline
 & S' \\
 & CI
\end{array}$$

$$\begin{array}{c|c}
 & CF_3SO_2NH_2, K_2CO_3 \\
\hline
 & CH_3CN, rt, 12 h \\
 & 88\% \text{ yield in 2 steps}
\end{array}$$

$$\begin{array}{c|c}
 & OOOO \\
 & K \\
 & K
\end{array}$$

To a round-bottom flask containing 1,3-propanesultone 1 (1.0 g, 8.19 mmol) was added thionyl chloride (1.2 mL, 2 equiv) and DMF (0.063 mL, 0.1 equiv). The mixture was refluxed over 12 h. The excessive thionyl chloride was readily removed *in vacuo* to obtain sulfonyl chloride product as a pale yellow liquid 2.

The sulfonyl chloride product **2** obtained was dissolved in acetonitrile (5 mL) and added dropwise to the stirring solution containing trifluoromethanesulfonamide (1.2 g, 1 equiv) and K_2CO_3 (1.69 g, 1.5 equiv) dissolved in acetonitrile (35 mL) at room temperature. After 12 h, the solid salt was filtered off. The filtrate was concentrated under reduced pressure to obtain yellow solid crude product. Then, this crude product was continuously washed using a solvent mixture of ethyl acetate and dichloromethane (1/2, v/v) to finally afford the desired product **3** as white solid (1.95 g, 88% yield).

white solid, mp 177 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 2.05-2.16 (m, ClCH₂C H_2 , 2H), 3.09 (t, J = 6.6 Hz, CH₂C H_2 S, 2H), 3.74 (t, J = 7.6 Hz, ClC H_2 CH₂, 2H); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.60 (CF₃, 3F).

Synthesis of

potassium N-(3-chloropropylsulfonyl) pentafluoroethylsulfonamide

To a round-bottom containing 1,3-propanesultone 1 (1.0 g, 8.19 mmol) was added thionyl chloride (1.2 mL, 2 equiv) and DMF (0.063 mL, 0.1 equiv). The mixture was refluxed over 12 h. The excess thionyl chloride was removed *in vacuo* to obtain sulfonyl chloride product as a pale yellow liquid 2.

The sulfonyl chloride product **2** obtained was dissolved in acetonitrile (5 mL) and added dropwise to the stirring solution containing pentafluoroethanesulfonamide (1.63 g, 1 equiv) and K₂CO₃ (1.69 g, 1.5 equiv) dissolved in acetonitrile (35 mL) at room temperature. After 12 h, the solid salt was filtered off. The filtrate was concentrated under reduced pressure to obtain yellow oil crude product. Then, the crude product was continuously washed using dichloromethane to eventually afford the desired product as white solid (2.12 g, 69% yield).

white solid, mp 175 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 2.06-2.16 (m, ClCH₂C H_2 , 2H), 3.09 (t, J = 7.2 Hz, CH₂C H_2 S, 2H), 3.75 (t, J = 6.8 Hz, ClC H_2 CH₂, 2H); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.60 (CF₂CF₃, 3F), -115.75 (CF₂CF₃, 2F).

Synthesis of ZIL 1a-1e and ZIL 2a-2e

CI
$$N \times CF_3$$
 $N \times CF_3$ $N \times CF$

To reaction vial containing potassium *N*-(3-chloropropylsulfonyl) trifluoromethylsulfonamide 3 (100 mg, 0.305 mmol) and potassium iodide (5 mg, 0.1 equiv) was added tertiary amine (2 equiv), which could be readily prepared from reaction of commercial secondary amine with corresponding mesylate of triethylene or teraethylene glycol monomethyl ether. 1-3 The mixture was heated at 100 °C for 12 h. After completion of the reaction, acetonitrile solvent was added to the reaction vial to precipitate potassium chloride produced. The solid salt was filtered off, and its filtrate was concentrated under reduced pressure to obtain yellow liquid crude ZIL product. With the aid of sonication, excessive amine in crude product could be washed away by ether. This crude product was then dissolved in dichloromethane (5 mL), and mixed with ether (200 mL), leading to a white turbid solution. Upon centrifugation, pale vellow ZIL was precipitated. After the collection of the precipitate and ether washing, the residue was purified by silica gel chromatography (dichloromethane/methanol = 15/1, v/v) to afford the desired ZIL product as pale yellow liquid.

References:

- 1. J. Med. Chem. 2014, 57, 6183-6196.
- 2. J. Am. Chem. Soc. 2004, 126, 1110-1124.
- 3. Chem. Eur. J. 2014, 20, 12894-12900.

ZIL 1a pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 2.05-2.18 (m, N⁺CH₂CH₂CH₂S, 2H), 3.0-3.11 (m, N⁺CH₂CH₂CH₂S, 2H), 3.07 (s, 2 × N⁺CH₃, 6H), 3.24 (s, OCH₃, 3H), 3.40-3.49 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.49-3.61 (m, 4 × CH₂, 8H), 3.79-3.86 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 17.73, 51.00, 51.20, 62.33, 63.83, 69.42, 69.46, 71.25, 120.07 (q, J_{CF} = 322 Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.52 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₃H₂₈F₃N₂O₇S₂ 445.1285, found 445.1287 ([M + H]⁺), 467.1106 ([M + Na]⁺), 483.0846 ([M + K]⁺).

ZIL 1b pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 1.23 (t, J = 6.0 Hz, N⁺CH₂CH₃, 3H), 2.00-2.15 (m, N⁺CH₂CH₂S, 2H), 3.01 (s, N⁺CH₃, 3H), 3.06 (t, J = 7.2 Hz, N⁺CH₂CH₂CH₂S, 2H), 3.24 (s, OCH₃, 3H), 3.36-3.46 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃ + N⁺CH₂CH₃O, 6H), 3.48-3.60 (m, $4 \times \text{CH}_2$, 8H), 3.78-3.84 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 7.53, 17.41, 47.84, 51.14, 57.38, 58.06, 59.01, 59.88, 63.66, 69.46, 69.49, 69.56, 71.27, 120.08 (q, $J_{\text{CF}} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.53 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₄H₃₀F₃N₂O₇S₂ 459.1441, found 459.1445 ([M + H]⁺), 481.1265 ([M + Na]⁺), 497.0999 ([M + K]⁺).

ZIL 1c pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.93 (t, J = 7.2 Hz, CH₂CH₂CH₃, 3H), 1.24-1.37 (m, N⁺CH₂CH₂CH₂, 2H), 1.58-1.71 (m, N⁺CH₂CH₂CH₂, 2H), 2.02-2.16 (m, N⁺CH₂CH₂CH₂S, 2H), 3.03 (s, N⁺CH₃, 3H), 3.06 (t, J = 7.2 Hz, N⁺CH₂CH₂CH₂, 2H), 3.24 (s, OCH₃, 3H), 3.26-3.36 (m, N⁺CH₂CH₂CH₂S, 2H), 3.39-3.47 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.48-3.62 (m, 4 × CH₂, 8H), 3.78-3.86 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.49, 17.52, 19.20, 23.43, 48.41, 51.17, 58.11, 57.29, 59.65, 60.45, 61.69, 63.74, 69.64, 71.31, 120.12 (q, $J_{CF} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.56 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₆H₃₄F₃N₂O₇S₂ 487.1754, found 487.1755 ([M + H]⁺), 509.1576 ([M + Na]⁺), 525.1316 ([M + K]⁺).

ZIL 1d pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.87 (t, J = 6.8 Hz, CH₂CH₂CH₃, 3H), 1.20-1.38 (m, 3 × CH₂, 6H), 1.56-1.74 (m, N⁺CH₂CH₂CH₂, 2H), 2.02-2.16 (m, N⁺CH₂CH₂CH₂S, 2H), 3.03 (s, N⁺CH₃, 3H), 3.05 (t, J = 6.8 Hz, N⁺CH₂CH₂CH₂, 2H), 3.24 (s, OCH₃, 3H), 3.26-3.32 (m, N⁺CH₂CH₂CH₂S, 2H), 3.39-3.47 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.49-3.62 (m, 4 × CH₂, 8H), 3.77-3.85 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.78, 17.47, 21.36, 21.88, 25.39, 30.65, 48.30, 51.11, 58.04, 59.62, 62.36, 61.83, 63.69, 69.49, 69.57, 71.26, 120.06 (q, $J_{CF} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.57 (CF₃, 3F); ESI-

HRMS m/z $[M + H]^+$ calculated for $C_{18}H_{38}F_3N_2O_7S_2$ 515.2067, found 515.2065 ($[M + H]^+$), 537.1882 ($[M + Na]^+$).

ZIL 1e pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.86 (t, J = 6.8 Hz, CH₂CH₂CH₃, 3H), 1.17-1.42 (m, 5 × CH₂, 10H), 1.56-1.75 (m, N⁺CH₂CH₂CH₂, 2H), 2.00-2.17 (m, N⁺CH₂CH₂CH₂S, 2H), 3.02 (s, N⁺CH₃, 3H), 3.05 (t, J = 7.2 Hz, N⁺CH₂CH₂CH₂, 2H), 3.24 (s, OCH₃, 3H), 3.26-3.32 (m, N⁺CH₂CH₂CH₂S, 2H), 3.38-3.47 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.49-3.66 (m, 4 × CH₂, 8H), 3.76-3.87 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.92, 17.46, 21.41, 22.02, 25.75, 28.45, 28.47, 31.15, 48.29, 51.10, 58.04, 59.61, 60.34, 61.82, 63.68, 69.48, 69.56, 71.25, 120.05 (q, $J_{CF} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.57 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₂₀H₄₂F₃N₂O₇S₂ 543.2380, found 543.2387 ([M + H]⁺), 565.2207 ([M + Na]⁺).

ZIL 2a pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 2.05-2.17 (m, N⁺CH₂CH₂CH₂S, 2H), 3.00-3.14 (m, N⁺CH₂CH₂CH₂S, 2H), 3.08 (s, 2 × N⁺CH₃, 6H), 3.24 (s, OCH₃, 3H), 3.40-3.49 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.49-3.62 (m, 6 × CH₂, 12H), 3.79-3.88 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 17.72, 51.00, 51.20, 58.04, 63.81, 69.43, 69.54, 69.70, 69.76, 71.27, 120.06 (q, J_{CF} = 322 Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.52 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₅H₃₂F₃N₂O₈S₂ 489.1547, found 489.1538 ([M + H]⁺), 511.1357 ([M + Na]⁺).

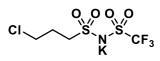
ZIL 2b pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 1.23 (t, J = 7.2 Hz, N⁺CH₂CH₃, 3H), 2.00-2.15 (m, N⁺CH₂CH₂CH₂S, 2H), 3.01 (s, N⁺CH₃, 3H), 3.06 (t, J = 7.2 Hz, N⁺CH₂CH₂CH₂S, 2H), 3.24 (s, OCH₃, 3H), 3.36-3.46 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃ + N⁺CH₂CH₃O, 6H), 3.47-3.62 (m, 6 × CH₂, 12H), 3.78-3.86 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 7.52, 17.40, 47.86, 51.13, 57.34, 58.05, 58.99, 59.85, 63.63, 69.46, 69.56, 69.72, 69.79, 71.29, 120.07 (q, $J_{CF} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.53 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₆H₃₄F₃N₂O₈S₂ 503.1703, found 503.1694 ([M + H]⁺), 525.1513 ([M + Na]⁺).

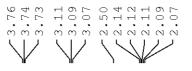
ZIL 2c pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.93 (t, J = 7.2 Hz, CH₂CH₂CH₃, 3H), 1.22-1.36 (m, N⁺CH₂CH₂CH₂, 2H), 1.57-1.71 (m, N⁺CH₂CH₂CH₂, 2H), 2.02-2.16 (m, N⁺CH₂CH₂CH₂S, 2H), 3.03 (s, N⁺CH₃, 3H), 3.06 (t, J = 6.8 Hz, N⁺CH₂CH₂CH₂, 2H), 3.24 (s, OCH₃, 3H), 3.26-3.36 (m, N⁺CH₂CH₂CH₂S, 2H), 3.38-3.46 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.48-3.62 (m, 6 × CH₂, 12H), 3.78-3.87

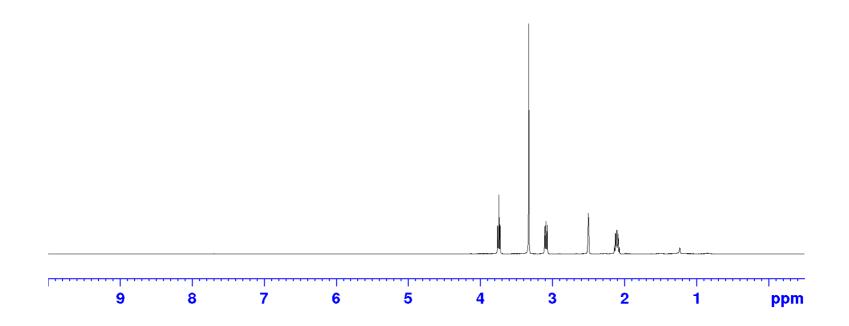
(m, C H_2 OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.43, 17.47, 19.15, 23.37, 48.37, 51.11, 58.04, 59.59, 60.38, 61.59, 63.67, 69.49, 69.57, 69.73, 69.78, 71.29, 120.06 (q, $J_{CF} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.56 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₈H₃₈F₃N₂O₈S₂ 531.2016, found 531.2011 ([M + H]⁺), 553.1829 ([M + Na]⁺).

ZIL 2d pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.87 (t, J = 6.8 Hz, CH₂CH₂CH₃, 3H), 1.20-1.36 (m, 3 × CH₂, 6H), 1.56-1.72 (m, N⁺CH₂CH₂CH₂, 2H), 2.00-2.16 (m, N⁺CH₂CH₂CH₂S, 2H), 3.03 (s, N⁺CH₃, 3H), 3.05 (t, J = 7.2 Hz, N⁺CH₂CH₂CH₂, 2H), 3.24 (s, OCH₃, 3H), 3.26-3.32 (m, N⁺CH₂CH₂CH₂S, 2H), 3.38-3.46 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.48-3.62 (m, 6 × CH₂, 12H), 3.77-3.86 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.77, 17.45, 21.34, 21.86, 25.38, 30.63, 30.89, 48.32, 51.10, 58.03, 59.59, 60.33, 61.79, 63.65, 69.47, 69.55, 69.71, 69.76, 71.27, 120.05 (q, $J_{CF} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.56 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₂₀H₄₂F₃N₂O₈S₂ 559.2329, found 559.2321 ([M + H]⁺), 581.2142 ([M + Na]⁺).

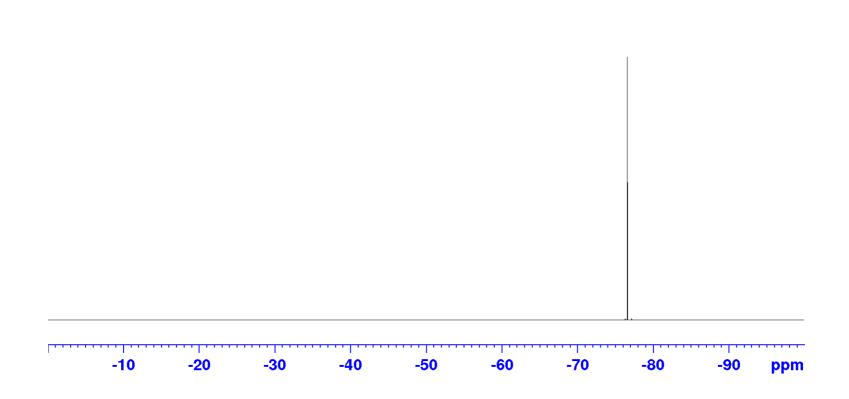
ZIL 2e pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.86 (t, J = 7.2 Hz, CH₂CH₂CH₃, 3H), 1.18-1.39 (m, 5 × CH₂, 10H), 1.58-1.72 (m, N⁺CH₂CH₂CH₂, 2H), 2.00-2.16 (m, N⁺CH₂CH₂CH₂S, 2H), 3.02 (s, N⁺CH₃, 3H), 3.05 (t, J = 7.2 Hz, N⁺CH₂CH₂CH₂, 2H), 3.24 (s, OCH₃, 3H), 3.26-3.32 (m, N⁺CH₂CH₂CH₂S, 2H), 3.39-3.47 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.47-3.64 (m, 6 × CH₂, 12H), 3.78-3.86 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.92, 17.46, 21.40, 22.02, 25.76, 28.46, 31.15, 48.32, 51.10, 58.04, 59.60, 60.33, 61.80, 63.66, 69.48, 69.60, 69.72, 69.77, 71.27, 120.05 (q, $J_{CF} = 322$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.57 (CF₃, 3F); ESI-HRMS m/z [M + H]⁺ calculated for C₂₂H₄₆F₃N₂O₈S₂ 587.2642, found 587.2636 ([M + H]⁺), 609.2456 ([M + Na]⁺).

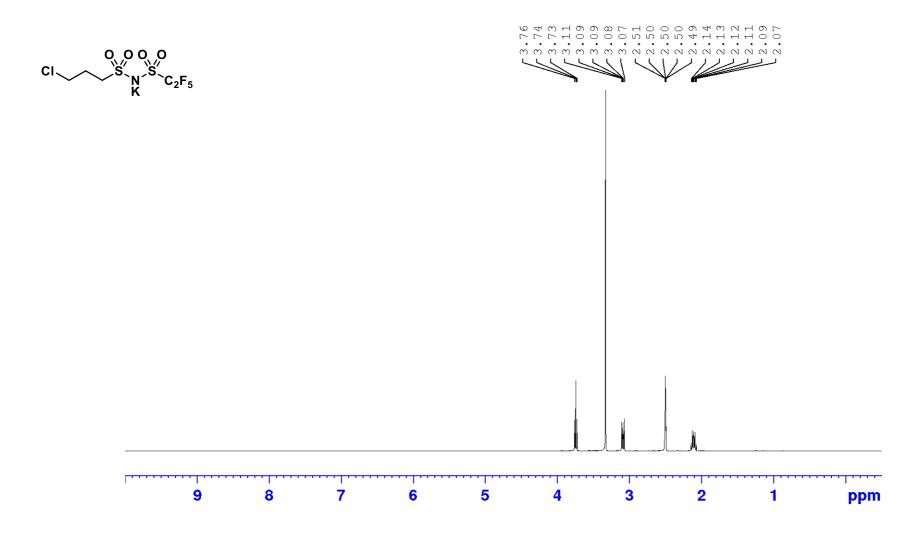

Synthesis of ZIL 3c and 4c

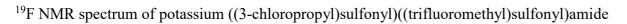

To reaction vial containing potassium *N*-(3-chloropropylsulfonyl) pentafluoroethylsulfonamide (150 mg, 0.397 mmol) and potassium iodide (6.6 mg, 0.1 equiv) was added tertiary amine (2 equiv). The mixture was heated at 100 °C for 12 h. After completion of reaction, acetonitrile was added to the vial for precipitation of potassium chloride. The solid salt was filtered off, and its filtrate was concentrated under reduced pressure to obtain yellow liquid crude ZIL product. With the aid of sonication, excessive amine in crude product could be washed away by ether. This crude product was then dissolved in dichloromethane (5 mL), and mixed with ether (200 mL), leading to a white turbid solution. Upon centrifugation, pale yellow ZIL was precipitated. After the collection of the precipitate and ether washing, the residue was purified by silica gel chromatography (dichloromethane/methanol = 15/1, v/v) to afford the desired ZIL product as pale yellow liquid.

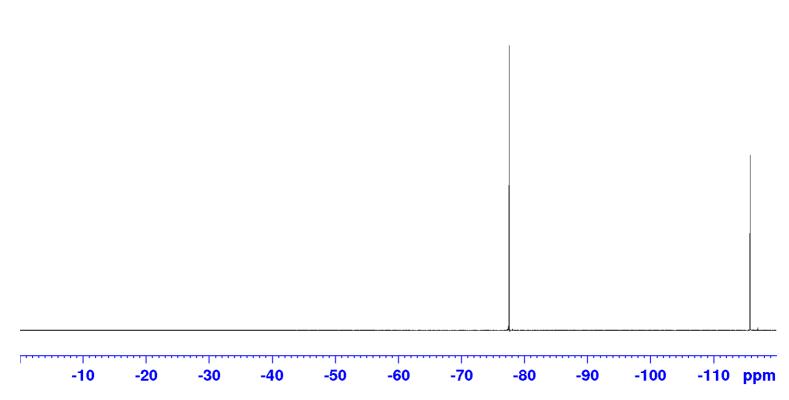

ZIL 3c pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.93 (t, J = 7.2 Hz, CH₂CH₂CH₃, 3H), 1.24-1.37 (m, N⁺CH₂CH₂CH₂, 2H), 1.58-1.71 (m, N⁺CH₂CH₂CH₂, 2H), 2.02-2.16 (m, N⁺CH₂CH₂CH₂S, 2H), 3.03 (s, N⁺CH₃, 3H), 3.06 (t, J = 6.8 Hz, N⁺CH₂CH₂CH₂, 2H), 3.28 (s, OCH₃, 3H), 3.26-3.36 (m, N⁺CH₂CH₂CH₂S, 2H), 3.38-3.47 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.49-3.62 (m, 4 × CH₂, 8H), 3.77-3.86 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.39, 17.46, 19.13, 23.37, 48.33, 51.31, 58.02, 59.60, 60.39, 61.61, 63.68, 69.48, 69.57, 71.25, 111.53 (qt, ¹J = 291 Hz, ²J = 37 Hz, CF₂CF₃), 118.14 (tq, ¹J = 286 Hz, ²J = 34 Hz, CF₂CF₃); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.60 (CF₂CF₃, 3F), -115.75 (CF₂CF₃, 2F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₇H₃₄F₅N₂O₇S₂ 537.1722, found 537.1714 ([M + H]⁺), 559.1533 ([M + Na]⁺).

ZIL 4c pale yellow liquid; ¹H NMR (400 MHz, DMSO- d_6) δ 0.93 (t, J = 7.2 Hz, CH₂CH₂CH₃, 3H), 1.21-1.37 (m, N⁺CH₂CH₂CH₂, 2H), 1.56-1.72 (m, N⁺CH₂CH₂CH₂, 2H), 2.02-2.17 (m, N⁺CH₂CH₂CH₂S, 2H), 3.03 (s, N⁺CH₃, 3H), 3.06 (t, J = 7.2 Hz, N⁺CH₂CH₂CH₂, 2H), 3.24 (s, OCH₃, 3H), 3.26-3.36 (m, N⁺CH₂CH₂CH₂S, 2H), 3.39-3.47 (m, N⁺CH₂CH₂CH₂S + N⁺CH₂CH₃O, 4H), 3.47-3.63 (m, 6 × CH₂, 12H), 3.77-3.86 (m, CH₂OCH₃, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.38, 17.45, 19.13, 23.37, 48.35, 51.31, 58.01, 59.59, 60.38, 61.59, 63.66, 69.48, 69.56, 69.72, 69.77, 71.27, 111.52 (qt, ¹J = 292 Hz, ²J = 37 Hz, CF₂CF₃), 118.14 (tq, ¹J = 286 Hz, ²J = 34 Hz, CF₂CF₃); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -76.60 (CF₂CF₃, 3F), -115.74 (CF₂CF₃, 2F); ESI-HRMS m/z [M + H]⁺ calculated for C₁₉H₃₈F5N₂O₈S₂ 581.1984, found 581.1976 ([M + H]⁺), 603.1795 ([M + Na]⁺).

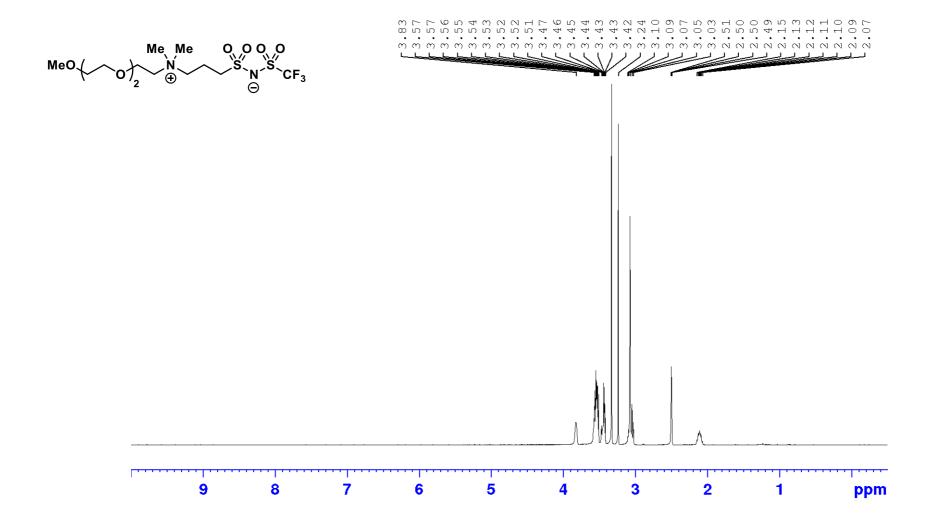

¹H NMR spectrum of potassium ((3-chloropropyl)sulfonyl)((trifluoromethyl)sulfonyl)amide

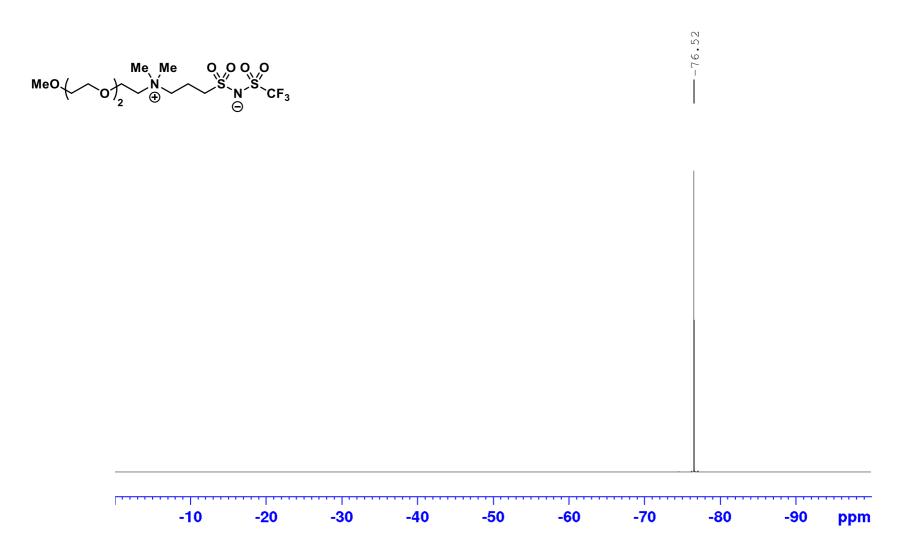


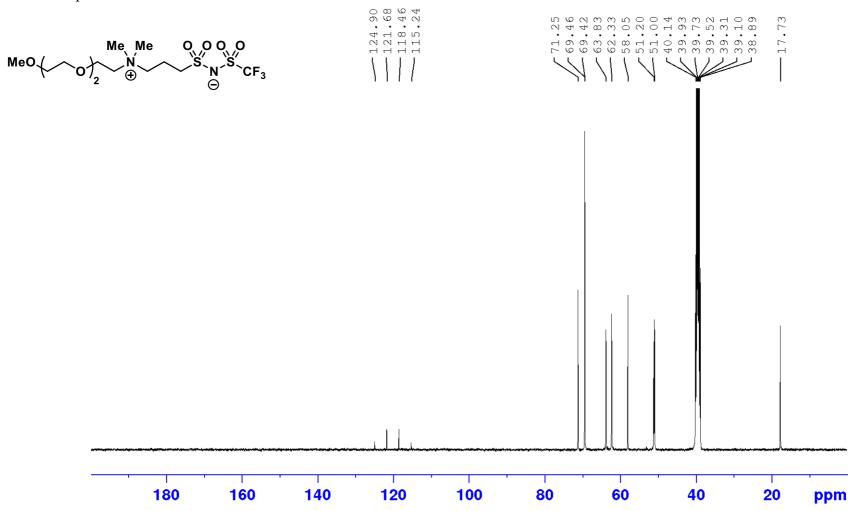




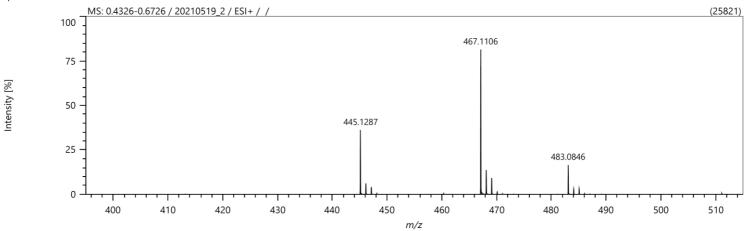
¹H NMR spectrum of potassium ((3-chloropropyl)sulfonyl)((perfluoroethyl)sulfonyl)amide







¹H NMR spectrum of ZIL 1a



¹³C NMR spectrum of ZIL 1a

Mass spectrum of ZIL 1a

Spectrum

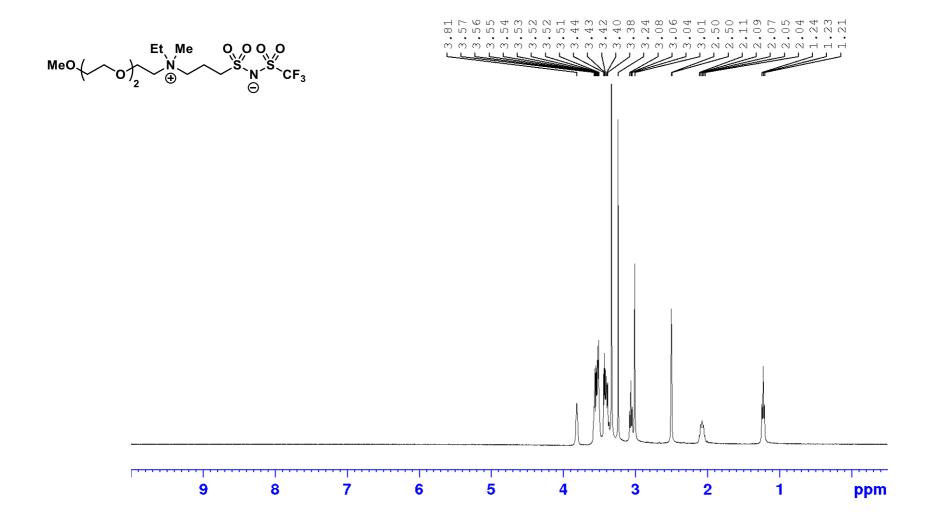
Elemental Composition

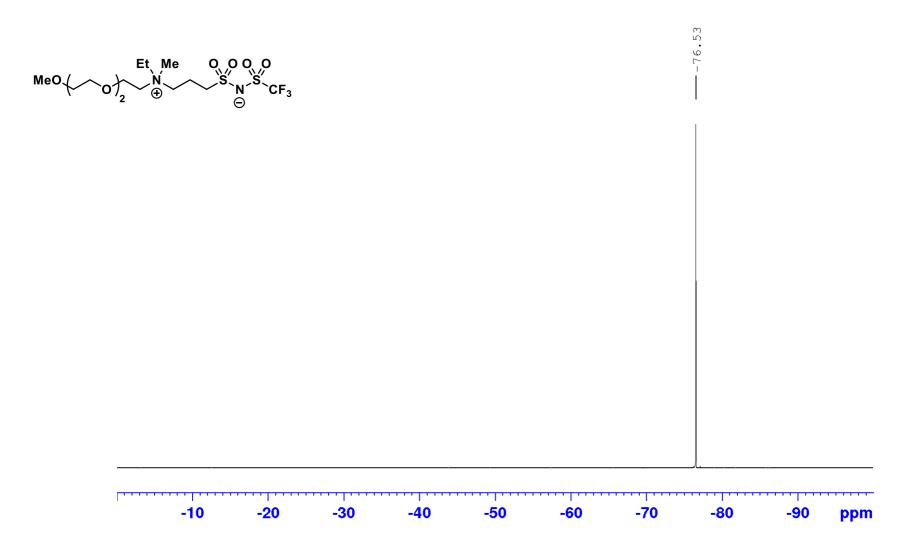
Parameters

Tolerance: ±2.00 ppm
Electron: Odd/Even

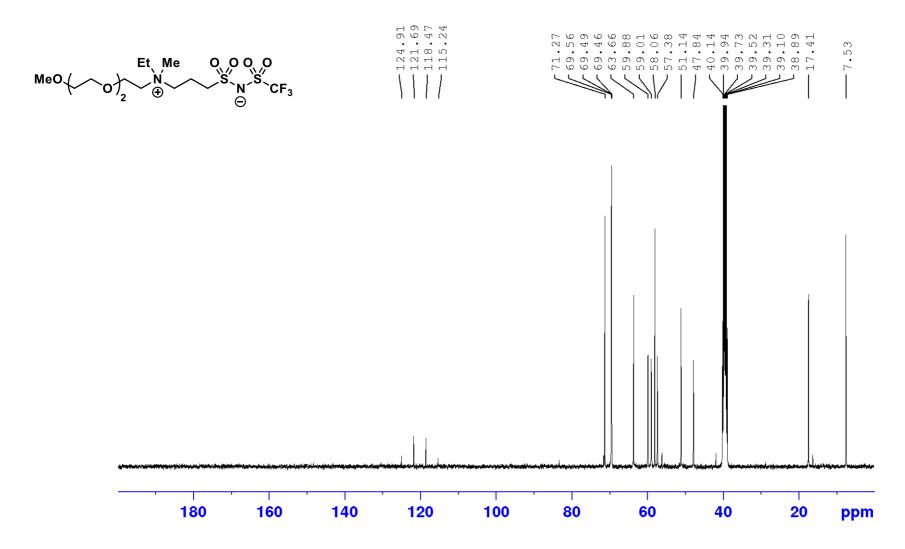
Electron: Odd/Even Charge: +1 DBE: -99.0 - 999.0 Elements Set 1:

 Symbol
 C
 H
 F
 N
 O
 S
 Na
 K

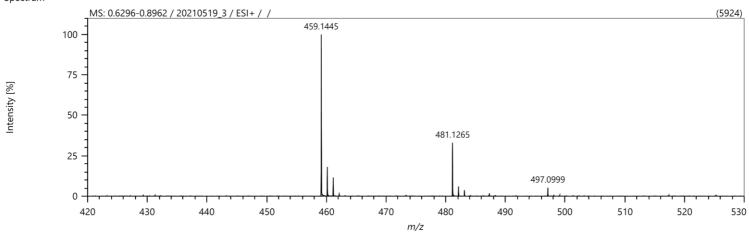

 Min
 0
 0
 3
 2
 7
 2
 0
 0


 Max
 400
 1000
 3
 2
 7
 2
 1
 1

Results


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
445.12868	C13 H28 N2 O7 F3 S2	445.12845	0.23	0.51	-0.5
467.11059	C13 H27 N2 O7 F3 Na S2	467.11040	0.19	0.41	-0.5
483.08460	C13 H27 N2 O7 F3 S2 K	483.08434	0.26	0.54	-0.5

¹H NMR spectrum of ZIL 1b



¹³C NMR spectrum of ZIL 1b

Mass spectrum of ZIL 1b

Spectrum

Elemental Composition

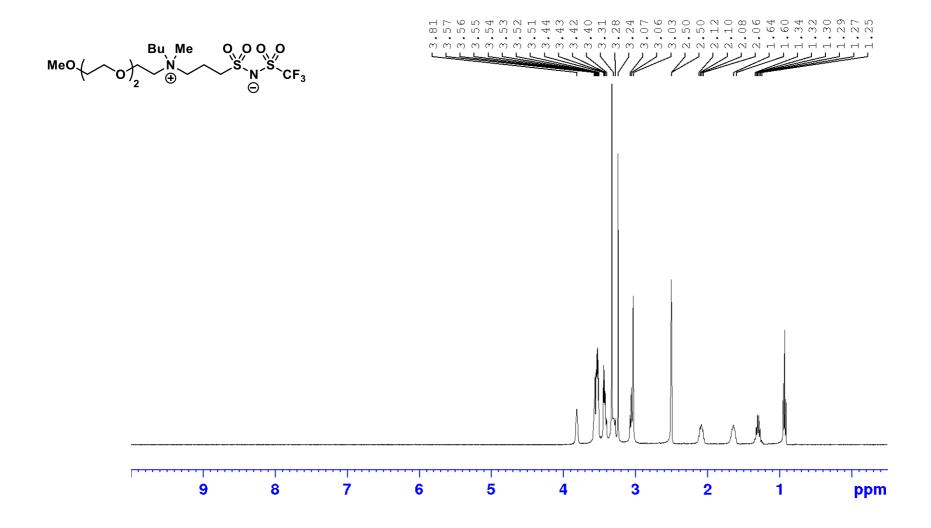
Parameters Tolerance:

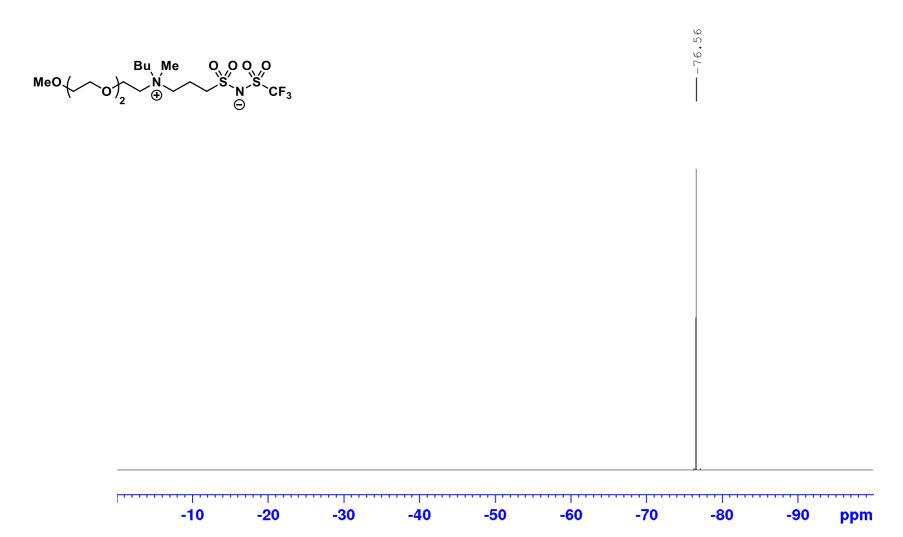
Electron:

Charge:

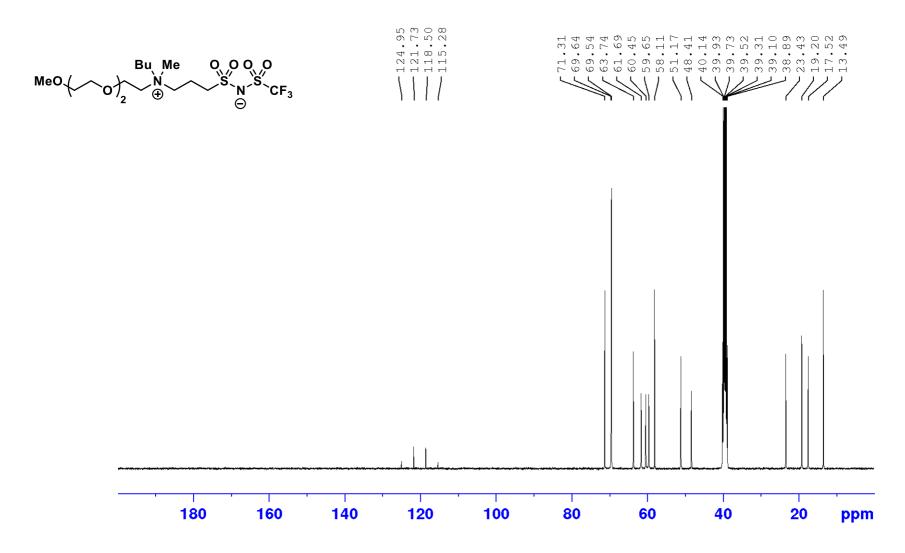
±2.00 ppm Odd/Even

-99.0 - 999.0

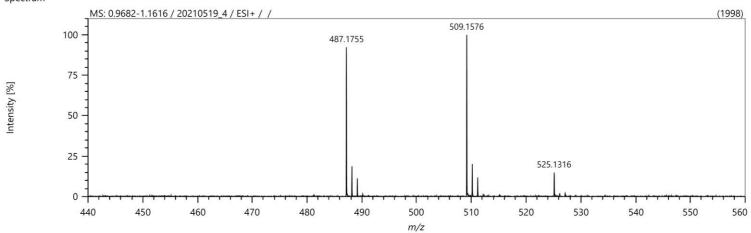

Elements Set 1:


Symbol Н Ν 0 S Na K 0 0 3 2 2 0 0 400 1 Max 1000

DBE:


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
459.14446	C14 H30 N2 O7 F3 S2	459.14410	0.36	0.78	-0.5
481.12646	C14 H29 N2 O7 F3 Na S2	481.12605	0.41	0.85	-0.5
497.09987	C14 H29 N2 O7 F3 S2 K	497.09999	-0.11	-0.23	-0.5

¹H NMR spectrum of ZIL 1c



¹³C NMR spectrum of ZIL 1c

Mass spectrum of ZIL 1c

Spectrum

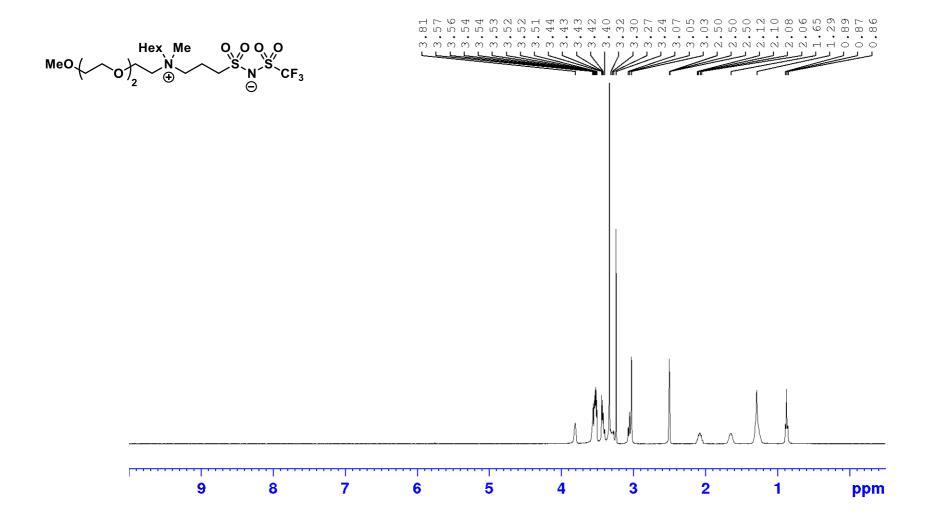
Elemental Composition

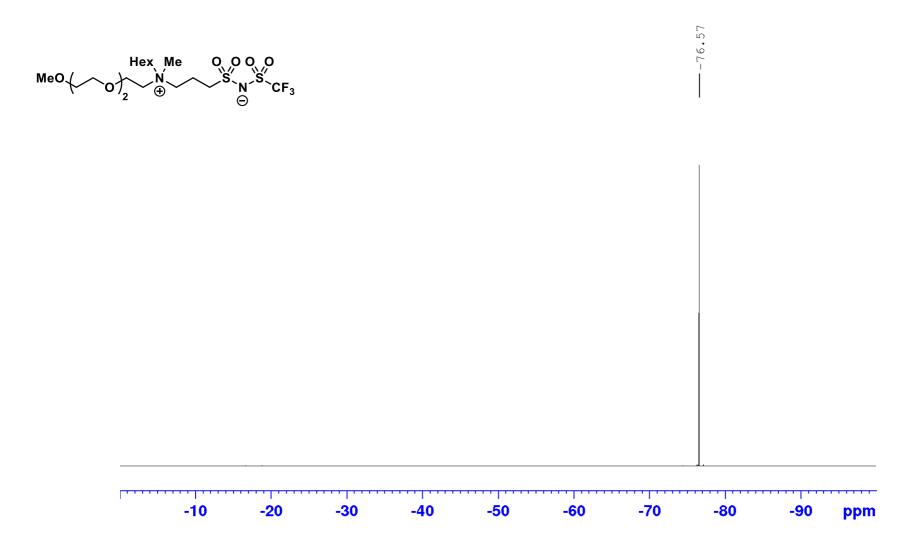
Parameters

Elements Set 1:

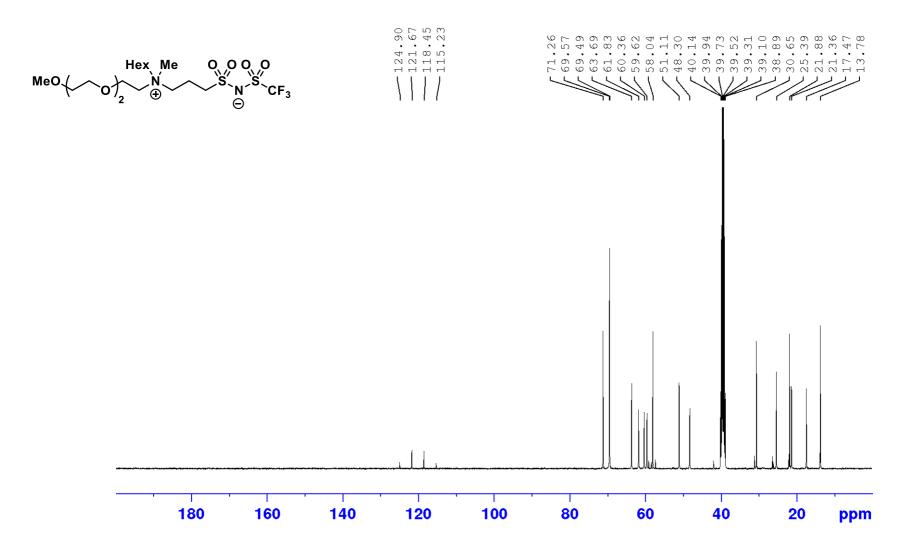
Tolerance: $\pm 2.00 \text{ ppm}$ Electron: Odd/Even Charge: +1

-99.0 - 999.0

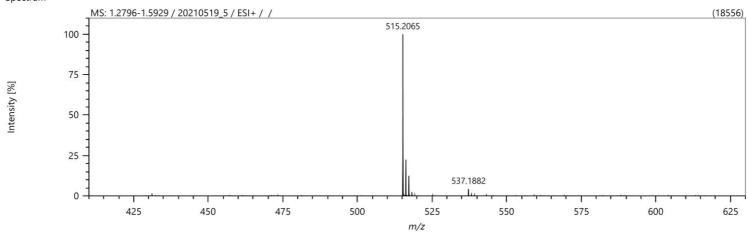

Symbol	C	Н	F	Ν	0	S	Na	K	
Min	0	0	3	2	7	2	0	0	
Max	400	1000	3	2	7	2	1	1	


Results

DBE:


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
487.17552	C16 H34 N2 O7 F3 S2	487.17540	0.12	0.25	-0.5
509.15760	C16 H33 N2 O7 F3 Na S2	509.15735	0.25	0.50	-0.5
525.13164	C16 H33 N2 O7 F3 S2 K	525.13129	0.36	0.68	-0.5

¹H NMR spectrum of ZIL 1d

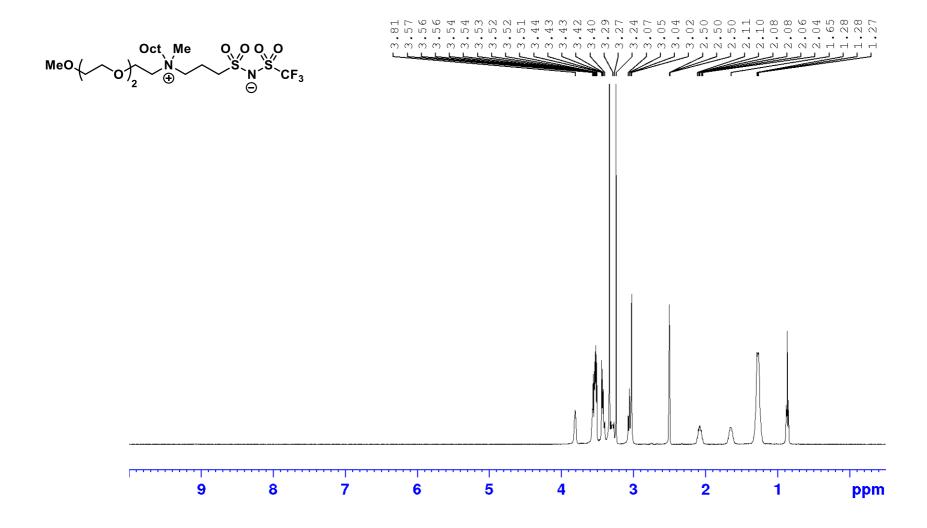


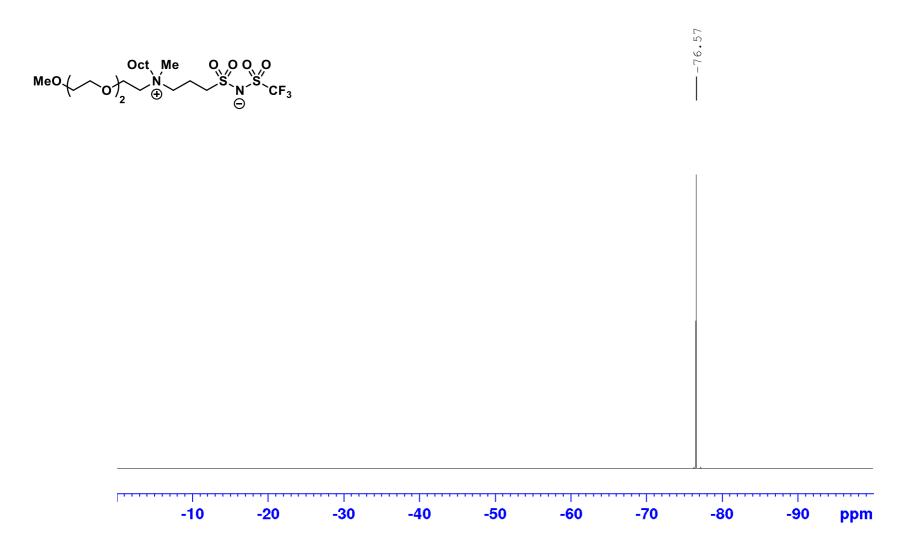
¹³C NMR spectrum of ZIL 1d

Mass spectrum of ZIL 1d

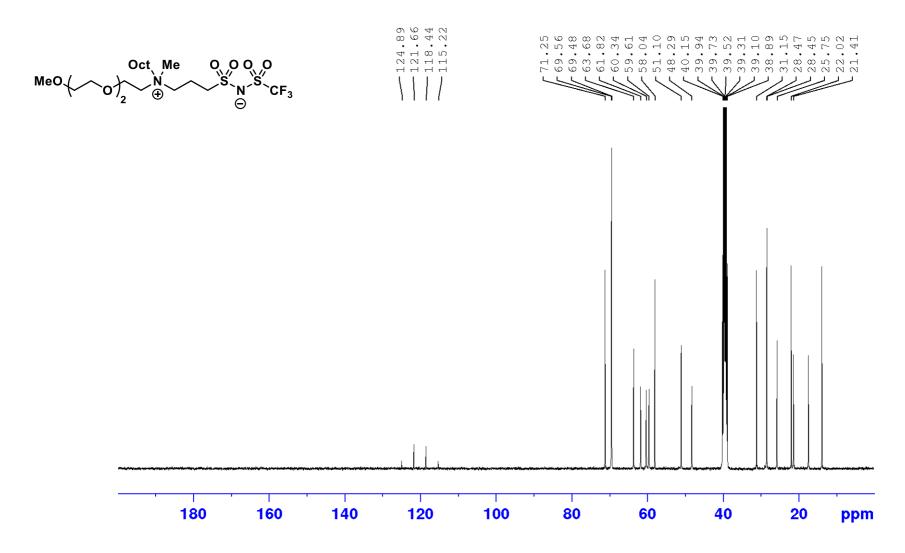
Spectrum

Elemental Composition

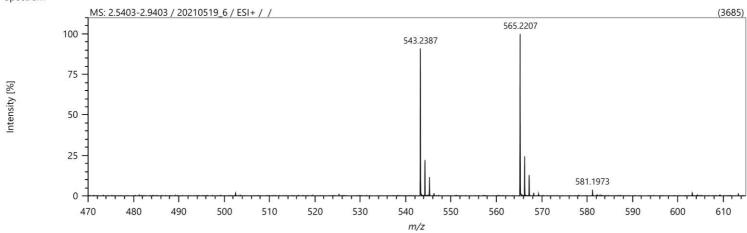

-99.0 - 999.0


Parameters Elements Set 1: ±2.00 ppm Tolerance: Symbol Н Ν 0 S Na Odd/Even Min 0 3 2 2 0 Electron: 0 Charge: 400 1000 2 2 Max DBE:

Results


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
515.20645	C18 H38 N2 O7 F3 S2	515.20670	-0.25	-0.49	-0.5
537.18818	C18 H37 N2 O7 F3 Na S2	537.18865	-0.46	-0.86	-0.5

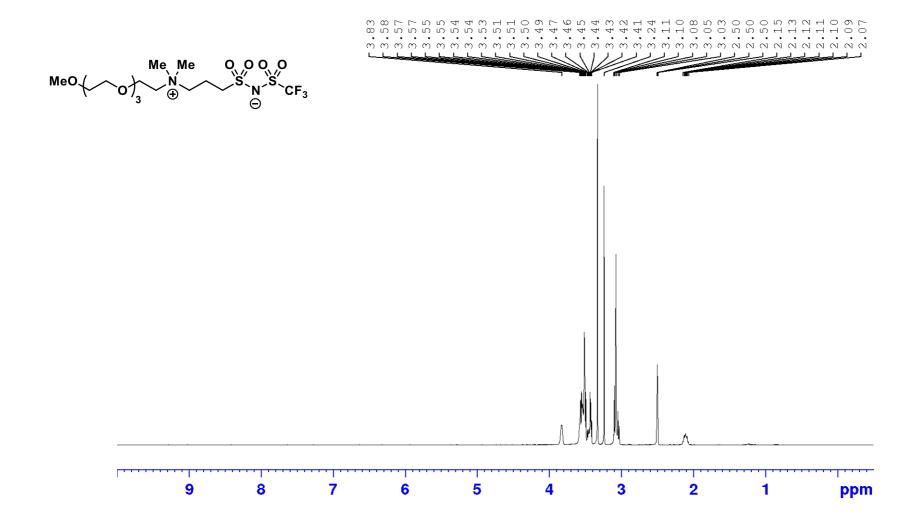
¹H NMR spectrum of ZIL 1e

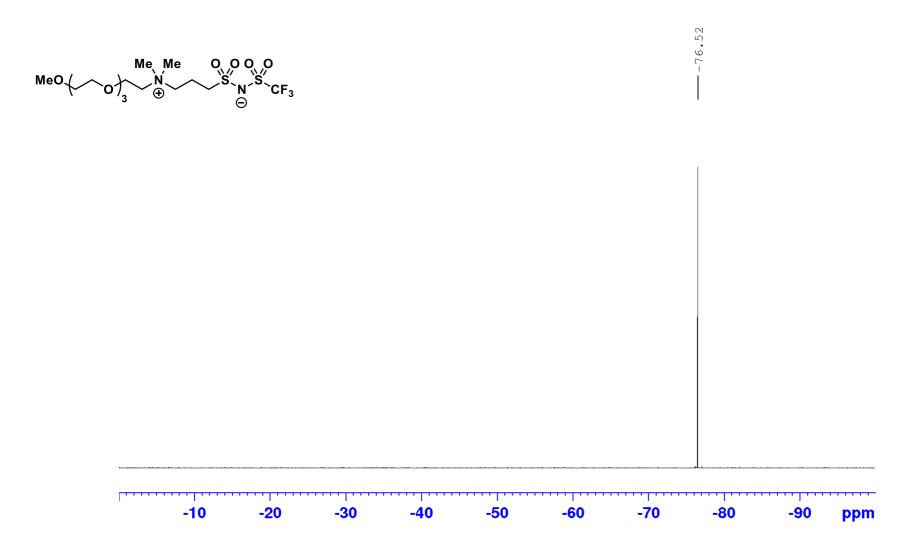


¹³C NMR spectrum of ZIL 1e

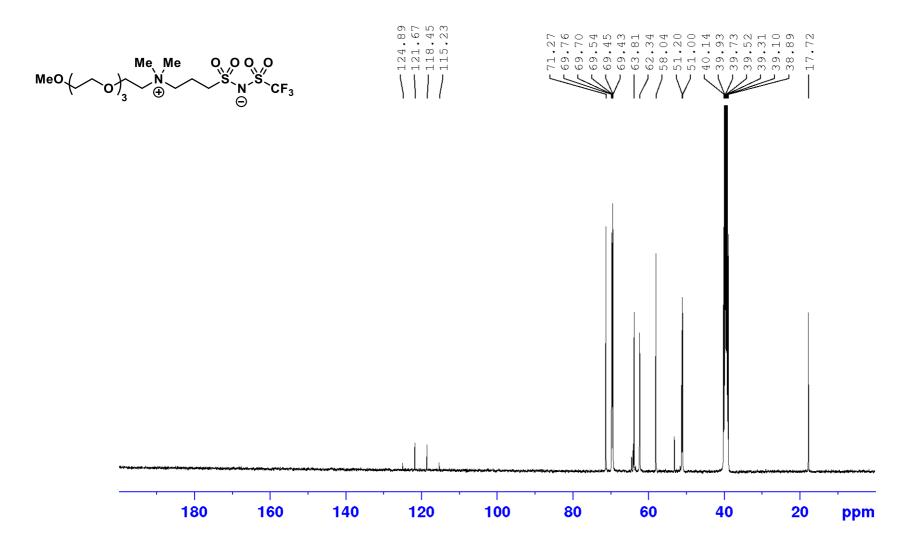
Mass spectrum of ZIL 1e

Spectrum

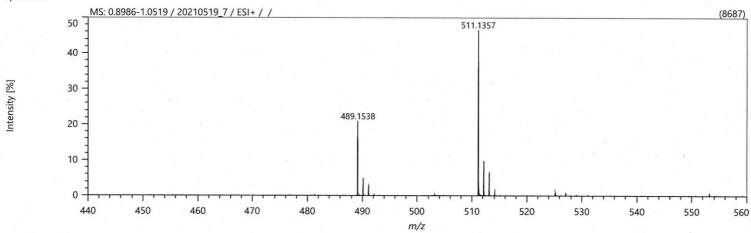

Elemental Composition


Elements Set 1: **Parameters** Tolerance: ±2.00 ppm Symbol Н Ν 0 S Na Electron: Odd/Even Min 0 0 3 2 2 0 Charge: 400 1000 Max DBE: -99.0 - 999.0

Results


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
543.23867	C20 H42 N2 O7 F3 S2	543.23800	0.66	1.22	-0.5
565.22065	C20 H41 N2 O7 F3 Na S2	565.21995	0.70	1.24	-0.5

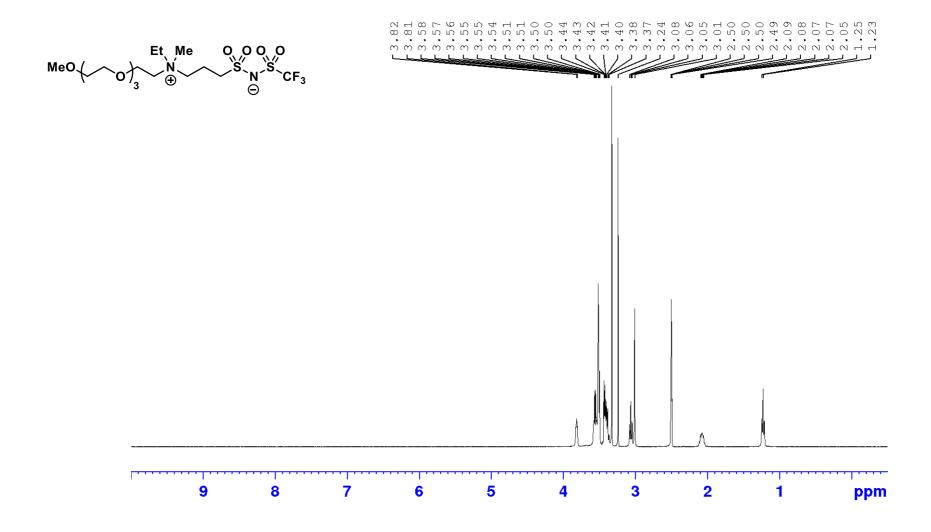
¹H NMR spectrum of ZIL 2a

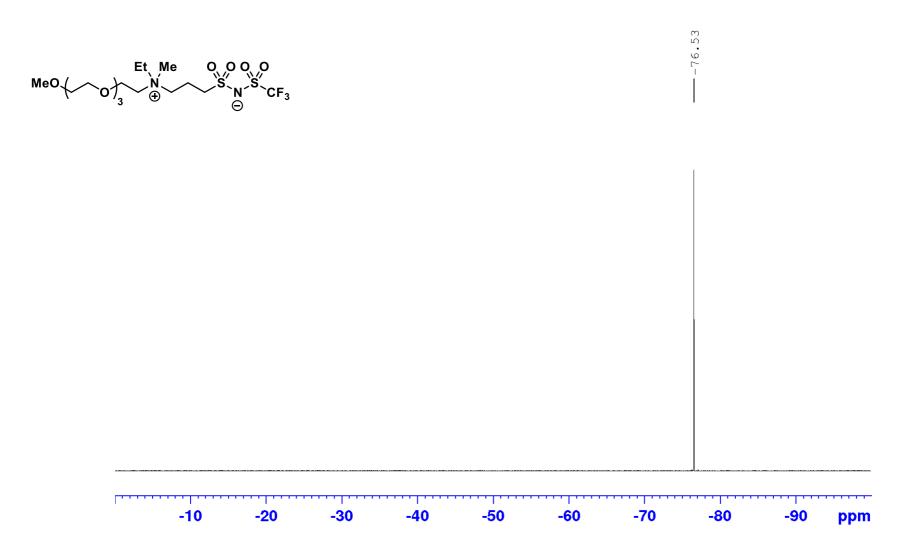


¹³C NMR spectrum of ZIL 2a

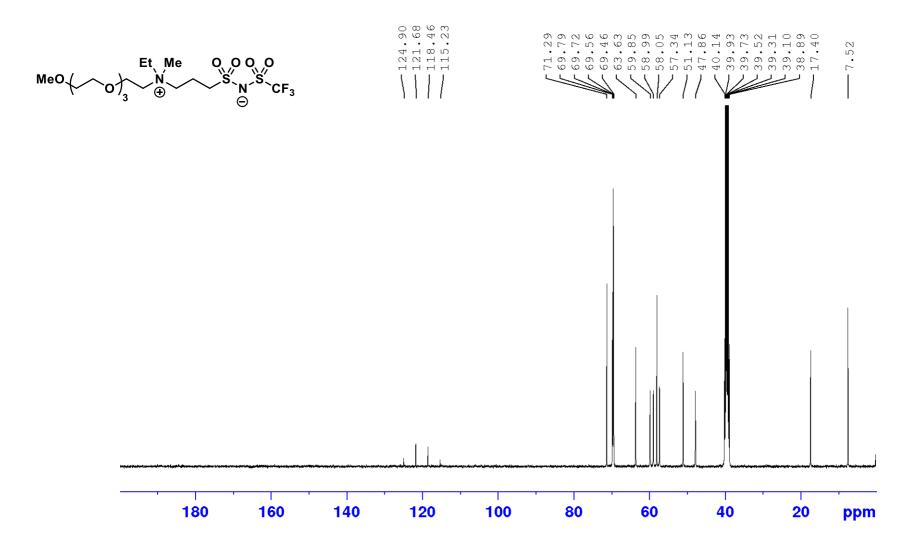
Mass spectrum of ZIL 2a

Spectrum

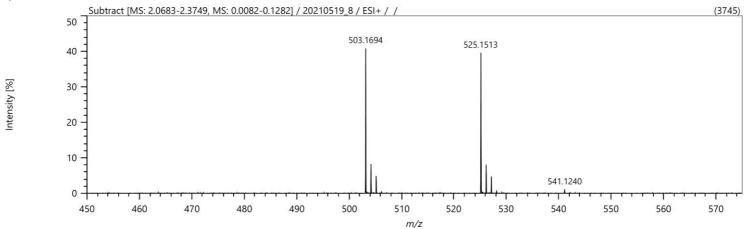



Elemental Composition

Parameters		Elements S	Set 1:			,					
Tolerance:	±2.00 ppm	Symbol	С	Н	F	N	0	S	Na	- A	
Electron:	Odd/Even	Min	0	0	3	2	8	2	0		
Charge:	+1	Max	400	1000	3	2	8	2	1		
DBE:	-99.0 - 999.0							1140			


Mass		Formula	1.5	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
489.15385 C	15 H32 N2 O8 F3 S2		16.7	489.15467	-0.82	-1.68	-0.5
511.13571 C	15 H31 N2 O8 F3 Na S2		151 2	511.13661	-0.90	-1.76	-0.5

¹H NMR spectrum of ZIL 2b



¹³C NMR spectrum of ZIL 2b

Mass spectrum of ZIL 2b

Spectrum

Elemental Composition

Parameters
Tolerance: ±2.00 ppm
Electron: Odd/Even

Elements Set 1:

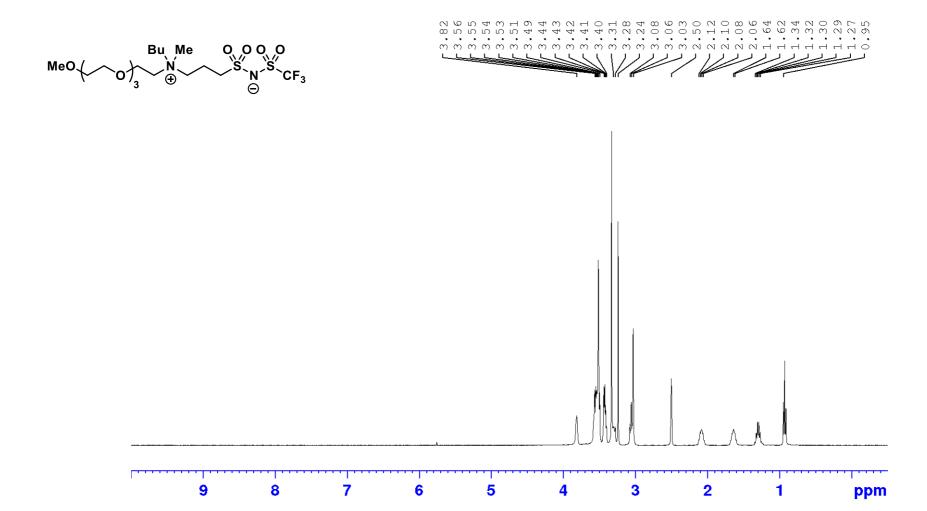
+1

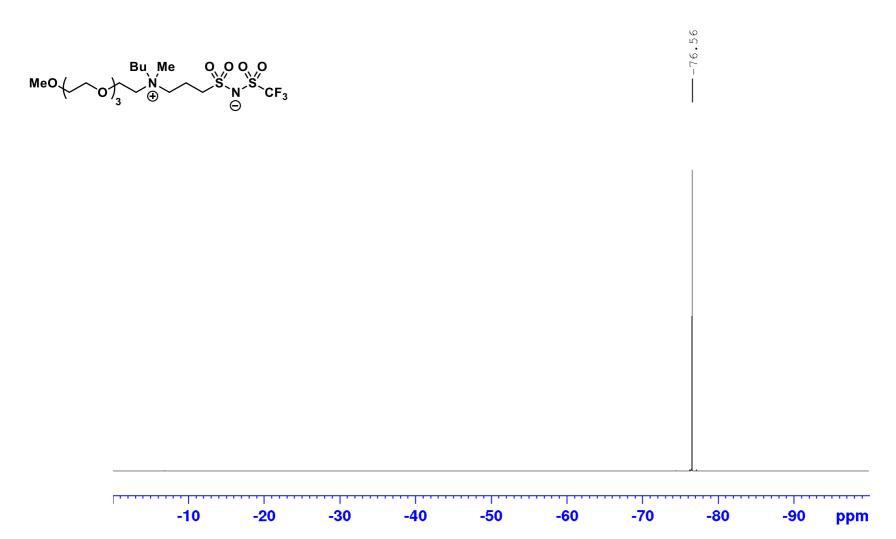
-99.0 - 999.0

 Symbol
 C
 H
 F
 N
 O
 S
 Na

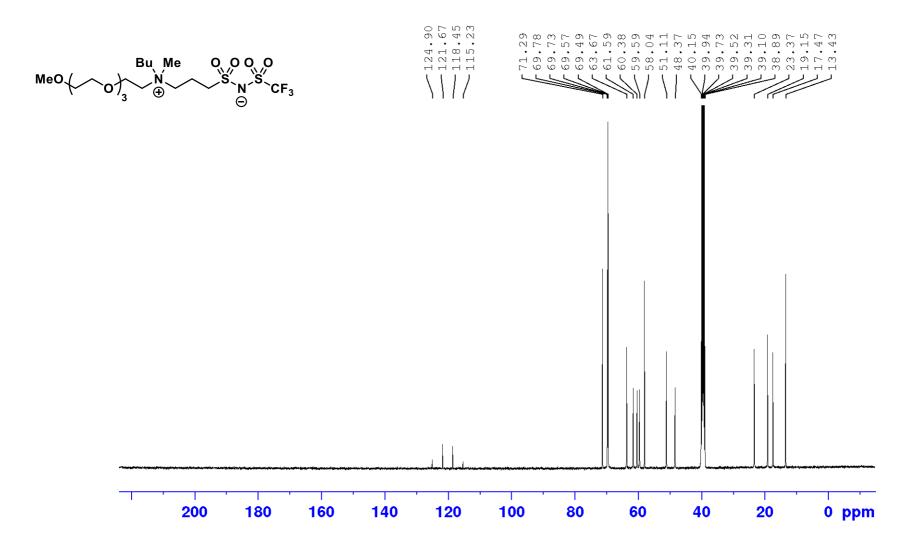
 Min
 0
 0
 3
 2
 8
 2
 0

 Max
 400
 1000
 3
 2
 8
 2
 1

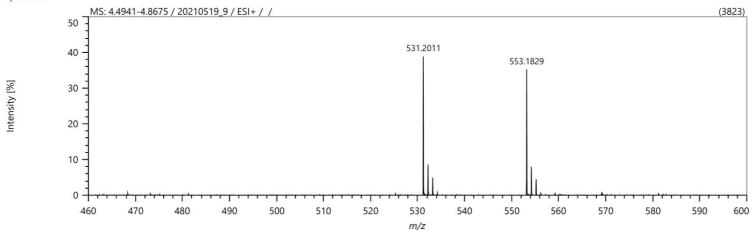

Results


Charge:

DBE:


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
503.16939	C16 H34 N2 O8 F3 S2	503.17032	-0.92	-1.84	-0.5
525.15129	C16 H33 N2 O8 F3 Na S2	525.15226	-0.98	-1.86	-0.5

¹H NMR spectrum of ZIL 2c

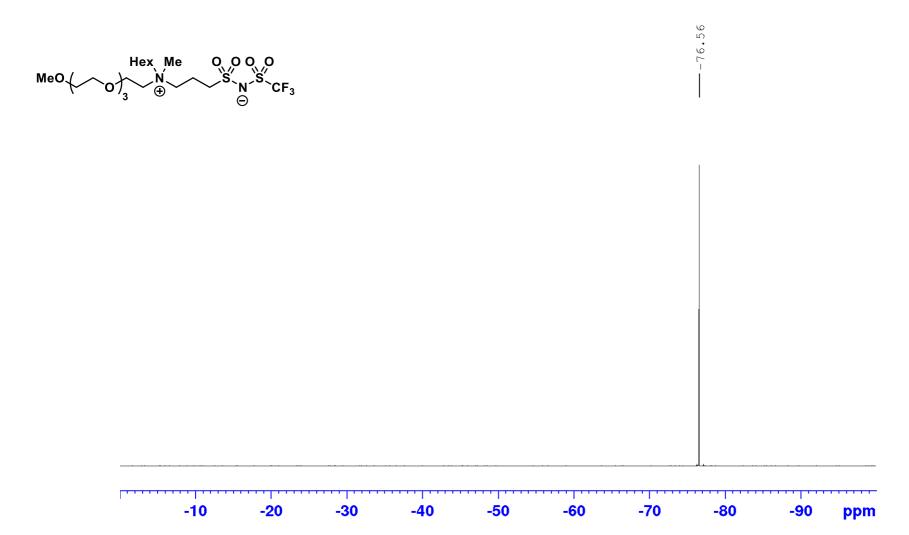


¹³C NMR spectrum of ZIL 2c

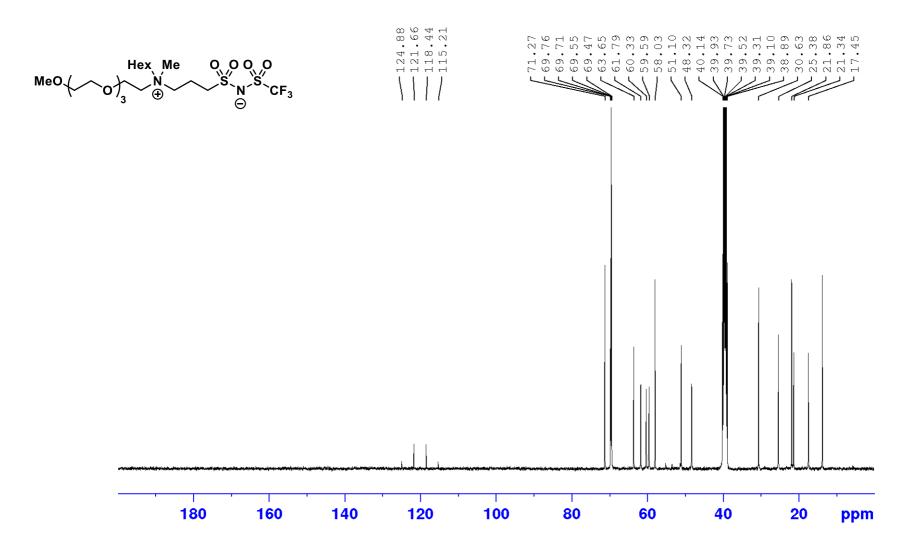
Mass spectrum of ZIL 2c

Spectrum

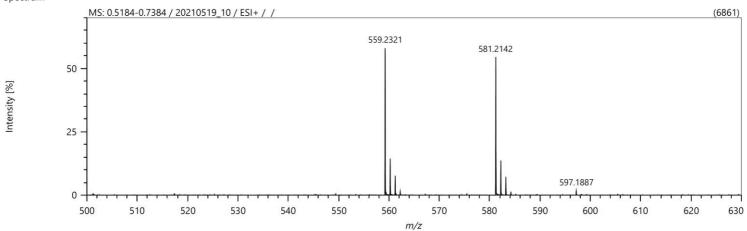



Elemental Composition

Parameters		Elements 5	Set 1:							
Tolerance:	±2.00 ppm	Symbol	C	Н	F	Ν	0	S	Na	
Electron:	Odd/Even	Min	0	0	3	2	8	2	0	
Charge:	+1	Max	400	1000	3	2	8	2	1	
DBE:	-99.0 - 999.0									


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
531.20105	C18 H38 N2 O8 F3 S2	531.20162	-0.57	-1.07	-0.5
553.18286	C18 H37 N2 O8 F3 Na S2	553.18356	-0.70	-1.27	-0.5

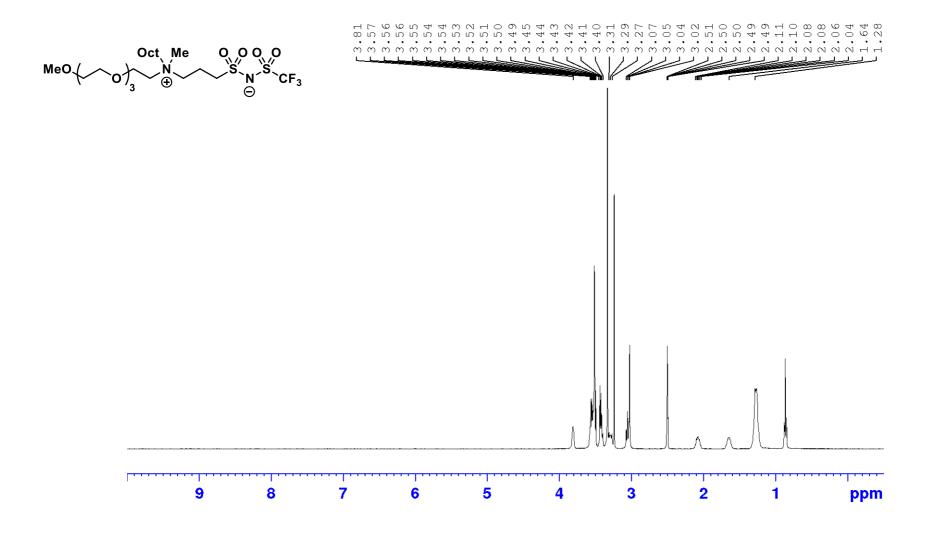
¹H NMR spectrum of ZIL 2d

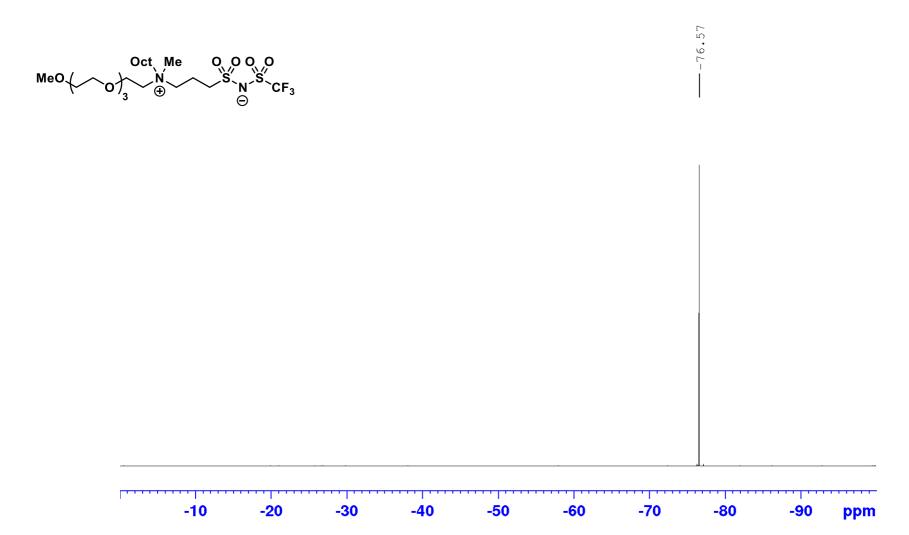


¹³C NMR spectrum of ZIL 2d

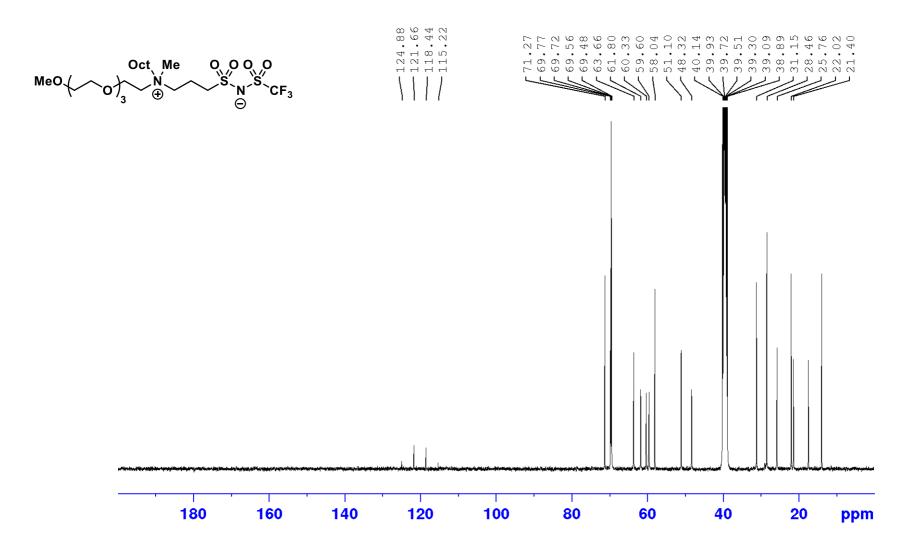
Mass spectrum of ZIL 2d

Spectrum

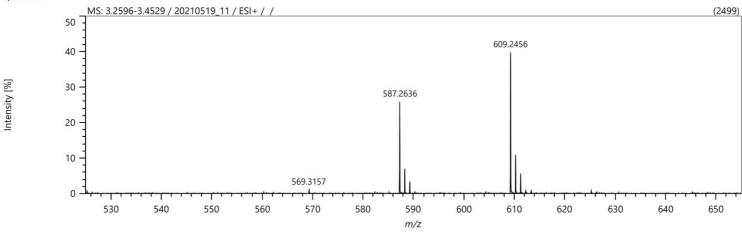



Elemental Composition

Parameters Elements Set 1: Tolerance: ±2.00 ppm Symbol Н N 0 Na Odd/Even Min 0 3 2 2 0 Electron: 0 8 Charge: 400 3 Max 1000 DBE: -99.0 - 999.0


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
559.23205	C20 H42 N2 O8 F3 S2	559.23292	-0.87	-1.55	-0.5
581.21418	C20 H41 N2 O8 F3 Na S2	581.21486	-0.69	-1.18	-0.5

¹H NMR spectrum of ZIL 2e



¹³C NMR spectrum of ZIL 2e

Mass spectrum of ZIL 2e

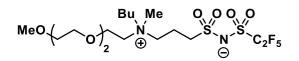
Spectrum

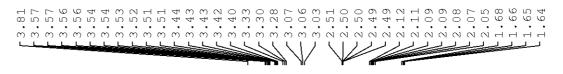
Elemental Composition

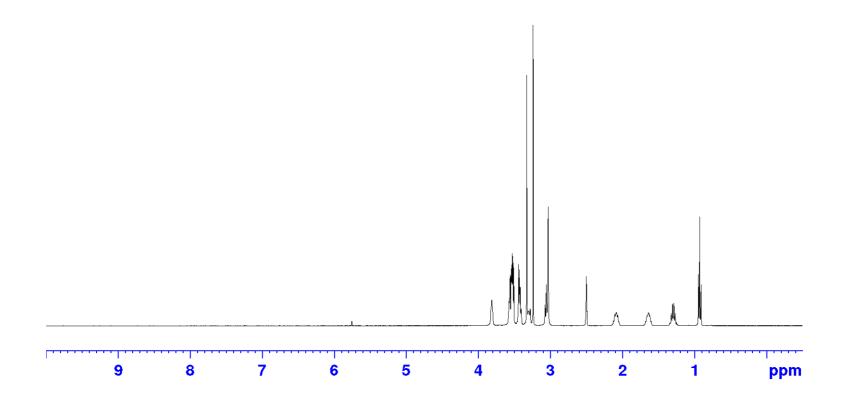
Parameters
Tolerance: ±2.00 ppm
Electron: Odd/Even

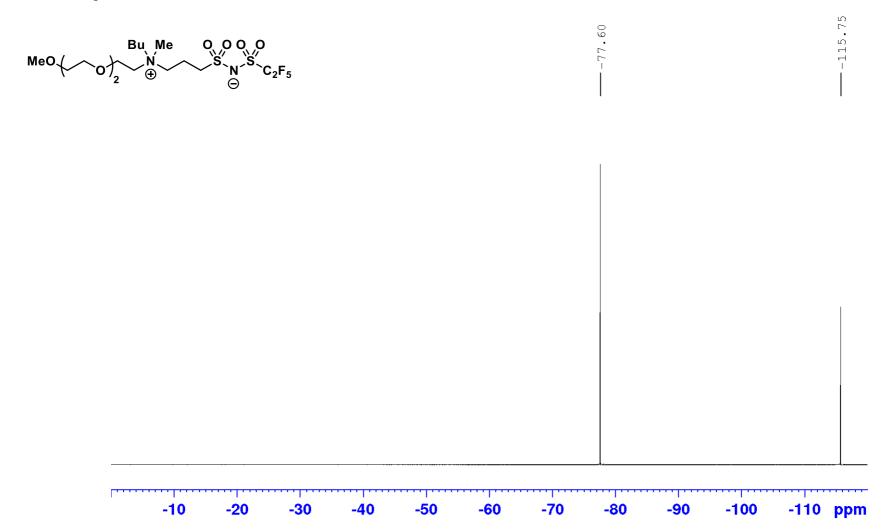
-99.0 - 999.0

Elements Set 1:

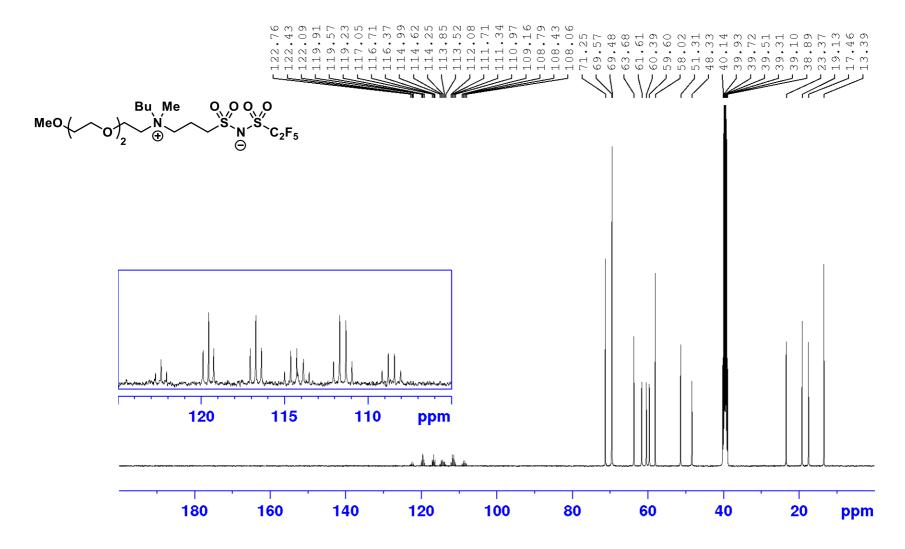

Symbol 0 Na S 2 0 Min 0 3 8 0 2 Max 400 1000 2

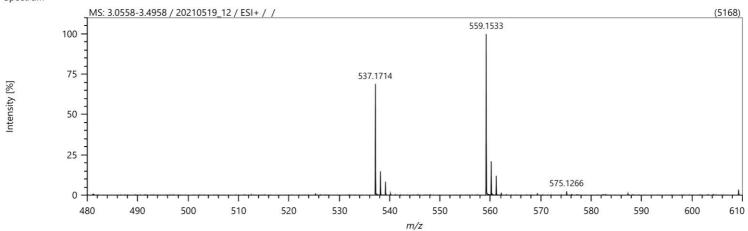

DBE:


Charge:


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
587.26365	C22 H46 N2 O8 F3 S2	587.26422	-0.57	-0.97	-0.5
609.24563	C22 H45 N2 O8 F3 Na S2	609.24616	-0.53	-0.87	-0.5

¹H NMR spectrum of ZIL 3c

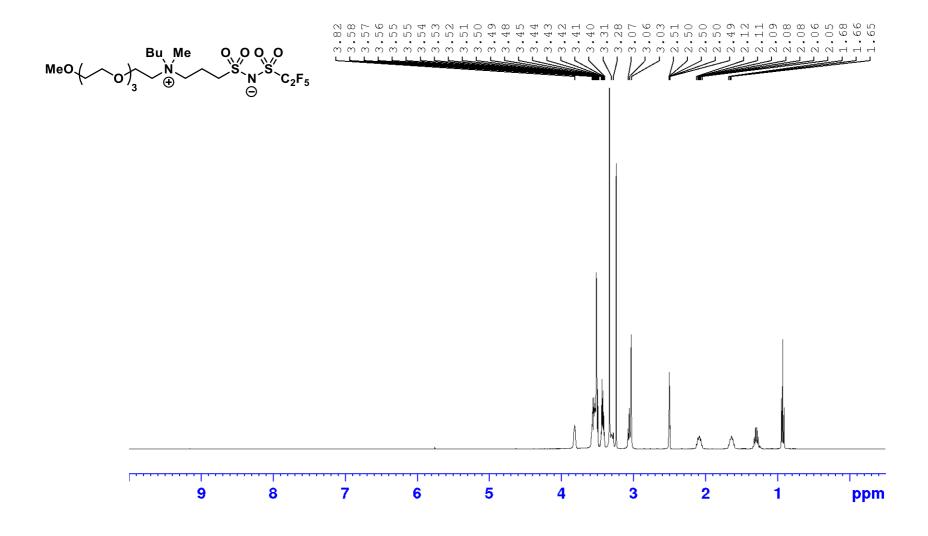


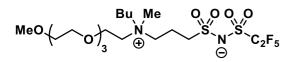


¹³C NMR spectrum of ZIL 3c

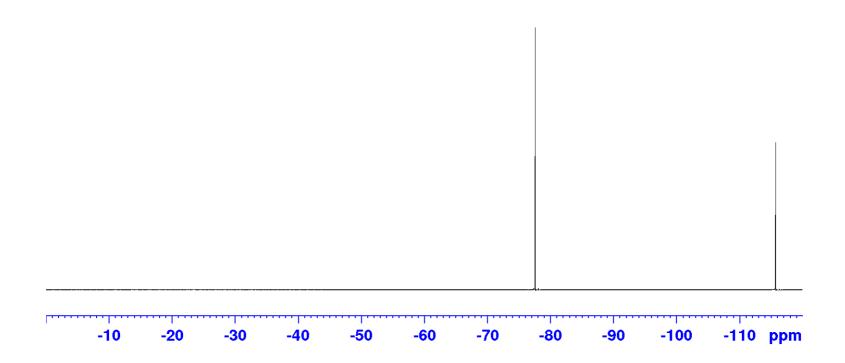
Mass spectrum of ZIL 3c

Spectrum

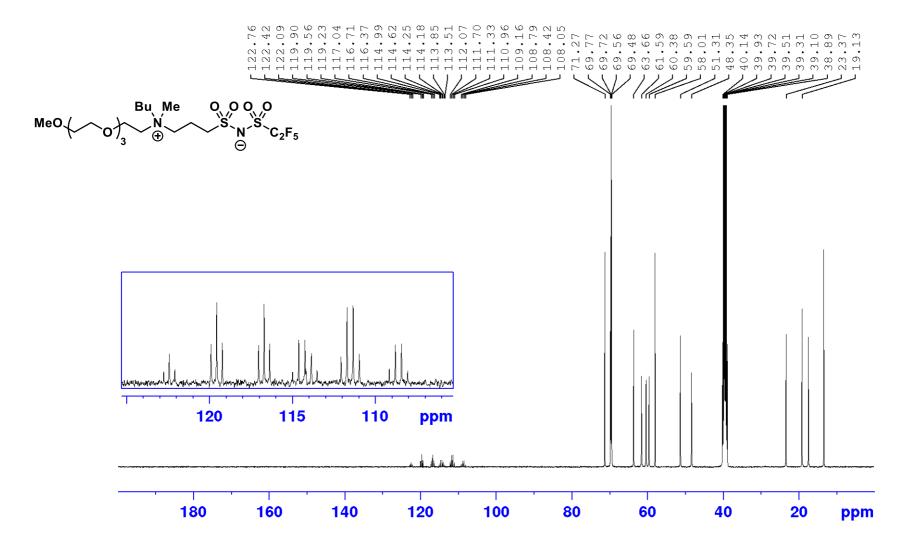


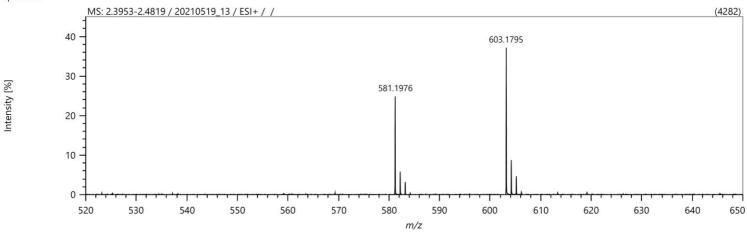

Elemental Composition

Elements Set 1: **Parameters** Tolerance: ±2.00 ppm Symbol Н Ν 0 S Na Electron: Odd/Even Min 0 0 5 2 2 0 1000 Charge: Max 400 DBE: -99.0 - 999.0


Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
537.17141	C17 H34 N2 O7 F5 S2	537.17221	-0.80	-1.48	-0.5
559.15332	C17 H33 N2 O7 F5 Na S2	559.15415	-0.84	-1.50	-0.5

¹H NMR spectrum of ZIL 4c





¹³C NMR spectrum of ZIL 4c

Mass spectrum of ZIL 4c

Spectrum

Elemental Composition

Parameters		Elements S	Set 1:							
Tolerance:	±2.00 ppm	Symbol	C	Н	F	Ν	0	S	Na	
Electron:	Odd/Even	Min	0	0	5	2	7	2	0	
Charge:	+1	Max	400	1000	5	2	8	2	1	
DBE:	-99.0 - 999.0	(-								

Mass	Formula	Calculated Mass	Mass Difference [mDa]	Mass Difference [ppm]	DBE
581.19756	C19 H38 N2 O8 F5 S2	581.19843	-0.87	-1.49	-0.5
603.17952	C19 H37 N2 O8 F5 Na S2	603.18037	-0.85	-1.41	-0.5