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1. Determination of the Quantum Yield 

The photoluminescence quantum yields (Φ) values of chromophores in degassed 

CH3CN/H2O solutions were measured referenced to Quinine Sulphate (Φst = 0.54 in 0.1M 

H2SO4)
1 by using the following equation (1): 

𝛷𝑥 =  𝛷𝑠𝑡  ×  [
𝐴𝑠𝑡

𝐴𝑥
]  × [

𝐼𝑥

𝐼𝑠𝑡
]  ×  [

𝜂𝑥
2

𝜂𝑠𝑡
2 ]                            (1) 

Subscripts “x” and “st” stands for unknown and standard (Quinine Sulphate) sample, 

respectively; Φ for quantum yield, A for absorbance, η for the refractive index of the 

solvents, I is the area under the fluorescence spectra on an energy scale.  

2. Preparation of Fluorometric Titration Solutions 

The sensing experiments were carried out by monitoring the fluorescence quenching 

behaviour of the AIE-active compounds 1 and 3 in CH3CN/water mixtures (fw = 80 vol%) and 

2 and 4 in CH3CN/water mixtures (fw = 90 vol%). The interaction of N-arylated ferrocenyl 

pyrazole chromophores with nitroaromatics was studied by adding an appropriate volume of 

10 μM aqueous solutions of picric acid (PA) in gradually increasing amount. For each addition, 

at least three fluorescence spectrums were recorded repeatedly at 298K to obtain concordant 

value. The fluorescence spectra of the resultant mixtures were then recorded immediately at 

room temperature with an excitation wavelength of 365 nm, and the emission data were 

collected in the wavelength range of 400–550 nm. 

3. Calculation of Stern-Volmer Fluorescence Quenching (%) Constant  

The Stern–Volmer relationship establishes the correlation of intensity changes with the 

quencher concentration [Q] was calculated using the equation (2) as follows: 

𝐼0

𝐼
= 1 + 𝐾𝑆𝑉  [𝑄]                                    (2) 
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Where I0 is the initial intensity of the sensors and I is the intensity after addition of a 

fixed volume of analytes. Stern-Volmer constants (KSV) were obtained for all the cases, I0/I vs 

[PA] plot is linear when the concentration of PA is low. 

4. Detection Limit 

The detection limit was calculated based on the fluorescence titration. The emission 

spectrum of N-arylated ferrocenyl pyrazole as a function of its increasing concentration was 

measured five times, and the standard deviation of blank measurement was achieved. To gain 

the slope, the ratio of emission intensity at 435 nm in (1:8 and 1:9 v/v) CH3CN/water was 

plotted against the concentration of PA. The detection limit was calculated using the following 

equation (3).2  

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 = 3𝜎
𝐾⁄                    (3) 

Where σ is the standard deviation of blank measurement, and K = slope of the plot 

between the ratio of emission intensity versus [PA]. 

5. Chan-Lam C-N cross coupling mechanism for synthesis of N-arylated ferrocenyl 

pyrazole 

Initially, the ligand exchange of copper(II) acetate with pyrazole with the aid of a base 

forms the intermediate ‘a’ followed by transmetallation of aryl boronic acid-producing the 

Cu(II) complex ‘b’; then reductive elimination of the Cu(II) complex delivers the target 

products and copper(0) species (Scheme S1). Simultaneously, the oxidation of Cu(II) complex 

in the presence of ambient oxygen is also possible, generating the copper(III) species which 

provides the products and copper(I) by reductive elimination. Finally, the copper(0) or 

copper(I) species could be oxidized to the active copper(II) species if the coupling proceeds 

through a catalytic manner.3-4 
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Scheme S1. The reaction mechanism for the synthesis of N-arylated ferrocenyl pyrazoles 1-4. 

6. FT-IR Spectral Studies 

The N-arylated ferrocenyl pyrazole was characterized by FT-IR spectroscopy and the 

obtained spectra are shown in Fig.. S1. The weak bands observed at 3118-3050 cm-1 for all the 

compounds are attributed to the aromatic ν(C–H) vibrations. Apart from these, strong 

characteristic bands at 1600-1570 cm−1 and 1550-1510 cm−1 for the compounds confirmed the 

presence of ν(C=C) and ν(C=N) indicate that the presence of the pyrazole core appeared. 

Furthermore, the absorption medium band is at 1010-1030 cm–1 due to ν(N–N) in all the 

pyrazole derivatives. The C–H bending mode of the ferrocene ring was observed the band at 

800-850 cm-1 for all the compounds.5 
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Fig. S1 FT-IR spectra of N-arylated ferrocenyl pyrazoles 1-4. 

7. Solid-State UV-Vis Spectra (DRS) 

UV-Vis-NIR diffuse reflectance spectra of N-arylated ferrocenyl pyrazole 1-4 exhibits 

strong absorption in the visible light region at the transfer of charge involving the transition 

with maximum absorption at 541 (1), 558 (2), 558 (3) and 541(4) nm is due to the contribution 

of LMCT band, the compound is from 300–900 nm which proves that there is an absorption in 

most of the visible region (Fig. S2). The cut-off wavelengths observed are found to vary from 

sample to sample and are the lowest for the sample at N-arylated ferrocene pyrazole. 
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(𝛼ℎ𝜈)2 = 𝐴(ℎ𝜈 − 𝐸𝑔)            (2) 

The relation between the absorption coefficient (α) was calculated using the Kubelka–

Munk equation6 and the incident photon energy (ℎ𝜈) can be determined by using Tauc’s 

relationship.7 To experimentally determine the optical energy gap, 𝐸𝑔 of the investigated  

N-arylated ferrocene pyrazole, one can plot (αℎ𝜈)2 vs the photon energy (ℎ𝜈) using the optical 

absorption data, as shown in (Fig. S3). The optical band gap at 4.09 (1), 3.60 (2), 3.38 (3) and 

2.72 (4) eV, for these band gap can be effectively modulated by varying the substituents 

without changing the ferrocene pyrazole moiety.  

 

Fig. S2 DRS-UV-Vis absorption spectra of  N‒arylated ferrocenyl pyrazoles 1-4. 
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Fig. S3 Plots of (αhυ)2 versus photon energy hυ for N‒arylated ferrocenyl pyrazoles 1-4. 

 

Fig. S4 1H NMR spectrum of N-arylated ferrocenyl pyrazole 1 in CDCl3 . 
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Fig. S5 13C NMR spectrum of N-arylated ferrocenyl pyrazole 1 in CDCl3. 

 

Fig. S6 19F NMR spectrum of N-arylated ferrocenyl pyrazole 1 in CDCl3. 
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Fig. S7 1H NMR spectrum of N-arylated ferrocenyl pyrazole 2 in CDCl3. 

 

Fig. S8 13C NMR spectrum of N-arylated ferrocenyl pyrazole 2 in CDCl3. 
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Fig. S9 19F NMR spectrum of N-arylated ferrocenyl pyrazole 2 in CDCl3. 

 

 

Fig. S10 1H NMR spectrum of N-arylated ferrocenyl pyrazole 3 in CDCl3. 
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Fig. S11 13C NMR spectrum of N-arylated ferrocenyl pyrazole 3 in CDCl3. 

 

Fig. S12 19F NMR spectrum of N-arylated ferrocenyl pyrazole 3 in CDCl3. 
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Fig. S13 1H NMR spectrum of N-arylated ferrocenyl pyrazole 4 in CDCl3. 

 

Fig. S14 13C NMR spectrum of N-arylated ferrocenyl pyrazole 4 in CDCl3. 
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Fig. S15 19F NMR spectrum of N-arylated ferrocenyl pyrazole 4 in CDCl3.  

 

Fig. S16 GC-Mass spectrum of N-arylated ferrocenyl pyrazole 1. 
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Fig. S17 GC-Mass spectrum of N-arylated ferrocenyl pyrazole 2. 

 

Fig. S18 GC-Mass spectrum of N-arylated ferrocenyl pyrazole 3. 
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Fig. S19 GC-Mass spectrum of N-arylated ferrocenyl pyrazole 4.  

Fig. S20 The planarity of the N-arylated ferrocenyl pyrazole molecules 2-4 (measured by its 

torsion or dihedral angle Φ between ferrocene and pyrazole ring).  
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Fig. S21 Crystal-Packing diagram for N-arylated ferrocenyl pyrazoles 2-4. 
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 Fig. S22 The π–π stacking interactions in N-arylated ferrocenyl pyrazoles 2-4. 

Fig. S23 Optimized structure of N-arylated ferrocenyl pyrazoles 1-4 calculated at B3LYP/6-

31+G** basis set. 
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Fig. S24 UV–Vis absorption spectra of N-arylated ferrocenyl pyrazoles 1-4 in CH3CN 

solution (1×10-5 M). 

 

Fig. S25 UV-Vis absorption spectra of the N-arylated ferrocenyl pyrazole 2 in various 

polarity solvents (1×10-5 M). 
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Fig. S26 UV-Vis absorption spectra of the N-arylated ferrocenyl pyrazole 3 in various 

polarity solvents (1×10-5 M). 

 

Fig. S27 UV-Vis absorption spectra of the N-arylated ferrocenyl pyrazole 4 in various 

polarity solvents (1×10-5 M). 
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Fig. S28 The UV-Visible spectra of N‒arylated ferrocenyl pyrazole 1-4 (Insets:  different 

CH3CN/water fractions (fw) at a concentration of 1x10–4 M). 
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Fig. S29 The emission spectra of N‒arylated ferrocenyl pyrazoles 1-4 in CH3CN solution 

(1×10-5 M). 

 
Fig. S30 The PL spectra of N‒arylated ferrocenyl pyrazole 2 (Insets:  different water 

fractions (fw) at a concentration of 1x10–5 M).  
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Fig. S31 The PL spectra of N‒arylated ferrocenyl pyrazole 3 (Insets:  different water fractions 

(fw) at a concentration of 1x10–5 M). 

 

Fig. S32 The PL spectra of N‒arylated ferrocenyl pyrazole 4 (Insets:  different water fractions 

(fw) at a concentration of 1x10–5 M). 
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Fig. S33 The UV-vis absorption spectra titration of N-arylated ferrocenyl pyrazoles 1-4 at a 

concentration of 1x10–6 M CH3CN/water mixture with the addition of different 

concentrations of PA in CH3CN solution. 
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Fig. S34 Cyclic voltammetry of N-arylated ferrocenyl pyrazole 1-4 with different 

nitroaromatics for with and without AIE state.   
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Fig. S35 Histogram of (Iᴏ−I)/I for compound 1, where Iᴏ and I equal the max intensity of PL spectra at 

quenching substrate. 
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Fig. S36 The stern-Volmer plot of I0/I versus picric acid concentrations of the suspension in 

aqueous solution for N‒arylated ferrocenyl pyrazoles 1-4. 
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Fig. S37 Benesi-Hildebrand plot for N-arylated ferrocenyl pyrazoles 1-4 response to picric acid. 
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Fig. S38 The calibration plot of picric acid with a limit of detection for N‒arylated ferrocenyl 

pyrazoles 1-4. 
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Fig. S39  HR-TEM images of AIE-aggregates for N-arylated ferrocenyl pyrazoles 2-4 at 0%, 

80% and 90% of water fraction.  
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Table S1. Crystal data and structure refinement parameters for N-arylated ferrocenyl pyrazoles 

2-4 

 

  

Identification code CF3 (2) CN (3) NO2 (4) 

CCDC No. 1530715 1456686 1530713 

Empirical formula  C21H14F6FeN2 C21H14F3FeN3 C20H14F3FeN3O2 

Formula weight  464.19 421.20 441.19 

Temperature K 296(2) K 296(2) K 296(2) K 

Wavelength Å 0.71073 0.71073 0.71073 

Crystal system  Monoclinic Triclinic Monoclinic 

Space group  P21/c P1̅ P21/n 

a, Å 12.1430(9) 9.6659(8) 10.0460(7) 

b, Å 10.9621(9) 10.9560(12) 19.2919(16) 

c, Å 15.5642(14) 10.9885(9) 10.2577(8) 

α,° 90° 101.657(4)° 90° 

β,° 112.394(4)° 115.548(3)° 109.768(5)° 

γ,° 90° 107.868(4)° 90° 

Volume Å3 1915.6(3) 920.39(15) 1870.9(2) 

Z 4 2 4 

Density (calculated) Mg/m3 1.610 1.520 1.566 

Absorption coefficient mm-1 0.854 0.859 0.857 

F(000) 936 428 896 

Crystal size 0.30 x 0.20 x 0.20 0.35 x 0.30 x 0.30 0.35 x 0.30 x 0.30 

Theta range for data collection° 3.27 to 28.35° 2.12 to 28.19° 2.11 to 28.33° 

Reflections collected / unique 15188 / 4754 7386 / 4369 14748 / 4639 

Data / restraints / parameters 4754 / 0 / 271 4369 / 0 / 253 4639 / 0 / 262 

Goodness-of-fit on F2 1.042 0.830 1.026 

Final R indices [I>2σ(I)] R1 = 0.0521,  

wR2 = 0.1443 

R1 = 0.0549,  

wR2 = 0.1813 

R1 = 0.0568,  

wR2 = 0.1497 

R indices (all data) R1 = 0.0683,  

wR2 = 0.1592 

R1 = 0.0780,  

wR2 = 0.2189 

R1 = 0.0983, 

wR2 = 0.1786 
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Table S2. Structural parameters for N-arylated ferrocenyl pyrazoles 2-4 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3. The electrochemical data for N-arylated ferrocenyl pyrazoles 1-4 

 

  

 CF3 (2) CN (3) NO2 (4) 

Average Fe-C 2.039 2.038 2.033 

Fe-Cent(1) 1.643 1.645 1.643 

Fe-Cent(2) 1.651 1.655 1.651 

Cent(1)-Fe(1)-Cent(2) 177.05 178.65 179.35 

N-N 1.361(3) 1.366(4) 1.365(4) 

N-C 1.430(3) 

+ 

1.426(4) 1.421(4) 

+ N(1)-C(7) 1.364(4) 1.364(4) 1.363(4) 

N(2)-C(9) 1.327(4) 1.316(5) 1.317(4) 

C(11)-C(12)-N(1) 106.2(2) 106.3(3) 122.8(3) 

C(11)-N(1)-C(6) 128.38(2

) 

129.4(2) 129.5(3) 

N(1)-C(5)-C(6) 119.4(2) 119.3(3) 118.4(3) 

Cp−pyrazole twist angle 71.90 34.45 43.08 

N(2)-N(1)-C(4)-C(5), ϕ1 -47.0 -34.35 49.0 

C(10)-N(1)-C(6)-C(5), ϕ2 -43.6 -51.4 45.0 

The interatomic distances are reported in angstroms ( Å); angles are (°) 

(in degrees. 

Entry Epa 

(mV) 

Epc 

(mV) 

ipc/ipa 

(mV) 

E1/2 

(mV) 

ΔE 

(mV) 

Ferrocene 532 453 0.91 492 79 

H (1) 708 645 1.0 694.5 67 

CF3 (2) 742 668 1.0 705 74 

CN (3) 730 652 1.1 691 78 

NO2 (4) 710 634 1.1 672 76 
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Table S4. Comparison of experimental (CV/UV-Vis) and the calculated (DFT) HOMO- 

LUMO values for N-arylated ferrocenyl pyrazoles 1-4 

 

Table S5. Solvatochromic data [ῦmax (Cm–1) of the charge transfer band] for N‒arylated 

ferrocenyl pyrazoles 1-4 in different solvents with * values by Kamlet and Taft 

 

  

Entry Experimental data                       Calculated (TD-DFT) data (gas phase) 

  (nm)a 
bEHOMO 

(eV) 

bELUMO
 

(eV) 

cEg
optical 

(eV) 

dEHOMO 

(eV) 

dELUMO
 

(eV) 

Oscillator 

Strength, f 

dB.G  

(eV) 

H (1) 360 -5.165 -1.721 3.444 -5.669 -1.239 0.0260 3.9300 

CF3 (2) 379 -5.191 -1.92 3.271 -5.706 -1.711 0.0121 3.5283 

CN (3) 374 -5.174 -1.859 3.315 -5.716 -2.122 0.0309 3.9348 

NO2 (4) 384 -5.149 -1.85 3.229 -5.732 -3.236 0.0166 3.1007 
aCalculated as λonset values are from absorption graphs in CH3CN solvent 
bCalculated as HOMO and LUMO level obtained from CV using Eqs 
bEoptical onset values obtained from oxidation peak in a cyclic voltammogram. 

EHOMO = −𝒆[𝑬𝒐𝒙
𝒐𝒏𝒔𝒆𝒕   +  𝟒. 𝟒]      

ELUMO = 𝑬𝐠
𝒐𝒑𝒕𝒊𝒄𝒂𝒍

 + EHOMO 
cCalculated as optical band gap calculated from absorption onset/edge using the equation 

𝒆[𝑬𝐠
𝒐𝒑𝒕𝒊𝒄𝒂𝒍

 ] = 1240/onset. 

d Theoretically calculated HOMO, LUMO and band gap values from DFT calculations 

Solvents      π* 
   Δῦmax 

H (1) CF3 (2) CN (3) NO2 (4) 

THF 0 0.55 0.58 35.33 35.08 36.96 34.84 

DCM 0.13 0.1 0.82 35.08 34.96 35.21 34.96 

CHCl3 0.2 0.1 0.58 36.23 37.17 37.03 36.76 

EtOAc 0 0.45 0.54 45.05 36.36 36.36 36.49 

MeOH 1 0.66 0.69 45.24 36.49 36.49 36.1 

EtOH 0.83 0.75 0.62 43.1 42.19 41.32 41.49 

ACN 0.35 0.4 0.75 36.36 41.32 42.19 45.05 

DMF 0 0.71 0.88 43.29 44.84 45.45 42.37 

DMSO 0 0.76 1 47.16 48.78 47.39 49.5 
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Table S6. Fluorescence lifetime details for N‒arylated ferrocenyl pyrazoles 1-4 

Entry Excitation 

(nm) 

1 2 3    χ2 

H (1) 375 3.215 8.651 4.916 2.247 0.057 0.010 1.299 

CF3 (2) 375 3.716 9.394 4.623 2.049 0.069 0.011 1.096 

CN (3) 375 1.729 7.581 3.724 1.847 0.024 0.005 1.086 

NO2 (4) 375 5.627 9.858 3.160 2.095 0.122 0.051 1.403 

 

 

Table S7. Selected transitions obtained from B3LYP/6-31+G** level theory for N‒arylated 

ferrocenyl pyrazoles 1-4 

 

  

Entry (nm) D.M 

(Debye) 

Oscillator 

strength, f 

Energy 

(eV) 

Major Contribution  

H (1) 315.48 7.82 0.0260 3.9300 

H →L     (51.04%) 

H-1 →L (19.93%) 

H →L+2     (8.5%) 

CF3 (2) 351.40 6.72 0.0121 3.5283 
H →L     (67.45%) 

H →L+2 (10.04%) 

CN (3) 315.10 7.41 0.0309 3.9348 
H-2 →L (86.46%) 

H-3 →L   (7.39%) 

NO2 (4) 399.86 7.81 0.0166 3.1007 H-3→L  (96.86%) 
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Table S8. Density surfaces of the frontier orbitals involved in the electronic transitions of the 

N‒arylated ferrocenyl pyrazoles 1-4 derived from TD-DFT at iso surface value of 0.02 a.u   
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