Electronic Supplementary Information for

Three-dimensional polyaniline architecture enabled by hydroxyl-terminated Ti$_3$C$_2$T$_x$ MXene for high-performance supercapacitor electrodes

Lin Wang*, Yu Tan, Zhifeng Yu, Hua Tian*, Yuannan Lai, Yunyi He, Hanqing Xiang, Jianwei Wang, Wenjun Zhao and Lin Zhang

Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China

Corresponding authors. E-mail: chinalinkwuang@126.com (L. Wang), tianhuwl@163.com (H. Tian).
Fig. S1 XRD patterns of Ti₃AlC₂ before NaOH etching processes and etched Ti₃AlC₂ after NaOH etching processes.

Fig. S2 SEM image, EDS spectra and element mapping distributions of Ti₃AlC₂ before NaOH etching processes.
Fig. S3 SEM image, EDS spectra and element mapping distributions of etched Ti$_3$AlC$_2$ after NaOH etching processes.

Fig. S4 Comparison of electrochemical performance for all the samples: (a) CV curves at 10 mV s$^{-1}$. (b) GCD curves at 1 A g$^{-1}$.
Fig. S5 The determination of capacitive contributions for PANI at (a) 10, (b) 20, (c) 30,
(d) 40 and (e) 50 mV s⁻¹.
Fig. S6 The determination of capacitive contributions for PANI/P-TiC2Tx at (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50 mV s⁻¹.
Fig. S7 The determination of capacitive contributions for PANI/H-TiC$_2$Tx at (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50 mV s$^{-1}$.
Fig. S8 The optimization of PANI/H-Ti$_3$C$_2$Tx with different mass ratio of PANI in composites: (a) TG curves. (b) GCD curves.

Fig. S9 Galvanostatic charge-discharge tests of PANI and PANI/Ti$_3$C$_2$Tx at various current densities: (a) GCD curves of PANI. (b) GCD curves of PANI/P-Ti$_3$C$_2$Tx. (c) GCD curves of PANI/H-Ti$_3$C$_2$Tx. (d) Comparison of specific capacitances at different current densities.