High electron mobility and transverse negative magnetoresistance in van der Waals material Nb₂GeTe₄

Xue Han,^a Zhongnan Guo,^{*a} Long Chen,^{b,c} Cheng Cao,^{b,c} Gang Wang,^{b,d,e} and Wenxia Yuan^{*a}

^a Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China

^b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

^d School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

^e Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

*Authors to whom correspondence should be addressed: <u>guozhongn@ustb.edu.cn</u> and <u>wxyuanwz@163.com</u>

Empirical formula	Nb ₂ GeTe ₄
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_{1}/n$
	$a = 6.4601(8)$ Å, $\alpha = 90^{\circ}$
Unit cell dimensions	$b = 7.9259(10)$ Å, $\beta = 97.843(4)^{\circ}$
	$c = 14.2127(17)$ Å, $\gamma = 90^{\circ}$
Volume	720.91(15) Å ³
Ζ	1
θ range for data collection	2.893 to 28.299°
Index ranges	-6≤h≤8, -10≤k≤10, -18≤l≤18
Reflections collected	7635
Independent reflections	1742 [$R_{int} = 0.0513$]
Completeness to $\theta = 25.242^{\circ}$	96.8%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1742 / 0 / 64
Goodness-of-fit	1.180
Final R indices $[I > 2\sigma(I)]$	$R_{obs} = 0.1242, wR_{obs} = 0.3311$
R indices [all data]	$R_{all} = 0.1251, wR_{all} = 0.3318$

Table S1. Crystal data and structure refinement for Nb_2GeTe_4 at 293 K.

$$\begin{split} \hline R &= \Sigma ||F_o| - |F_c|| \ / \ \Sigma |F_o|, \ wR &= \{\Sigma [w(|F_o|^2 - |F_c|^2)^2] \ / \ \Sigma [w(|F_o|^4)] \}^{1/2} \ \text{and} \\ w &= 1/[\sigma^2(Fo^2) + (0.1846P)^2 + 170.5381P] \ \text{where} \ P &= (Fo^2 + 2Fc^2)/3 \end{split}$$

Label	X	у	Z	Occupancy	U _{eq} *
Te(1)	2453(3)	7395(2)	1162(2)	1	4(1)
Te(2)	-1751(3)	10123(2)	3838(2)	1	3(1)
Te(3)	-2556(2)	10126(2)	1153(2)	1	3(1)
Te(4)	1725(2)	12426(2)	1154(2)	1	3(1)
Nb(1)	1060(3)	9656(3)	2494(2)	1	2(1)
Nb(2)	6066(3)	7858(3)	2499(2)	1	1(1)
Ge(1)	12(4)	6263(3)	2510(2)	1	3(1)

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for Nb₂GeTe₄ at 293 K with estimated standard deviations in parentheses.

 $^{*}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S3. Anisotropic displacement parameters ($Å^2 \times 10^3$) for Nb₂GeTe₄ at 293 K with estimated standard deviations in parentheses.

Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Te(1)	4(1)	2(1)	6(1)	-1(1)	2(1)	0(1)
Te(2)	3(1)	2(1)	5(1)	-3(1)	1(1)	0(1)
Te(3)	2(1)	2(1)	6(1)	-2(1)	2(1)	1(1)
Te(4)	2(1)	2(1)	6(1)	1(1)	3(1)	0(1)
Nb(1)	0(1)	-1(1)	8(2)	0(1)	3(1)	-1(1)
Nb(2)	0(1)	-1(1)	5(2)	0(1)	2(1)	0(1)
Ge(1)	-1(2)	0(2)	10(2)	0(1)	2(1)	0(1)

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

T(K)	$R_{\rm H}$ (cm ³ C ⁻¹)	$\rho_{xx} \left(\Omega \cdot cm \right)$	μ (cm ² V ⁻¹ s ⁻¹)	n (×10 ¹⁸ cm ⁻³)
5	-2.37	2.7092	0.88	2.64
10	-1.96	0.8318	2.36	3.19
50	-1.69	0.0278	60.98	3.69
100	-1.51	0.0049	307.73	4.13
150	-1.31	0.0028	476.23	4.77
200	-1.15	0.0022	518.28	5.45
300	-0.88	0.0021	424.37	7.11

Table S4. The details of Hall resistivity data plotted in Figure 3.

Figure S1. EDS measurement indicates the atomic ratios of Nb, Ge and Te elements.

Figure S2. The photo of Nb₂GeTe₄ thin flakes, which can be easily obtained by mechanical exfoliation using Scotch-tape method.

Figure S3. UV-vis-NIR absorption spectra (inset) and the plots of $(ahv)^{1/2}$ versus photo energy of Nb₂GeTe₄