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Experimental section

Materials 

Diatomite (Table S1, Tianjin Guangfu Chemical Reagents Co., Ltd, Tianjin, China), 

aluminum hydroxide (Al(OH)3, 99 wt.%, Tianjin Fuchen Cemical Reagents Company, 

Tianjin, Chian), aluminum hydroxide (Al(OH)3, 76.5 wt.%, Alfa Aesar, Heysham, 

UK), Ludox® HS-40 colloidal silica (40 wt.%, Sigma-Aldrich, Los Angeles; USA ), 

copper (II) nitrate trihydrate (Cu(NO3)2∙H2O, purity above 99.5 wt.%, Tianjin Fuchen 

Chemical Reagents Company, Tianjin, China), sodium hydroxide(NaOH, 98 wt.%, 

Beijing Chemical Works, Beijing, China) and N,N,N,-trimethyl-1-adamantane 

ammonium hydroxide (TMAdaOH, 25 wt.%, Beijing Innochem Chemical Reagent Co., 

Ltd, Beijing, China).

Synthesis of SSZ-13-D using diatomite as silicon source

SSZ-13-D zeolites with different silicon content or different crystallization time were 

synthesized via a hydrothermal method as described as below. Typically, 0.2 g NaOH 

and 3 g TMAdaOH were dissolved in 6.65 g deionized water. Thereafter, 0.156 g 

Al(OH)3 (99 wt.%) was added. After stirring for 1 h, 3 g diatomite was mixed with the 

final solution, followed by stirring for 3 h. The final composition of the typical synthesis 

mixture was 0.5 Al2O3: 11 SiO2: 2.5 NaOH: 1.8 TMAdaOH: 250 H2O. The mixture 

was transferred into a 20 mL autoclave and the hydrothermal synthesis was then carried 

out at 160 °C under static condition for different crystallization time (0-72 h). The 

obtained sample was centrifuged and washed several times with deionized (DI) water, 

then dried overnight at 80 °C, followed by calcination at 600 °C for 8 h. The as-

synthesized SSZ-13 zeolite is denoted as SSZ-13-D, in which D stands for diatomite.

Synthesis of SSZ-13-S and Fe-SSZ-13 using silica sol as silicon source

SSZ-13-S zeolites with different crystallization time were synthesized via a 

hydrothermal method as described as below. Typically, 0.2 g NaOH and 3 g TMAdaOH 

were dissolved in 7.15 g deionized water. Thereafter, 0.1 g Al(OH)3 (76.5 wt.%) was 

added under stirring. Afterwards, 1.825 g silica sol was added to the mixture under 
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stirring. The molar ratio of the final mixture was 0.5 Al2O3: 12 SiO2: 5 NaOH: 3.57 

TMAdaOH: 522 H2O. The mixture was transferred into a 20 mL autoclave and the 

hydrothermal synthesis was then carried out at 160 °C under static condition for 

different crystallization time (0-120 h). The obtained sample was centrifuged and 

washed several times with deionized (DI) water, then dried overnight at 80 °C, followed 

by calcination at 600 °C for 8 h. The as-synthesized SSZ-13 zeolite is denoted as SSZ-

13-S, in which D stands for silica sol. 

The control Fe-SSZ-13 crystallized from silica sol was synthesized according to the 

literature 1. The synthesis procedure is the same to that of SSZ-13-S besides that 0.03 g 

Fe(NO3)3∙9H2O was added into the mixture before the addition of TMAdaOH and silica 

sol. The molar ratio of the final reaction mixture was 0.5 Al2O3: 12 SiO2: 5 NaOH: 3.57 

TMAdaOH: 0.07 Fe: 522 H2O. Finally, the mixture was transferred into a 20 mL 

Teflon-lined stainless-steel autoclave heating in an oven at 160 °C under static 

conditions for different crystallization time (0-96 h). The as-synthesized SSZ-13 zeolite 

denoted as Fe-X h (X represents the different crystallization time) was centrifuged, and 

washed several times with water and ethanol, then dried overnight at 80 °C, followed 

by calcination at 600 °C for 8 h.

Preparation and high temperature hydrothermal ageing of Cu-SSZ-13 catalysts

Cu-SSZ-13 catalysts were prepared via an ion exchange method. The detail steps were 

listed in supplementary information. The SSZ-13 zeolites were ion-exchanged twice 

with 1 M NH4NO3 at 80 °C to mostly remove Na+ ions for getting NH4-SSZ-13. Then, 

copper ions were introduced by the ion-exchange of NH4-SSZ-13 with aqueous solution 

of 0.05 M Cu(NO3)2 at 80 °C for 1 h. Thereafter, the zeolite slurries were filtered, 

washed with DI water and dried at 80 °C overnight. Subsequently, the samples were 

calcined in a muffle oven at 550 °C for 5 h. The SSZ-13-S and SSZ-13-D exchanged 

with copper ions were denoted as Cu-SSZ-13-S and Cu-SSZ-13-D, respectively. To 

investigate the hydrothermal stability of the Cu-catalysts, Cu-SSZ-13-S and Cu-SSZ-

13-D were hydrothermally aged in flowing air containing 10 vol.% H2O at 750 °C for 

16 h and denoted as Cu-SSZ-13-S_HTA and Cu-SSZ-13-D_HTA, respectively.
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NH3-SCR catalytic test

SCR activity measurements of the catalysts were performed in a fixed-bed quartz 

reactor with an inner diameter of 6 mm. The catalysts of 0.1 g with particle size of 40-

60 mesh were placed in the tubular reactor. The reaction conditions were as follows: 

500 ppm NO, 500 ppm NH3, 5% O2, 5% H2O, N2 as balance gas. The total flow rate 

was 500 mL/min and thus a normal gaseous hourly space velocity (GHSV) of ~ 200,000 

h-1 (0.1 g catalysts were used for evaluation). The inlet and outlet gas compositions 

were monitored by a FTIR spectrometer (MKS, MultiGas 2030HS). NO conversion 

was calculated as NO% = (1− ([NO]out+[NO2]out)/([NO]in+[NO2]in)) × 100%, N2 

selectivity was calculated as N2%=(1-([NO2]out+2[N2O]out)/([NO]in+[NO2]in+[NH3]in) 

× 100%.

Characterization

The crystallinity and phase purity of the samples were characterized by power X-ray 

diffraction (XRD) on a Rigaku D-Max 2550 diffractometer (Rigaku Corporation, 

Tokyo, Japan) using Cu Kα radiation (λ = 1.5418 Å). The relative crystallinity was 

evaluated by comparing the sum of the peak areas ((at 2θ = 9.7°, 16.3°, 20.9°, 31.1° 

and 31.6°) of the synthesized samples. Back-scattering scanning electron microscopy 

images and scanning electron microscopy (SEM) images were measured with JEOL 

JSM-7800F (JEOL Ltd., Tokyo, Japan). Transmission electron microscopy (TEM) 

images were recorded on a Tecnai G2 S-Twin F20 (FEI Company, Oregon, USA). 

Chemical composition was determined with inductively coupled plasma (ICP) analyses 

carried out on a Perkin-Elmer Optima 3300 DV ICP instrument (PerkinElmer, Inc., 

Waltham, Massachusetts, USA) and an X-ray fluorescence (XRF) spectrometer 

(PANalytical-AXIOS, Amsterdam, Netherlands). Nitrogen adsorption/desorption 

measurements were carried out on a Micromeritics 2020 analyzer (Micromeritics 

Instrument Corp., Norcross, Georgia, USA) at 77.35 K after the samples were degassed 

at 350 °C under vacuum. The temperature-programmed desorption of ammonia (NH3-

TPD) experiments were performed using a Micromeritics AutoChemII 2920 automated 

chemisorption analysis unit (Micromeritics Instrument Corp., Norcross, Georgia, USA) 
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with a thermal conductivity detector (TCD) under helium flow. Solid-state 29Si NMR 

and 27Al NMR experiments were performed on Bruker Avance Neo 600Mz WB 

spectrometer with BBO MAS probe operating at a magnetic field strength of 14.1 T 

(Bruker Company, Karlsruhe, Germany). Fourier Transform infrared spectroscopy 

(FTIR) spectrums were measured on a Bruker FTIR IFS-80V/S with KBr pellets 

(Bruker Company, Karlsruhe, Germany), and a baseline correction was applied after 

measurement. The electron paramagnetic resonance (EPR) spectrum was obtained with 

a JES-FA200 (JEOL Ltd., Tokyo, Japan) to investigate Fe species. The EPR signals of 

Cu2+ species were recorded at 150 K on an EMXPLUS10/12 ESR spectrometer. 

(Bruker Company, Karlsruhe, Germany) in the region of 2200–3800 G. The H2-TPR 

experiments were performed on an AutoChemII 2920 analyzer (Micromeritics 

Instrument Corp., Norcross, Georgia, USA). The sample was pretreated in air 

atmosphere at 500 °C for 1 h before TPR was conducted in 10% H2/Ar at a flow rate of 

50 ml/min. X-ray photoelectron spectroscopy (XPS) spectra were measured using a 

Thermo ESCALAB 250 spectrometer (Thermo Scientific, New York, USA) with 

monochromatized Al Kα excitation. Ultraviolet -Visible diffuse reflection spectrums 

(UV-Vis DRS) were obtained in the range of 200-800 nm on a λ Lambda 950 

spectrometer (PerkinElmer, Massachusetts, USA) at the ambient temperature.
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Figures

Fig. S1 XRD analysis of (a) raw diatomite and (b) as-synthesized samples using 

diatomite as silicon source.

Fig. S2 The SEM images of SSZ-13-S crystallized at 120 h (a) and SSZ-13-D 

crystallized at 60 h (b).



7

Fig. S3 Time-dependent XRD patterns of Fe-SSZ-13 obtained at varied period of 

crystallization times.

Fig. S4 Nitrogen adsorption-desorption isotherms of Cu-SSZ-13-S and Cu-SSZ-13-D 

catalysts.
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Fig. S5 Back-scattering SEM image of Cu-SSZ-13-D catalyst.

Fig. S6 TEM images of (a) Cu-SSZ-13-S catalyst and (b) Cu-SSZ-13-D catalyst.
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Fig. S7 29Si MAS NMR spectra of Cu-SSZ-13-S and Cu-SSZ-13-D catalysts.

Fig. S8 27Al MAS NMR spectra of Cu-SSZ-13-S, C-SSZ-13-S_HTA, Cu-SSZ-13-D 
and Cu-SSZ-13-D_HTA catalysts.
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Fig. S9 The XRD patterns of fresh and aged Cu catalysts and the simulated XRD 

patterns of CuO and Fe2O3.
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Tables

Table S1. Chemical composition of diatomite determined by XRF.

Composition Si Al Fe Na Ca K Ti O

Wt.% 41.604 1.987 1.254 3.348 0.192 0.45 0.096 51.069

Table S2. The comparison of catalytic performance between Cu-SSZ-13-D and other 

CuFe-zeolites.

Sample
Si/Al, Cu wt %, 

Fe wt %
Test conditions

NO 
conversion 

≥90 %
note

Fe-Cu-SSZ-
13-1

3.73; 0.13; 0.089
1000 ppm NO, 1000 ppm NH3, 
3% O2, GHSV=50,000 h1

225–550 °C Ref [2]

Fe0.53 /Cu1.55 

-SSZ-13
5; 1.55; 0.53

500 ppm NO, 500 ppm NH3, 
5% O2, GHSV=50,000 h1

175–500 °C Ref [3]

FeCu-SSZ-
13M

/; 4.8; 0.5
500 ppm NO, 500 ppm NH3, 
5% O2, GHSV=180,000 h1

200–550 °C Ref [4]

CuFe-SSZ-
13

/; 2.71; 0.357

8.5% O2, 8.0% CO2, 7.25% 
H2O, 250 ppm NO2, 250 ppm 
NO, 500 ppm NH3, GHSV= 
50, 000 h−1

200–450 °C Ref [5]

Cu-SSZ-13-
D

9.7; 2.3; 0.89
500 ppm NO, 500 ppm NH3, 
5% O2, 5% H2O,   
GHSV=200,000 h1

200–550 °C
This 
work
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