Supporting Information

Transparent Photodetector Based on Polyoxometalate Modified Electrospun ZnO Homojunction Nanowires

Intersection Array

Yuxiao Zheng,^a Xueying Xu,^a Fengrui Li,^a Weilin Chen,^{*a} Jian Gong,^{*a} Chunlei Wang,^b

^a Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry,

Northeast Normal University, Changchun, 130024, China, E-mail addresses: chenwl@nenu.edu.cn

^b Library of Northeast Normal University, Changchun, 130024, China

Experimental method:

Synthesis of Na₈[HPW₉O₃₄] (PW₉)¹: Add 120 g of NaWO₄·2H₂O to 150 mL of deionized water, stir vigorously to dissolve it completely, and then add 3 mL of H₃PO₄ and 22 mL of glacial acetic acid in sequence. After vigorous stirring, the solution becomes turbid, and it becomes white after suction filtration. The crystal precipitation Na₈[HPW₉O₃₄], the structure diagram of its polyacid anion is shown in Figure S1.

Figure S1. PW₉ anion structure diagram.

Synthesis of Na₇[PW₁₁O₃₉] (PW₁₁)²: Add 72.5 g of NaWO₄·2H₂O and 2.84 g of Na₂HPO₄·2H₂O to 200 mL of deionized water, heat the solution to 80 ~ 90°C, and adjust the pH to 4.8 with concentrated nitric acid under vigorous stirring, then continue to heat and evaporate about 100 mL of the solvent, then cool to room temperature and extract with 100 mL of acetone. Repeat the extraction until the solution no longer contains nitrate ions, and finally a white precipitate Na₇[PW₁₁O₃₉] is obtained. The acid anion structure is shown in Figure S2.

Figure S2. PW_{11} anion structure diagram.

Synthesis of $H_3[PW_{12}O_{40}]$ (PW₁₂)³: Add 25 g of NaWO₄·2H₂O and 4 g of Na₂HPO₄·2H₂O to 150 mL of deionized water at 80 ~ 90°C. The solution is slightly turbid. Under vigorous stirring, add 25 mL of concentrated hydrochloric acid dropwise to the solution. At this time, the solution becomes clear. If the solution is light blue, add 1 to 2 drops of 3% hydrogen peroxide to the solution to make the solution clear. Continue heating for 30 s and then cool to room temperature. Transfer the solution in the beaker and a small amount of precipitated solids to a separatory funnel. Add 35 mL of ether to the separatory funnel for extraction, and then add 10 mL of 6 mol / L HCl for shaking. Remove the oily substance from the lower layer and heat it to evaporate in a water bath to obtain light yellow crystals $H_3[PW_{12}O_{40}]$. The structure of the polyacid anion is shown in Figure S3.

Figure S3. PW_{12} anion structure diagram.

Figure S4. Photograph of PW11@ZnO NWs photodetector.

Figure S5. Light transmittance of POMs@ZnO NWs device.

Figure S6. XPS full spectrum of pure ZnO NWs.

Figure S7. XPS full spectrum of PW₉@ZnO NWs.

Figure S8. XPS full spectrum of PW₁₁@ZnO NWs.

Figure S9. XPS full spectrum of PW₁₂@ZnO NWs.

Figure S10. XPS full spectrum of pure PW₉.

Figure S11. XPS full spectrum of pure PW_{11} .

Figure S12. XPS full spectrum of pure PW₁₂.

Figure S13. Mott-Schottky curve of PW₉@ZnO NWs.

Figure S14. Mott-Schottky curve of PW₁₂@ZnO NWs.

Figure S15. The I-t curve of the photodetector when the mass doping ratio of PW₉ is 1:10 and 1:20 (spinning time 1 min).

Figure S16. I-t curve of the photodetector when the mass doping ratio of PW₁₂ is 1:15 (spinning time 1 min).

Table S1. Comparison o	f characteristic par	ameters of ZnO-based UV PDs.
------------------------	----------------------	------------------------------

Photodetector	Bias	Power density	Darkcurren t	Photocurrent	On–off ratio	Δι	Rise time	Decay time	Transparency	Method	Ref.
ZnO nanofibers	1 V	77.5 μW∙cm⁻²	20 pA	6.5 μΑ	3.3 × 10 ⁵	6.5 μΑ	≈100 s	≈50 s	-	Electrospinning	4
ZnO homojunction	10.1	25 mW/.cm ⁻²	36.04	10 5 4	E 4	15.04				Understhermel	F
(Li-doped)	-10 V	25 mw cm	3.0 µA	19.5 µA	5.4	15.9 µA	-	-	-	нуогоспетты	3
ZnO homojunction	-5 V	0.25 mW⋅cm⁻²	112 nA	602 nA	5.4	490 nA	≈50 s	≈200 s	_	CVD	6
(Cu-doped)											
ZnO homojunction	-3 V	60 mW⋅cm⁻²	28.3 μA	930 µA	33	901.7 μA	15.2 s	20.3 s	-	Hydrothermal	7
(Sb-doped)											
Ag-doped ZnO	-	15-20mW∙cm ⁻²	0.1 nA	5.2 nA	52	5.1 nA	1.09 s	5 s	-	Electrochemical	8
nanowire										deposition	
ZnO thin film–Cu	0 V	0.8 mW⋅cm⁻²	1 pA	70 pA	70	69 pA	1 s	30 s		Spincoating	9
nanowires	1 V		30 pA	2.95 nA	98	2.95 nA	10.35 s	2 s			
ZnO-SnO ₂ NWs	10 V	0.45 mW⋅cm⁻²	1.7 pA	7.9 nA	4.6 × 10 ³	7.9 nA	32.2 s	7.8 s	>70%	Electrospinning	10
ZnO ultraporous film	5 V	100 μW·cm⁻²	3.6 nA	1.2 mA	3.3 × 10⁵	1.2 mA	250 s	150 s	-	Fame spray	11
										pyrolysis	
ZnO homojunction	0 V	2.5 mW⋅cm ⁻²	0.02 pA	0.5 nA	2.5 × 10 ⁴	0.5 nA	3.9 s	4.7 s	89%	Electrospinning	12
nanofibers											
Cu-CU2O /	0 V	70 mW∙cm⁻²					3.89 ms	4.12 ms	>80%	souttoring	13
POMs@7nO NWs	٥v	100 mW⋅cm-²	5.05 114	28.81 114	5.7	23,76 114	1.32 s	2.62 s	>70%	Electrospinning	This work
				-2002 MM		_3 V MA		1.01 3			

	01	O ₂	O _{total}	O _{lattice} (O ₁ /O _{total})	O _{O-H} (O ₂ /O _{total})	O _{O-H} /O _{lattice}
ZnO	8800	10000	18800	0.468	0.532	1.136
PW ₁₁ @ZnO	4250	17000	21250	0.2	0.8	4

Table S2. The area under the deconvoluted subpeaks from the high-resolution O1s spectra of ZnO and PW₁₁@ZnO.

references

- 1. W.H. Fang, W.D. Wang, G.Y. Yang. A novel poly(polyoxometalate) built by $\{Cu_9\}/\{Cu_5\}$ clusters and $\{PW_9\}/\{PW_{10}\}/\{PW_{11}\}$ lacunary fragments. *Dalton T.*, 2015, 44, 12546-12549.
- 2. H. Wang, L. Fang, Y. Yang, R. Hu, Y. Wang. Immobilization Na₇PW₁₁O₃₉ on quanternary ammonium functionalized chloromethylated polystyrene by electrostatic interactions: An efficient recyclable catalyst for alcohol oxidation. *Appl. Catal. A-Gen.*, 2016, **520**, 35-43.
- H. Shi, T. Zhao, J. Wang, Y. Wang, Z. Chen, B. Liu, et al. Fabrication of g-C₃N₄/PW₁₂/TiO₂ composite with significantly enhanced photocatalytic performance under visible light. *J. Alloy. Compd.*, 2021, 860, 157924.
- 4. X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, Z. Fan. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. *Nat. Commun.*, 2014, **5**, 4007.
- 5. W. Ko, S. Lee, N. Myoung, J. Hong. Solution processed vertically stacked ZnO sheet-like nanorod p–n homojunctions and their application as UV photodetectors. *J Mater. Chem. C*, 2016, **4**, 142-149.
- 6. C.L. Hsu, Y.D. Gao, Y.S. Chen, T.J. Hsueh. Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance. *ACS Appl. Mater. Inter.*, 2014, **6**, 4277-4285.
- W. Dai, X. Pan, S. Chen, C. Chen, W. Chen, H. Zhang, et al. ZnO homojunction UV photodetector based on solution-grown Sb-doped p-type ZnO nanorods and pure n-type ZnO nanorods. *RSC Adv.*, 2015, 5, 6311-6314.
- 8. O. Lupan, V. Cretu, V. Postica, M. Ahmadi, B.R. Cuenya, L. Chow, et al. Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response. *Sensor. Actuat. B-Chem.*, 2016, **223**, 893-903.
- F. Teng, L. Zheng, K. Hu, H. Chen, Y. Li, Z. Zhang, et al. A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector. *J Mater. Chem. C*, 2016, 4, 8416-8421.
- W. Tian, T. Zhai, C. Zhang, S.L. Li, X. Wang, F. Liu, et al. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. *Adv. Mater.*, 2013, 25, 4625-4630.
- 11. N. Nasiri, R. Bo, F. Wang, L. Fu, A. Tricoli. Ultraporous Electron-Depleted ZnO Nanoparticle

Networks for Highly Sensitive Portable Visible-Blind UV Photodetectors. *Adv. Mater.*, 2015, **27**, 4336-4343.

- 12. Y. Ning, Z. Zhang, F. Teng, X. Fang. Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. *Small*, 2018, **14**, 1703754.
- 13. A.K. Rana, J.T. Park, J. Kim, C.-P. Wong. See-through metal oxide frameworks for transparent photovoltaics and broadband photodetectors. *Nano Energy*, 2019, **64**.