## Supporting Information for

## Stable Two-Dimensional Lead Iodide Hybrid Materials for Light Detection and Broadband Photoluminescence

Mohamed Saber Lassoued, ${ }^{\text {a,b }}$ Yuan-Chao Pang, ${ }^{\text {a,b }}$ Qian-Wen Li, ${ }^{\mathrm{a}, \mathrm{b}}$ Xinkai Ding, ${ }^{\mathrm{b}}$ Bo Jiao, ${ }^{\mathrm{c}, \mathrm{d}}$ Hua Dong, ${ }^{\text {c,d } \text { Guijiang }}$
 Zheng*a,b

[^0]
## Table of Contents

## 1.Experimental Section

1.1. General remarks

## 2. Materials and Sample Preparation

2.1. Materials
2.2. Preparation of 1 Pb and 2 Pb Single crystals
2.3. Fabrication of 1 Pb and 2 Pb Films
3. Characterization methods and Simulation details
3.1. Characterization methods
3.2. Simulation details
4. Supporting Tables and Figures

## 1. Experimental Section

### 1.1. General remarks

Single crystal X-ray diffraction data of $\mathbf{1 P b}$ and $\mathbf{2 P b}$ were collected on a Bruker SMART APEX II CCD diffractometer with graphite monochromated Mo-k radiation ( $\lambda=0.71073 \AA$ ) by using the $\theta-\omega$ scan technique at 298 K . PXRD intensities were measured at ambient temperature ( 298 K ) on a Rigaku D/max-IIIA diffractometer ( $\mathrm{Cu}-\mathrm{k} \lambda, \lambda=1.54056 \AA$ ). The crystalline powder samples were prepared by grinding the single-crystals and collected in the $2 \theta$ range of $5^{\circ}-50^{\circ}$ with a step size of $10^{\circ} / \mathrm{min}$. Scanning electron microscopy (SEM) was performed using KYKYEM3200, 25 KV instrument. Solid-state UV-Vis diffusion reflectance spectra of pressed powder and films samples were measured on a SHIMADZU UV-3600 UV-Vis-NIR spectrophotometer using $\mathrm{BaSO}_{4}$ powder as the reflectance reference. All density-functional theory (DFT) calculations were carried out within the Vienna Ab initio Simulation Package (VASP). Room-temperature steady-state emission spectra were collected on powder samples using an Edinburgh FLS980 spectrofluorometer upon 450 nm excitation. The PLQY was achieved by incorporating an integrating sphere into the FLS980 spectrofluorometer. TGA experiments were performed on a TGA-50 (SHIMADZU) thermogravimetric analyzer in temperature range between $30^{\circ}$ and $600^{\circ}$.

## 2. Materials and Sample Preparation

### 2.1. Materials

Chemicals listed were used as purchased and without further purification: (i) Triethylenetetramine (TETA), 97\%, sigma Aldrich; (ii) Potassium iodide, $99.995 \%$, sigma Aldrich; (iii) Acetonitrile, $99 \%$, sigma Aldrich; (iv) hydroiodic acid, $57 \% \mathrm{w} / \mathrm{w}$, sigma Aldrich; (v) Lead (II) nitrate, $99 \%$, sigma Aldrich.

### 2.2. Preparation of 1 Pb and 2 Pb Single crystals

Crystals of 1Pb: A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.331 \mathrm{~g}, 1 \mathrm{mmol})$, $\mathrm{HI}(1 \mathrm{mmol})$, TETA ( 0.5 mmol ), and $\mathrm{KI}(0.166 \mathrm{~g}, 1 \mathrm{mmol})$ were dissolved in 10 ml mixed solvent $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}=8: 2\right)$, stirred in the air for 10 minutes before transferred to a 15 mL Teflon-lined auto-clave and heated at $130^{\circ} \mathrm{C}$ for 24 hrs . The reactants were then cooled to room temperature in a rate of $5^{\circ} \mathrm{C} / \mathrm{h}$ to obtain Luminous yellow needle-like crystals. (Yield: ca. $40 \%$ based on Pb ). XRD indicates the phase purity (Figure S1a).

Crystals of 2Pb: A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.331 \mathrm{~g}, 1 \mathrm{mmol})$, $\mathrm{HI}(2 \mathrm{mmol})$, TETA ( 1 mmol ), and $\mathrm{KI}(0.332 \mathrm{~g}, 2 \mathrm{mmol})$ were dissolved in 10 ml deionized water, stirred in the air for 10 minutes before transferred to a 15 mL Teflon-lined auto-clave and heated at $150^{\circ} \mathrm{C}$ for 48 hrs . The reactants were then cooled to room temperature in a rate of $5^{\circ} \mathrm{C} / \mathrm{h}$ to obtain Luminous yellow rod-like crystals. (Yield: ca. 32\% based on Pb ). XRD indicates the phase purity (Figure S1b).

### 2.3. Fabrication of 1 Pb and 2 Pb Films

Indium tin oxide coated glass (ITO) substrates were cleaned thoroughly and sequentially with commercial detergent in soapy water, deionized water, KOH solution, deionized water, and in a sonication bath. The substrates were then treated by UV-ozone treatment for 20 min prior before use. 1Pb and $\mathbf{2 P b}$ organic-inorganic hybrid compounds ( 0.2 g for each compound) were dissolved in 1 mL of dimethylformamide solution (DMF) and were coated onto ITO glass substrate by spin coating method at 1000 rpm for 60 second. To evaporate the residual solvent, the obtained film was followed by annealing on a hot plate at $80^{\circ} \mathrm{C}$ for 10 minutes.

## 3. Characterization methods and Simulation details

### 3.1. Characterization methods

## X-ray Crystallographic Study

Single-crystal X-ray diffraction data collections for $\mathbf{1 P b}$ and $\mathbf{2 P b}$ were conducted on a Bruker SMART APEX II CCD diffractometer (Mo, $\lambda=0.71073 \AA$ ) by using the $\theta-\omega$ scan technique at 298 K . The structures were solved by direct methods and refined with a full-matrix least-squares technique within the SHELXTL program package and Olex. ${ }^{[1,2]}$ All non-hydrogen atoms were refined anisotropically. The crystallographic details are provided in Table S1-S5. The crystallographic data for above compounds can be found in the Supporting Information or can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. CCDC Numbers: 2107024 (1Pb) and 2107027 (2Pb).

Optical absorption measurement. Solid-state UV-Vis diffusion reflectance spectra were measured at room temperature on a SHIMADZU UV-3600 UV-Vis-NIR spectrophotometer using $\mathrm{BaSO}_{4}$ powder as the reflectance reference. The absorption spectra were calculated from reflectance spectra by the Kubelka-Munk function: $F(R)=\alpha / S=(1-R)^{2} / 2 R$, where $R, \alpha$, and $S$ are the coefficients for the reflection, the absorption and the scattering, respectively.

Photo response measurement During the photocurrent tests, a three-electrode system (a sample coated $0.5 \times 0.5 \mathrm{~cm}$ ITO glass plate as the working electrode, and $\mathrm{Ag} / \mathrm{AgCl}$ as the counter and reference electrodes) was used, and $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(50 \mathrm{~mL}, 0.2 \mathrm{~mol} \mathrm{~L}{ }^{-1}\right)$ was utilized as the supporting electrolyte solution. Photoresponse of the photodetector was measured using Keithley 2450 source meter under the illumination from a 350 W Xenon lamp irradiation. The lamp was kept on continuously, and a manual shutter was used to block exposure of the sample to the light. The sample was typically irradiated at intervals of 80 s .

The on/off ratio of the photodetector is calculated using equation 1.

$$
\begin{equation*}
\frac{O N}{O F F}=\frac{I_{\text {Light }}}{I_{\text {dark }}} \tag{1}
\end{equation*}
$$

Where $I_{\text {light }}$ is the photocurrent ( 636 nA for $\mathbf{1 P b}$ and 780 nA for $\mathbf{2 P b}$ and $I_{\text {dark }}$ is the dark current ( 20 nA and 42 nA for $\mathbf{1 P b}$ and $\mathbf{2 P b}$ respectively).

The responsivity is obtained using the following equation 2.

$$
\begin{equation*}
R=\frac{I_{\text {light }}-I_{\text {dark }}}{P_{0} S} \tag{2}
\end{equation*}
$$

where $\mathrm{P}_{0}$ is the intensity of light $\left(0.35 \mathrm{~W} / \mathrm{cm}^{2}\right)$ and S is the area of the device $\left(0.25 \mathrm{~cm}^{2}\right)$. The detectivity ( $\mathrm{D}^{*}$ ) and the external quantum efficiency (EQE) were calculated using the following equations 3 and 4.

$$
\begin{align*}
& D^{*}=R S^{\frac{1}{2}} /\left(2 e I_{d}\right)^{\frac{1}{2}}  \tag{3}\\
& E Q E=R * \frac{12408}{\lambda} \tag{4}
\end{align*}
$$

Where R is the responsivity, S is the effective area of light irradiation, e is the electronic charge, Id is the dark current, $\lambda$ is the wavelength of irradiation.

Stability studies. Freshly prepared films of $\mathbf{1 P b}$ and $\mathbf{2 P b}$ were stored either in the dark to minimize light exposure and the relative humidity was maintained at $\sim 55 \%$ humidity for 7 days. Freshly prepared films of $\mathbf{1 P b}$ and $\mathbf{2 P b}$ were exposed to UV light for 24 hours at room temperature.
3.2 Simulation details Computational methods. The crystallographic data of compound $\mathbf{1 P b}$ and 2Pb obtained from Single Crystal XRD tests were used to calculate the electronic band
structures and densities of the states (DOS). All the calculations in this work were carried out using density functional theory (DFT) as implemented in the Vienna Ab initio Simulation Package (VASP). The generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof (PBE) functional was used for electronic structure calculations. ${ }^{[3,4]}$ The projector augmented wave (PAW) method was applied to treat the electron-core interactions. ${ }^{[5]}$ The cutoff energy for plane waves was set to 550 eV and the Brillouin zone was sampled by a $5 \times 2 \times 3$ mesh for $\mathbf{1 P b}$ and a $4 \times 4 \times 2$ mesh for $\mathbf{2 P b}$.

## 4. Supporting Tables and Figures

Table S1 Summary of crystal data and structural refinements of $\mathbf{1 P b}$ and $\mathbf{2 P b}$

|  | 1Pb | 2 Pb |
| :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{I}_{6} \mathrm{~N}_{4} \mathrm{~Pb}_{3}$ | $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{I}_{8} \mathrm{~N}_{4} \mathrm{~Pb}_{4}$ |
| Formula weight | 1529.25 | 1990.25 |
| Crystal dimensions (mm) | $0.11 * 0.22 * 0.15$ | 0.13*0.19*0.14 |
| Crystal system | Monoclinic | Monoclinic |
| Space group | $\mathrm{P} 21 / \mathrm{c}$ | C2/c |
| $a / \AA$ | 8.8484(8) | 24.937(4) |
| $b / \AA$ | 19.3860(18) | 9.1908(14) |
| $c / \AA$ | 15.5239(11) | 26.522(4) |
| $\alpha /{ }^{\circ}$ | 90 | 90 |
| $\beta /{ }^{\circ}$ | 115.255(4) | 94.213(2) |
| $\gamma /{ }^{\circ}$ | 90 | 90 |
| Volume/ $/{ }^{3}$ | 2408.4(4) | 6062.2(16) |
| Z | 4 | 8 |
| $\rho$ calcg $/ \mathrm{cm}^{3}$ | 4.218 | 4.361 |
| $\mu / \mathrm{mm}^{-1}$ | 28.606 | 30.299 |
| $\mathrm{F}(000)$ | $\begin{aligned} & 2584.0 \\ & -11<=\mathrm{h}<=11,-25<=\mathrm{k}<=25, \end{aligned}$ | $\begin{aligned} & 6672.0 \\ & -32<=\mathrm{h}<=32,-11<=\mathrm{k}<=11,- \end{aligned}$ |
| Index ranges | $20<=1<=20$ | $34<=1<=34$ |
| Data Completeness | 99.5\% | 96.6\% |
| Data/restraints/parameters | 5536/7/172 | 6849/2/199 |
| Goodness-of-fit on F2 Weight | $\begin{aligned} & 1.19 \\ & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.000 \mathrm{P})^{2}+\right. \\ & 274.3427 \mathrm{P}] \text { where } \mathrm{P}=\left(\mathrm{Fo}^{2}+\right. \\ & \left.2 \mathrm{Fc}^{2}\right) / 3 \end{aligned}$ | $\begin{aligned} & 1.025 \\ & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.1086 \mathrm{P})^{2}+\right. \\ & 497.4207 \mathrm{P}] \\ & \text { where } \mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3 \end{aligned}$ |
| $\mathrm{R}=\sum\\|\mathrm{Fo}-\mathrm{Fc}\\| / \sum\|\mathrm{Fo}\|, \mathrm{wR}_{2}$ | $\mathrm{R}_{1}=0.0435, \mathrm{wR}_{2}=0.1225$ | $\mathrm{R} 1=0.0670, \mathrm{wR} 2=0.192$ |

$\mathrm{R} 1=\Sigma| | \mathrm{Fo}|-|\mathrm{Fc}|| \Sigma|\mathrm{Fo}|, \mathrm{wR}_{2}=\left[\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2} / \Sigma \mathrm{w}(\mathrm{Fo} 2)^{2}\right]^{1 / 2}$

Table S2 Summary of selected bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ of $\mathbf{1 P b}$

| Bond | Lengths/ $\AA$ | Bond pair | $\text { Angles } /^{\circ}$ | Bond pair | $\text { Angles } /^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pb} 1-\mathrm{N} 1$ | 2.447 (15) | $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 3$ | 99.4 (5) | $\mathrm{I} 2-\mathrm{Pb} 3-\mathrm{I} 5{ }^{\text {iii }}$ | 105.96 (3) |
| Pb 1 - N 3 | 2.528 (15) | N1—Pb1-N4 | 80.0 (6) | $\mathrm{I} 2-\mathrm{Pb} 3-\mathrm{I} 6$ | 99.85 (4) |
| $\mathrm{Pb} 1-\mathrm{N} 4$ | 2.628 (17) | $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 2$ | 70.0 (7) | $\mathrm{Pb} 2-\mathrm{I} 3-\mathrm{Pb} 3{ }^{\text {ii }}$ | 94.89 (3) |
| $\mathrm{Pb} 1-\mathrm{N} 2$ | 2.548 (17) | $\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{N} 4$ | 69.4 (6) | $\mathrm{Pb} 3-\mathrm{I} 3-\mathrm{Pb} 2$ | 89.77 (3) |
| $\mathrm{Pb} 2-\mathrm{I} 3$ | $3.3028 \text { (12) }$ | $\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{N} 2$ | $68.6$ | $\mathrm{Pb} 3-\mathrm{I} 3-\mathrm{Pb} 3{ }^{\text {ii }}$ | 95.22 (3) |
| $\mathrm{Pb} 2-\mathrm{I} 1^{\text {i }}$ | 3.3314 (13) | $\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{N} 4$ | 122.4 (6) | $\mathrm{Pb} 2{ }^{\text {iii- }}$ - $11-\mathrm{Pb} 2{ }^{\text {ii }}$ | 92.69 (3) |
| $\mathrm{Pb} 2-\mathrm{I} 5$ | 3.1494 (13) | $\mathrm{I} 3-\mathrm{Pb} 2-\mathrm{I} 1^{\text {ii }}$ | 82.95 (3) | $\mathrm{Pb} 3-\mathrm{I} 1-\mathrm{Pb} 2{ }^{\text {iii }}$ | 84.08 (3) |
| $\mathrm{Pb} 2-\mathrm{I} 4$ | 3.0447 (13) | $\mathrm{I} 3-\mathrm{Pb} 2-\mathrm{I} 1 \mathrm{i}$ | 80.41 (3) | $\mathrm{Pb} 3-\mathrm{I} 1-\mathrm{Pb} 2^{\text {ii }}$ | 96.79 (3) |
| $\mathrm{Pb} 2-\mathrm{I} 6$ | 3.1122 (14) | $\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 1^{\mathrm{ii}}$ | 87.31 (3) | $\mathrm{Pb} 2-\mathrm{I} 5-\mathrm{Pb} 3{ }^{\text {i }}$ | 84.64 (3) |
| Pb3-I3 | 3.1099 (12) | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 3$ | 170.10 (3) | $\mathrm{Pb} 2-\mathrm{I} 6-\mathrm{Pb} 3$ | 90.75 (3) |
| $\mathrm{Pb} 3-\mathrm{I} 3{ }^{\mathrm{ii}}$ | 3.3673 (12) | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 1^{\text {ii }}$ | 87.98 (3) | C5-N1-Pb1 | 113.7 (15) |
| $\mathrm{Pb} 3-\mathrm{I} 1$ | 3.1806 (13) | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 1^{1}$ | 95.25 (3) | $\mathrm{C} 1-\mathrm{N} 3-\mathrm{Pb} 1$ | 113.7 (11) |
| $\mathrm{Pb} 3-\mathrm{I} 6$ | 3.2474 (13) | $\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 3$ | 98.33 (3) | C6-N2-Pb1 | 117.3 (17) |
| Pb3-I2 | 3.1140 (13) | $\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 1^{1}$ | 95.26 (3) | N3-C5-C6 | 108.9 (14) |
| N1-C5 | 1.46 (4) | $\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 1^{\text {ii }}$ | 177.28 (4) | C6-N2-C2 | 117.2 (17) |
| N3-C1 | 1.50 (2) | $\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 5$ | 90.89 (3) | N3-C1-C3 | 110.7 (15) |
| N3-C4 | 1.41 (3) | $\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 6$ | 87.10 (4) | N2-C2-C5 | 113.8 (18) |
| N4-C3 | 1.47 (3) | $\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 3$ | 88.68 (3) | N4-C3-C1 | 111.4 (17) |
| N2-C2 | 1.48 (3) | $\mathrm{I} 3-\mathrm{Pb} 3-\mathrm{I} 3{ }^{\text {ii }}$ | 84.78 (3) | N3-C4-C6 | 112.0 (16) |
| N2-C6 | 1.43 (3) | $\mathrm{I} 3-\mathrm{Pb} 3-\mathrm{I} 1$ | 93.43 (3) | N1-C5-C2 | 109.1 (17) |
| C1-C3 | 1.513 (10) | $\mathrm{I} 3-\mathrm{Pb} 3-\mathrm{I} 5 \mathrm{iii}$ | 162.51 (3) | N2-C6-C4 | 109.8 (19) |
| C2-C5 | 1.52 (4) | $\mathrm{I} 3-\mathrm{Pb} 3-\mathrm{I} 6$ | 89.72 (3) | $\mathrm{I} 1-\mathrm{Pb} 3-\mathrm{I} 6$ | 171.44 (4) |
| $\mathrm{C} 4-\mathrm{C} 6$ | 1.55 (3) | $\mathrm{I} 3-\mathrm{Pb} 3-\mathrm{I} 2$ | 89.72 (3) | $\mathrm{I} 5 \mathrm{iii}^{\mathrm{ii}} \mathrm{~Pb} 3 — \mathrm{I} 3^{\mathrm{ii}}$ | 80.54 (3) |
|  |  | $\mathrm{I} 1-\mathrm{Pb} 3-\mathrm{I} 3{ }^{\text {ii }}$ | 85.14 (3) | $\mathrm{I} 2-\mathrm{Pb} 3-\mathrm{I} 1$ | 88.13 (3) |
|  |  | $\mathrm{I} 1-\mathrm{Pb} 3-\mathrm{I} 5{ }^{\text {iii }}$ | 94.75 (3) |  |  |

Symmetry codes: (i) $\mathrm{x}-1, \mathrm{y}, \mathrm{z}$; (ii) $-\mathrm{x}+2,-\mathrm{y}+1,-\mathrm{z}+2$; (iii) $\mathrm{x}+1, \mathrm{y}, \mathrm{z}$

Table S3 Summary of selected bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ of $\mathbf{2 P b}$

| Bond | Lengths/ $\AA$ | Bond pair | Angles ${ }^{\circ}$ | Bond pair | Angles $/^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pb} 1-\mathrm{I} 1$ | 3.2300 (13) | $\mathrm{I1}{ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{I} 1$ | 176.98 (3) | I8-Pb3-I4 | 92.80 (4) |
| $\mathrm{Pb} 1-\mathrm{I} 1^{\text {i }}$ | 3.1859 (13) | $\mathrm{I} 1{ }^{\text {i}}$ - $\mathrm{Pb} 1-\mathrm{I} 2$ | 88.35 (4) | I8-Pb3-I5 | 101.05 (4) |
| Pb 1 - I 2 | 3.2243 (13) | $\mathrm{I} 1{ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{I} 4$ | 85.74 (3) | I8-Pb3-I7 | 91.74 (4) |
| $\mathrm{Pb} 1-\mathrm{I} 2{ }^{\text {ii }}$ | 3.1785 (13) | $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 4$ | 93.81 (3) | $\mathrm{N} 2-\mathrm{Pb} 4-\mathrm{N} 1$ | 68.6 (6) |
| Pb 1 - I 4 | 3.2743 (14) | $\mathrm{I} 1^{\mathrm{i}} \ldots \mathrm{Pb} 1-\mathrm{I} 7^{\mathrm{i}}$ | 92.40 (3) | $\mathrm{N} 3-\mathrm{Pb} 4-\mathrm{N} 2$ | 69.3 (5) |
| $\mathrm{Pb} 1-\mathrm{I} 7^{\mathrm{i}}$ | 3.2045 (13) | $\mathrm{I} 2{ }^{\mathrm{ii}}-\mathrm{Pb} 1-\mathrm{I} 1^{\mathrm{i}}$ | 88.62 (4) | N3-Pb4-N4 | 87.3 (6) |
| Pb 2 - I 2 | 3.3768 (14) | $\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} 1$ | 94.65 (4) | N3-Pb4-N1 | 107.0 (6) |
| $\mathrm{Pb} 2-\mathrm{I} 3$ | 3.1318 (13) | $12{ }^{\text {iii }}-\mathrm{Pb} 1-\mathrm{Il}$ | 88.38 (4) | $\mathrm{N} 4-\mathrm{Pb} 4-\mathrm{N} 2$ | 120.8 (6) |
| Pb 2 - I 4 | 3.3690 (14) | I2 ${ }^{\text {iii }} \mathrm{Pb} 1-\mathrm{I} 2$ | 176.96 (3) | $\mathrm{N} 4-\mathrm{Pb} 4-\mathrm{N} 1$ | 68.0 (5) |
| $\mathrm{Pb} 2-\mathrm{I} 5$ | 3.0784 (14) | $\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} 4$ | 91.55 (3) | $\mathrm{Pb} 1{ }^{\text {ii- }}$ - $11-\mathrm{Pb} 1$ | 91.51 (3) |
| Pb 2 - I 6 | 3.0543 (14) | $\mathrm{I} 2 \mathrm{ii}-\mathrm{Pb} 1-\mathrm{I} 4$ | 87.92 (3) | $\mathrm{Pb} 1-\mathrm{I} 2-\mathrm{Pb} 2$ | 93.10 (3) |
| $\mathrm{Pb} 3-\mathrm{I} 3$ iii | 3.2140 (13) | $\mathrm{I} 2{ }^{\mathrm{ii}}-\mathrm{Pb} 1-\mathrm{I} 7^{\mathrm{i}}$ | 91.70 (3) | $\mathrm{Pb} 2-\mathrm{I} 3-\mathrm{Pb} 3{ }^{\text {iv }}$ | 94.97 (4) |
| $\mathrm{Pb} 3-\mathrm{I} 4$ | 3.2598 (14) | I 7 - $\mathrm{Pb} 1-\mathrm{I} 4$ | 178.11 (4) | $\mathrm{Pb} 1-\mathrm{I} 4-\mathrm{Pb} 2$ | 89.81 (3) |
| Pb3-I5 | 3.2451 (14) | $\mathrm{I} 3-\mathrm{Pb} 2-\mathrm{I} 2$ | 85.62 (3) | $\mathrm{Pb} 3-\mathrm{I} 4-\mathrm{Pb} 1$ | 90.01 (3) |
| Pb3-I7 | 3.2637 (14) | $\mathrm{I} 3-\mathrm{Pb} 2-\mathrm{I} 4$ | 167.99 (4) | $\mathrm{Pb} 3-\mathrm{I} 4-\mathrm{Pb} 2$ | 86.26 (4) |
| Pb3-I8 | 3.0070 (14) | $\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 2$ | 87.32 (3) | $\mathrm{Pb} 2-\mathrm{I} 5-\mathrm{Pb} 3$ | 91.54 (4) |
| Pb4-N2 | 2.588 (15) | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 2$ | 85.92 (3) | $\mathrm{Pb} 1{ }^{\text {ii- }} \mathrm{I} 7-\mathrm{Pb} 3$ | 92.65 (3) |
| $\mathrm{Pb} 4-\mathrm{N} 3$ | 2.505 (15) | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 3$ | 98.62 (4) | N1-C2-C3 | 110.5 (19) |
| $\mathrm{Pb} 4-\mathrm{N} 4$ | 2.567 (17) | $\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 4$ | 90.55 (4) | N1-C1-C6 | 109.8 (18) |
| $\mathrm{Pb} 4-\mathrm{N} 1$ | 2.596 (19) | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 2$ | 169.29 (4) | C5-N2-Pb4 | 112.6 (12) |
| C2-C3 | 1.52 (3) | I6-Pb2-I3 | 88.67 (4) | C6-N2-Pb4 | 110.9 (13) |
| C2-N1 | 1.51 (2) | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 4$ | 99.77 (4) | C6-N2-C5 | 111.5 (17) |
| C1-C6 | 1.52 (3) | $\mathrm{I} 6-\mathrm{Pb} 2-\mathrm{I} 5$ | 85.99 (4) | N2-C5-C4 | 107.7 (19) |
| N2-C5 | 1.50 (3) | $\mathrm{I} 3 \mathrm{iii}-\mathrm{Pb} 3-\mathrm{I} 4$ | 170.46 (4) | $\mathrm{C} 4-\mathrm{N} 3-\mathrm{Pb} 4$ | 110.0 (12) |
| N2-C6 | 1.47 (3) | 13 iii- $\mathrm{Pb} 3-\mathrm{I} 5$ | 87.99 (4) | N4-C3-C2 | 110 (2) |
| C5-C4 | 1.517 (10) | $13{ }^{\text {iiii }}-\mathrm{Pb} 3-\mathrm{I} 7$ | 88.86 (3) | N2-C6-C1 | 113.6 (16) |
| N3-C4 | 1.466 (10) | $\mathrm{I} 4-\mathrm{Pb} 3-\mathrm{I} 7$ | 91.42 (4) | C1-N1-C2 | 112.9 (17) |
| C3-N4 | 1.46 (3) | $\mathrm{I} 5-\mathrm{Pb} 3-\mathrm{I} 4$ | 89.64 (3) | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pb} 4$ | 112.9 (13) |
|  |  | I5-Pb3-I7 | 167.10 (4) | C2-N1-Pb4 | 113.0 (12 |

Symmetry codes: (i) $-\mathrm{x}+1 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$; (ii) $-\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$; (iii) $\mathrm{x}, \mathrm{y}+1, \mathrm{z}$; (iv) x , $\mathrm{y}-1, \mathrm{z}$

Table S4 Potential hydrogen bonding data of compound 1Pb

| D-H | $\mathbf{d}(\mathbf{D}-\mathbf{H})$ | $\mathbf{d}(\mathbf{H} \cdots \mathbf{A})$ | $<\mathbf{D H A}$ | $\mathbf{d}(\mathbf{D} \cdots \mathbf{A})$ | $\mathbf{A}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N1-H1A | 0.900 | 2.919 | 153.44 | 3.746 | I1 | $[\mathrm{x}-1, \mathrm{y}, \mathrm{z}]$ |
| N1-H1B | 0.900 | 2.767 | 159.12 | 3.622 | I6 | $[-\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+3 / 2]$ |
| N3-H3 | 0.910 | 2.934 | 153.43 | 3.770 | I5 | $[-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1]$ |
| N4-H4A | 0.860 | 2.422 | 167.03 | 3.266 | N1 |  |
| N2-H2 | 0.910 | 3.294 | 118.48 | 3.813 | I4 |  |

Table S5 Potential hydrogen data of compound 2Pb

| D-H | $\mathbf{d}(\mathbf{D}-\mathbf{H})$ | $\mathbf{d}(\mathbf{H} \cdots \mathbf{A})$ | <DHA | $\mathbf{d}(\mathbf{D} \cdots \mathbf{A})$ | A |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C2-H2B | 0.970 | 3.279 | 125.11 | 3.918 | I2 | $[x+1 / 2, y+1 / 2, z]$ |
| N2-H2 | 0.980 | 3.249 | 154.56 | 4.155 | I8 | $[x+1, y-1, z]$ |
| N3-H3A | 0.890 | 2.890 | 163.88 | 3.753 | I1 | $[x+1 / 2, y-1 / 2, z]$ |
| N3-H3B | 0.890 | 3.261 | 122.67 | 3.816 | I3 | $[-x+1,-y+1,-z]$ |
| N4-H4A | 0.890 | 3.085 | 123.68 | 3.654 | I3 | $[-x+1,-y+1,-z]$ |
| N4-H4A | 0.890 | 3.167 | 144.59 | 3.926 | I5 | $[-x+1,-y+2,-z]$ |
| N4-H4B | 0.890 | 3.276 | 119.21 | 3.791 | I3 | $[x+1 / 2, y+1 / 2, z]$ |
| C4-H4C | 0.970 | 3.260 | 131.11 | 3.966 | I6 | $[-x+1,-y+1,-z]$ |
| C4-H4D | 0.970 | 2.983 | 172.14 | 3.946 | I2 | $[x+1 / 2, y-1 / 2, z]$ |
| C6-H6A | 0.970 | 3.178 | 128.22 | 3.855 | I6 | $[x+1, y, z]$ |
| N1-H1 | 0.980 | 3.080 | 146.99 | 3.938 | I8 | $[x+1, y, z]$ |

Table S6 Photophysical properties of reported haloplumbate-based hybrids

| Compds | $\lambda$ ex (nm) | $\lambda$ em (nm) | CIE | $\tau(\mathbf{n s})$ | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[\mathrm{H}_{2} \mathrm{BPP}\right] \mathrm{Pb}_{2} \mathrm{Br}_{6}$ | 394 | 524 | $(0.38,0.48)$ | 16.57 | $[6]$ |
| $\left[\mathrm{H}_{2} \mathrm{BPP}\right] \mathrm{Pb}_{2} \mathrm{Cl}_{6}$ | 389 | 538 | $(0.33,0.50)$ | 2.7 | $[6]$ |
| $\mathrm{NPM}_{2} \mathrm{~Pb}_{3} \mathrm{Br}_{10}$ | 365 | $447 / 538$ | $(0.33,0.44)$ | 4.21 | $[7]$ |
| $(\gamma-\mathrm{MPAPB})$ | 365 | $399 / 417 / 470$ | $(0.22,0.23)$ | 2.52 | $[8]$ |
| $\left[\left(\mathrm{Pb}_{4} \mathrm{Cl}_{2}\right)(\mathrm{ndc})_{4} \cdot \mathrm{~A}_{2}\right]_{\mathrm{n}}$ | 365 | 388 | $(0.25,0.22)$ | 0.73 | $[9]$ |
| $\left[\left(\mathrm{Pb}_{4} \mathrm{Br}_{2}\right)(\mathrm{ndc})_{4} \cdot \mathrm{~A}_{2}\right]_{\mathrm{n}}$ | 365 | $393 / 684$ | $(0.34,0.29)$ | 0.73 | $[9]$ |
| $\left[\left(\mathrm{Pb}_{4} \mathrm{I}_{2}\right)(\mathrm{ndc})_{4} \cdot \mathrm{~A}_{2}\right]_{\mathrm{n}}$ | 365 | $390 / 684$ | $(0.33,0.28)$ | 0.91 | $[9]$ |

[ $\mathrm{H}_{2} \mathrm{BPP}$ ] : 1,3-bis(4-pyridyl)-propane / NPM : N-propyl-morpholine / $\gamma$-MPAPB : $\gamma$-methoxy propyl amine $) 2 \mathrm{PbBr} 4 / \mathrm{ndc}$ : naphthalene dicarboxylate ; A : $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}$

Table S7 Comparaison of photodetectors performances for $\mathbf{1 P b}$ and $\mathbf{2 P b}$ with others reported systems

| Compounds | D | Voltage (V) | $\begin{aligned} & \hline \mathbf{I}_{\text {light }} \\ & (\mathrm{nA}) \end{aligned}$ | $\begin{gathered} \mathrm{R} \\ (\mu \mathrm{~A} / \mathbf{W}) \end{gathered}$ | $\begin{gathered} \hline \text { D } \\ \text { (Jones) } \end{gathered}$ | $\begin{gathered} \hline \text { EQE } \\ (\%) \end{gathered}$ | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1Pb | 2D | 0.7 | 636 | 7.04 | $6.4 * 10^{6}$ | 2.39 | This work |
| 2Pb | 2D | 0.7 | 780 | 8.457 | $7.7 * 10^{6}$ | 2.87 | This work |
| PDBI | 0D | 1 | 194 | 1.14 | $1.9 * 10^{6}$ | 0.4 | [10] |
| $\left\{\left(\mathrm{Pb}_{4} \mathrm{Cl}_{2}\right)(\mathrm{ndc})_{4} \cdot\left[\left(\mathrm{CH}_{3}\right)_{3} \mathbf{N H}\right]_{2}\right\}_{\mathrm{n}}$ | 1D | - | 380 | - | - | - | [9] |
| $\left\{\left[\mathrm{Pb}(\mathrm{cbpy})_{2}\right]\left(\mathbf{I}_{3}\right)_{4} \cdot \mathbf{I}_{2}\right\}_{\text {n }}$ | 2D | 0.5 | 2600 | - | - | - | [11] |
| $\mathrm{MAPbI}_{3}$ | 3D | 3 | - | $3.49 * 10^{6}$ | - | $1.19 * 10^{3}$ | [12] |
| $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}\right)_{2} \mathrm{PbBr}_{4}$ | 2D | 0.5 | - | $2.1 * 10^{8}$ | - | - | [12] |
| $(\mathrm{I}-\mathrm{BA})_{\mathbf{2}}(\mathbf{M A})_{\mathbf{2}} \mathbf{P b}_{\mathbf{3}} \mathbf{I}_{\mathbf{1 0}}$ | 2D | 30 | 1000 | 12.78 | - | - | [13] |
| Boron | 2D | 0 | - | 91.7 | $1.6 * 10^{8}$ | - | [14] |
| $\mathrm{Cs}_{3} \mathrm{BiBr}_{6}$ | 0D | 6 | - | 25 | $6 * 10^{8}$ | 0.008 | [15] |
| $\mathrm{Cs}_{2} \mathrm{AgBiBr}_{6}$ | 3D | 5 | - | 900 | $10^{9}$ | - | [16] |

PDBI: (1,3-propanediammonium) ${ }_{2} \mathrm{Bi}_{2} \mathrm{I}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ / ndc: naphthalene dicarboxylate / cbpy: 1-(3-carboxybenzyl)-4,4'-bipyridinium / MA: methylammonium / BA: butylammonium.



Figure S1. (a) Powder XRD patterns of $\mathbf{1 P b}$. (b) Powder XRD patterns of $\mathbf{2 P b}$.


Figure S2. Hirshfeld surfaces mapped with dnorm 1Pb (a) and (b) 2Pb (color coding: white, distance d equals VDW distance; blue, d exceeds VDW distance, red, d, smaller than VDW distance).


- $H . . . I I . . . H$
$\square P b \ldots I / \ldots P b$
- $\mathrm{H} . . \mathrm{H}$
${ }_{\square} I . . . I$
$\square$ Others

Figure S3. Two-dimensional finger print plots of $\mathbf{1 P b}$ (a) and $\mathbf{2 P b}$ (c). The population of close contact of $\mathbf{1 P b}$ (b) and $\mathbf{2 P b}$ (d) in crystal stacking.


Figure S4. The Tauc Plot for a direct band gap (a) and for indirect band gap (b) semiconductor of $\mathbf{1 P b}$ and $\mathbf{2 P b}$.


Figure S5. (a) Band structure of $\mathbf{1 P b}$ with SOC. (b) Band structure of 1Pb without SOC. (c-f) Partial density of states (PDOS) of compound 1Pb (inorganic part, organic part, $\mathrm{Pb}-\mathrm{s}, \mathrm{Pb}-\mathrm{p}$, and I-s, I-p).


Figure S6. (a) Band structure of 2Pb without SOC. (b-d) Partial density of states (PDOS) of compound 2 Pb (organic part, $\mathrm{Pb}-\mathrm{s}, \mathrm{Pb}-\mathrm{p}, \mathrm{Pb}-\mathrm{d}$ and $\mathrm{I}-\mathrm{s}, \mathrm{I}-\mathrm{p}$ ).


Figure S7. XRD patterns of $\mathbf{1 P b}$ (a) and $\mathbf{2 P b}$ (b) thin films after storage in ambient temperature for 7 days (relative humidity of $55 \%$ ) and after exposing to light for 24 hours.



Figure S8. TGA curves of $\mathbf{1 P b}$ and $\mathbf{2 P b}$

## References

[1] G. M. Sheldrick, Acta Crystallogr. A., 2008, 64, 112-122.
[2] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K, Howard, H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341.
[3] G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169-11186.
[4] G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
[5] G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 17581775.
[6] X-Y. Sun, M. Yue, Y-X. Jiang, C-H. Zhao, Y-Y. Liao, X-W. Lei, and C-Y. Yue, Combining Dual-Light Emissions to Achieve Efficient Broadband Yellowish-Green Luminescence in One-Dimensional Hybrid Lead Halides, Inorg. Chem. 2021, 60, 1491-1498.
[7] C-Q. Jing, J-Z. Li, T. Xu, K. Jiang, X-J. Zhao, Y-F. Wu, N-T. Xue, Z-H. Jing and X-W. Lei, Organic cations directed 1D $\left[\mathrm{Pb}_{3} \mathrm{Br}_{10}\right]$ 4-chains: syntheses, crystal structures, and photoluminescence properties, CrystEngComm, 2021, 23, 292-298.
[8] Y. Li, C. Ji, L. Li, S. Wang, S. Han, Y. Peng, S. Zhang and J. Luo, ( $\gamma$-Methoxy propyl amine) $)_{2} \mathrm{PbBr}_{4}$ : a novel two-dimensional halide hybrid perovskite with efficient bluish white-light emission, Inorg. Chem. Front, 2021, 8, 2119-2124.
[9] X-L. Lin, B. Chen, Y-R. Huang, K-Y. Song, P-K. Zhou, L-L. Zong, H-H. Li, Z-R. Chen and R. Jiang, Achievement of intrinsic white light emission by hybridization-deformable haloplumbates with rigid luminescent naphthalene motifs, Inorg. Chem. Front, 2020, 7, 4477-4487.
[10] J. K. Pious, A. Katre, C. Muthu, S. Chakraborty, S. Krishna, and C. Vijayakumar, ZeroDimensional Lead-Free Hybrid Perovskite-like Material with a Quantum-Well Structure, Chem. Mater., 2019, 31, 1941-1945.
[11] L-M. Zhao, W-T. Zhang, K-Y. Song, Q-Q. Wu, Y. Li, H-H. Li and Z-R. Chen, Leadcarboxylate/polyiodide hybrids constructed from halogen bonding and asymmetric
viologen: structures, visible-light-driven photocatalytic properties and enhanced photocurrent responses, CrystEngComm., 2018, 20, 2245-2252.
[12] A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L. N.Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X-g. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C-J. Shih, D. R. Gamelin, D. H. Son, H. Zeng, H. Zhong, H. Sun, H. V. Demir, I. G. Scheblykin, I. MSeró, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. P-Prieto, L. Li, L. Manna, M. I. Bodnarchuk, M. V. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O.F. Mohammed, O. M. Bakr, P. Yang, P. M-Buschbaum, P V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye, and L. Polavarapu, State of the Art and Prospects for Halide Perovskite Nanocrystals., ACS Nano., 2021, 15, 10775-10981.
[13] X. Tian, Y. Zhang, R. Zheng, D. Wei, and J. Liu, Two-dimensional organic-inorganic hybrid Ruddlesden-Popper perovskite materials: preparation, enhanced stability, and applications in photodetection, Sustainable Energy Fuels., 2020, 4, 2087-2113.
[14] D. Ma, R. Wang, J. Zhao, Q. Chen, L. Wu, D. Li, L. Su, X. Jiang, Z. Luo, Y. Ge, J. Li, Y. Zhang and H. Zhang, A self-powered photodetector based on two-dimensional boron nanosheets, Nanoscale., 2020, 12, 5313-5323.
[15]Y. Tang, M. Liang, Bi. Chang, H. Sun, K. Zheng, T. Pulleritsd and Q. Chi, Leadfree double halide perovskite $\mathrm{Cs}_{3} \mathrm{BiBr}_{6}$ with well-defined crystal structure and high thermal stability for optoelectronics, J. Mater. Chem. C, 2019, 7, 3369-3374.
[16]Y. Dang, G. Tong, W. Song, Z. Liu, L. Qiu, L. K. Ono and Y. Qi, Interface engineering strategies towards $\mathrm{Cs}_{2} \mathrm{AgBiBr}_{6}$ single-crystalline photodetectors with good Ohmic contact behaviours, J. Mater. Chem. C., 2020, 8, 276-284.


[^0]:    a School of Chemistry, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049 China. E-mail: zheng.yanzhen@xitu.edu.cn
    b Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China. E-mail: gougaoyang@xjtu.edu.cn
    c Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
    d Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.
    e Department of Nuclear Science and Engineering, Department of Materials Science and Engineering, Massachu-setts Institute of Technology, Cambridge, MA 02139, United States.

