Supporting Information

Ethylene glycol assisted self-template conversion approach to synthesize hollow NiS microspheres for a

high performance all-solid-state supercapacitor

Maiyong Zhu*, Xuan Li, Chengyu Tu, Qiao Luo, Yijing Nie, Jianmei Pan*, Songjun Li*

Research School of Polymeric Materials, School of Materials Science &

Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China

Corresponding authors: <u>maiyongzhu@ujs.edu.cn; jmpanc@163.com;</u>

lsjchem@ujs.edu.cn

Figure S1. Optical photographs of different solutions after solvothermal reaction using different amount of Ni(NO₃)₂·6H₂O as nickel resource. (a) low amount, (b) moderate amount, and (c) high amount.

Figure S2. XRD patterns of different vulcanization time of NiS_x

Figure S3. TGA curve of Ni-glycolate/Ni.

Figure S4. FT-IR spectra of Ni(Ac)₂, Ni-glycolate/Ni, NiS_x and NiS.

Figure S5. SEM images of (a) NiS, (b-c) EDS mapping of NiS_x, (d) NiS, (e-f) EDS mapping of NiS.

Figure S6. Diameter distribution of Ni-glycolate/Ni, (b) NiSx, (c) NiS.

Figure S7. TEM image of an individual NiS hollow microsphere.

Figure S8. Nitrogen adsorption-desorption isotherms of (a) Ni-glycolate/Ni, (b) NiS_x, (c) NiS and (d) their corresponding pore size distributions.

Figure S9. (a) CV curves of Ni-glycolate/Ni, (b) GCD curves of Ni-glycolate/Ni, (c) CV curves of NiS_x and (b) GCD curves of NiS_x.

Figure S10. Cycling stability of NiS.

Figure S11. (a) CV curves of AC, (b) GCD curves of AC.

Figure S12. (a) CV profiles of NiS//AC at various sweep rates, (b) the calculated capacitances of the hybrid supercapacitor at 1–10 A/g.

Table S1. Components of the Equivalent Circuit Fitted for the ImpedanceSpectra

sample	$\operatorname{Rs}(\Omega)$	Rct(Ω)	Zw(Ω)
Ni-glycolate/Ni	2.06	0.86	0.41
NiS _x	1.88	0.85	0.51
NiS	1.63	0.13	0.43