Electronic Supporting Information

Dianionic Nitrogen-rich Triazole and Tetrazole-Based Energetic Salts: Synthesis and Detonation Performance

Abhishek Kumar Yadav,^a Vikas D. Ghule,^b Srinivas Dharavath^{a*}

^aEnergetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India. E-mail: srinivasd@iitk.ac.in

^bDepartment of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India.

Table of Contents

General Methods	S2
Crystal Structure Analysis for 4 and 15	S2-S11
Energetic data, Oxygen & Nitrogen Contents for 3 to 16	S11
NMR Spectra, DSC plots & IR Spectrum for 4 to 16	S12-S40
Computational	S41-S43
References	S44

Caution! All the compounds investigated are potentially explosive, energetic materials. Although we have experienced no difficulties in syntheses and characterization of these compounds, manipulations must be carried out by using appropriate standard safety precautions. Eye protection and leather gloves must be worn at all times.

General Methods

All reagents were purchased from Aldrich, Merck, Alfa Aesar, or Avra in analytical grade and were used as supplied, if not stated otherwise. ¹H, and ¹³C spectra were recorded on a JEOL ECS 400 MHz NMR spectrometer nuclear magnetic resonance spectrometer. Chemical shifts are reported relative to Me₄Si. The decomposition points were obtained on a 10 °C min⁻¹. IR spectra were recorded on an FT-IR spectrometer (Thermo Nicolet AVATAR 370) as thin films using KBr plates. Elemental analyses were determined using an Elementar vario MICRO elemental analyzer. The sensitivities were carried out by using a BAM drop hammer and friction tester.

X-ray Crystallography

For compounds 4 and 15, a colourless prism of dimensions 0.600 x 0.051 x 0.020 mm³, 0.600 x 0.051 x 0.020 mm³ was separately mounted on a MiteGen MicroMesh using a small amount of Cargille immersion oil for the X-ray crystallographic analysis. Data were collected on a Bruker three-circle platform diffractometer equipped with a SMART APEX II CCD detector. The crystals were irradiated using graphite monochromated MoK α radiation (λ = 0.71073 Å). An Oxford Cobra low-temperature device was used to keep the crystals at a constant 100(2) K for 4 and 15 during data collection.

Figure S1. Molecular structure of 4.

Table S1	: Crysta	llographic	data	for 4 .

Compound	4
Formula	C ₇ H1 ₄ N ₁₈
CCDC number	2113929

Mw	350.36
Crystal size [mm3]	0.331 x 0.105 x 0.020
Crystal system	Orthorhombic
Space group	Fdd2
<i>a</i> [Å]	22.1474(16)
<i>b</i> [Å]	31.680(2)
<i>c</i> [Å]	4.1140(3)
$\alpha[^{\circ}]$	90
β [°]	90
γ [°]	90
V[Å3]	2886.5(4)
Ζ	8
<i>T</i> [K]	150(2)
ρ_{calcd} [Mg m-3]	1.612
μ [mm-1]	0.123
<i>F</i> (000)	1456
$\theta[\circ]$	3.680 to 29.987°.
Index ranges	-30<=h<=30, -42<=k<=42, -5<=l<=5
Reflections collected	8232
Independent reflections (R int)	2035 [$R_{int} = 0.0474$]
Data/restraints/parameters	2035 / 3 / 114
GOF on F2	1.022
R1 (I > $2\delta(I)$)a	0.0396
$wR2 (I > 2\delta (I))b$	0.0822
R1 (all data)	0.0570
wR2 (all data)	0.0883
Largest diff. peak and hole [e.Å-3]	0.190 and -0.235
$_{a}R_{1} = \sum F_{0} - F_{c} / \sum F_{0} _{b}R_{2} = \sum P_{0} $	$\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 4. U(eq) is defined as one-third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
N(1)	-544(1)	-532(1)	8082(4)	16(1)
N(2)	-1065(1)	-531(1)	9811(5)	18(1)
N(3)	-1331(1)	-162(1)	9501(5)	20(1)
N(4)	-989(1)	90(1)	7580(5)	19(1)
C(5)	-516(1)	-149(1)	6759(5)	14(1)

C(6)	0	0	4699(8)	17(1)
N(7)	0(1)	-2073(1)	208(6)	29(1)
C(8)	120(1)	-1708(1)	1743(6)	18(1)
N(9)	-258(1)	-1492(1)	3534(5)	21(1)
N(10)	91(1)	-1155(1)	4683(5)	20(1)
C(11)	649(1)	-1173(1)	3550(5)	17(1)
N(12)	1099(1)	-909(1)	4167(6)	25(1)
N(13)	678(1)	-1520(1)	1643(5)	16(1)

r 4 .

N(1)-C(5)	1.331(3)	N(1)-N(2)	1.355(2)
N(2)-N(3)	1.317(2)	N(3)-N(4)	1.354(3)
N(4)-C(5)	1.335(3)	C(5)-C(6)	1.499(3)
C(6)-C(5)#1	1.499(3)	C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900	N(7)-C(8)	1.343(3)
N(7)-H(7A)	0.8800	N(7)-H(7B)	0.8800
C(8)-N(9)	1.307(3)	C(8)-N(13)	1.373(3)
N(9)-N(10)	1.401(3)	N(10)-C(11)	1.321(3)
N(10)-H(10)	0.8800	C(11)-N(12)	1.326(3)
C(11)-N(13)	1.352(3)	N(12)-H(12A)	0.8800
N(12)-H(12B)	0.8800	N(13)-H(13)	0.8800
C(5)-N(1)-N(2)	104.67(17)	N(3)-N(2)-N(1)	109.29(18)
N(2)-N(3)-N(4)	109.30(18)	C(5)-N(4)-N(3)	104.61(17)
N(1)-C(5)-N(4)	112.13(19)	N(1)-C(5)-C(6)	123.59(17)
N(4)-C(5)-C(6)	124.24(16)	C(5)#1-C(6)-C(5)	111.1(3)
C(5)#1-C(6)-H(6A)	109.4	C(5)-C(6)-H(6A)	109.4
C(5)#1-C(6)-H(6B)	109.4	C(5)-C(6)-H(6B)	109.4
H(6A)-C(6)-H(6B)	108.0	C(8)-N(7)-H(7A)	120.0
C(8)-N(7)-H(7B)	120.0	H(7A)-N(7)-H(7B)	120.0
N(9)-C(8)-N(7)	126.1(2)	N(9)-C(8)-N(13)	111.43(19)
N(7)-C(8)-N(13)	122.4(2)	C(8)-N(9)-N(10)	103.69(17)
C(11)-N(10)-N(9)	111.31(18)	C(11)-N(10)-H(10)	124.3
N(9)-N(10)-H(10)	124.3	N(10)-C(11)-N(12)	127.5(2)
N(10)-C(11)-N(13)	106.54(19)	N(12)-C(11)-N(13)	126.0(2)
C(11)-N(12)-H(12A)	120.0	C(11)-N(12)-H(12B)	120.0
H(12A)-N(12)-H(12B)	120.0	C(11)-N(13)-C(8)	107.00(18)
C(11)-N(13)-H(13)	126.5	C(8)-N(13)-H(13)	126.5

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,z

Table S4. Anisotropic displacement parameters (Å $^2x \ 10^3$) for DSR-BIS TM6. The anisotropic

displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

U^{11} U^{22} U^{33} U^{23} U^{13} U^{12}	U^{11}	U ²²	U33	U23	U13	U12

$\overline{N(1)}$	15(1)	15(1)	19(1)	-1(1)	3(1)	-1(1)
N(2)	15(1)	19(1)	21(1)	-1(1)	3(1)	0(1)
N(3)	17(1)	20(1)	24(1)	1(1)	2(1)	2(1)
N(4)	17(1)	18(1)	22(1)	2(1)	0(1)	2(1)
C(5)	15(1)	15(1)	14(1)	-1(1)	-2(1)	-2(1)
C(6)	18(2)	19(1)	15(1)	0	0	-3(1)
N(7)	20(1)	23(1)	43(1)	-12(1)	8(1)	-7(1)
C(8)	14(1)	16(1)	24(1)	2(1)	2(1)	0(1)
N(9)	16(1)	18(1)	30(1)	-4(1)	5(1)	-2(1)
N(10)	15(1)	17(1)	27(1)	-5(1)	7(1)	-1(1)
C(11)	15(1)	16(1)	19(1)	1(1)	3(1)	3(1)
N(12)	15(1)	21(1)	39(1)	-13(1)	7(1)	-2(1)
N(13)	13(1)	15(1)	21(1)	-3(1)	6(1)	0(1)

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 4.

	Х	у	Z	U(eq)	
H(6A)	138	-234	3285	20	
H(6B)	-138	234	3285	20	
H(7A)	-360	-2188	363	34	
H(7B)	283	-2197	-953	34	
H(10)	-44	-956	5993	24	
H(12A)	1042	-692	5467	30	
H(12B)	1455	-951	3275	30	
H(13)	994	-1608	545	20	

Table S6. Torsion angles $[^{\circ}]$ for 4.

C(5)-N(1)-N(2)-N(3)	0.1(2)
N(1)-N(2)-N(3)-N(4)	-0.4(2)
N(2)-N(3)-N(4)-C(5)	0.6(2)
N(2)-N(1)-C(5)-N(4)	0.3(2)
N(2)-N(1)-C(5)-C(6)	178.0(2)
N(3)-N(4)-C(5)-N(1)	-0.5(3)
N(3)-N(4)-C(5)-C(6)	-178.2(2)
N(1)-C(5)-C(6)-C(5)#1	-82.0(2)
N(4)-C(5)-C(6)-C(5)#1	95.5(2)
N(7)-C(8)-N(9)-N(10)	177.2(2)
N(13)-C(8)-N(9)-N(10)	-1.5(3)
C(8)-N(9)-N(10)-C(11)	0.9(3)
N(9)-N(10)-C(11)-N(12)	-179.1(2)
N(9)-N(10)-C(11)-N(13)	0.0(3)
N(10)-C(11)-N(13)-C(8)	-0.9(2)
N(12)-C(11)-N(13)-C(8)	178.3(2)
N(9)-C(8)-N(13)-C(11)	1.6(3)
N(7)-C(8)-N(13)-C(11)	-177.1(2)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(7)-H(7B)N(3)#3	0.88	2.18	3.025(3)	160.2	
N(10)-H(10)N(1)	0.88	1.94	2.799(3)	163.5	
N(12)-H(12A)N(4)#1	0.88	2.10	2.960(3)	165.7	
N(12)-H(12B)N(9)#4	0.88	1.98	2.858(3)	175.5	
N(13)-H(13)N(2)#3	0.88	2.01	2.831(3)	155.4	

Table S7. Hydrogen bonds for 4 [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,z #2 -x-1/4,y-1/4,z-3/4 #3 x+1/4,-y-1/4,z-5/4 #4 x+1/4,-y-1/4,z-1/4

Figure S2. Molecular structure and crystal packing of 15.

Compound	15
Formula	$C_7H_{18}N_{18}O_4$
CCDC number	2113930
Mw	418.39
Crystal size [mm3]	0.600 x 0.051 x 0.020
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> [Å]	16.231(5)
<i>b</i> [Å]	4.4470(9)
<i>c</i> [Å]	23.508(7)
$\alpha[^{\circ}]$	90
β[°]	94.7
γ [°]	90
V [Å3]	1691.0(8)
Z	4
<i>T</i> [K]	150(2)
ρ_{calcd} [Mg m-3]	1.643
μ [mm-1]	1.176
<i>F</i> (000)	872
θ [°]	3.773 to 68.244
Index ranges	-16<=h<=19, -4<=k<=5, -26<=l<=27
Reflections collected	4433
Independent reflections (R int)	1454 $[R_{int} = 0.0581]$
Data/restraints/parameters	1454 / 3 / 147
GOF on F2	1.081
R1 (I > $2\delta(I)$)a	0.0449
$wR2 (I > 2\delta (I))b$	0.1071
R1 (all data)	0.0571
wR2 (all data)	0.1165
Largest diff. peak and hole [e.Å-3]	0.245 and -0.271

 Table S8: Crystallographic data for 15.

	Х	У	Z	U(eq)
O(1)	2285(1)	7300(4)	4311(1)	31(1)
O(2)	2757(1)	5267(4)	3551(1)	36(1)
N(3)	2186(1)	5627(4)	3872(1)	23(1)
N(4)	1469(1)	4311(4)	3786(1)	23(1)
C(5)	1352(1)	2384(5)	3325(1)	20(1)
N(6)	1863(1)	1380(4)	2943(1)	23(1)
N(7)	1449(1)	-627(4)	2578(1)	26(1)
C(8)	702(1)	-674(5)	2763(1)	20(1)
N(9)	610(1)	1119(4)	3221(1)	21(1)
C(10)	0	-2556(7)	2500	23(1)
N(11)	3801(1)	3521(4)	4961(1)	26(1)
N(12)	3709(1)	1293(5)	4535(1)	26(1)
C(13)	4351(1)	568(5)	4240(1)	22(1)
N(14)	4247(1)	-1494(5)	3835(1)	29(1)
N(15)	5074(1)	1892(4)	4356(1)26(1)	

Table S9: Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for 15. U(eq) is defined as one-third of the trace of the orthogonalized U^{ij} tensor.

 Table S10. Bond lengths [Å] and angles [°] for 15.

O(1)-N(3)	1.272(2)	O(2)-N(3)	1.251(2)
N(3)-N(4)	1.304(3)	N(4)-C(5)	1.382(3)
C(5)-N(9)	1.334(3)	C(5)-N(6)	1.347(3)
N(6)-N(7)	1.375(3)	N(6)-H(6)	0.88(3)
N(7)-C(8)	1.322(3)	C(8)-N(9)	1.358(3)
C(8)-C(10)	1.506(3)	C(10)-C(8)#1	1.506(3)
C(10)-H(10A)	0.9900	C(10)-H(10B)	0.9900
N(11)-N(12)	1.408(3)	N(11)-H(11A)	0.907(10)
N(11)-H(11B)	0.910(10)	N(12)-C(13)	1.337(3)
N(12)-H(12)	0.89(3)	C(13)-N(15)	1.322(3)
C(13)-N(14)	1.323(3)	N(14)-H(14A)	0.8800
N(14)-H(14B)	0.8800	N(15)-H(15A)	0.8800
N(15)-H(15B)	0.8800		
O(2)-N(3)-O(1)	120.89(19)	O(2)-N(3)-N(4)	123.01(18)
O(1)-N(3)-N(4)	116.09(18)	N(3)-N(4)-C(5)	117.56(18)
N(9)-C(5)-N(6)	109.55(19)	N(9)-C(5)-N(4)	117.88(19)

132.5(2)	C(5)-N(6)-N(7)	109.63(19)
127.4(18)	N(7)-N(6)-H(6)	122.9(18)
102.60(18)	N(7)-C(8)-N(9)	114.6(2)
123.84(18)	N(9)-C(8)-C(10)	121.56(18)
103.62(19)	C(8)-C(10)-C(8)#1	112.4(3)
109.1	C(8)#1-C(10)-H(10A)	109.1
109.1	C(8)#1-C(10)-H(10B)	109.1
107.9	N(12)-N(11)-H(11A)	110.3(16)
107.9(17)	H(11A)-N(11)-H(11B)	109.0(17)
119.8(2)	C(13)-N(12)-H(12)	116.0(19)
124.0(19)	N(15)-C(13)-N(14)	121.0(2)
120.1(2)	N(14)-C(13)-N(12)	118.8(2)
120.0	C(13)-N(14)-H(14B)	120.0
120.0	C(13)-N(15)-H(15A)	120.0
120.0	H(15A)-N(15)-H(15B)	120.0
	132.5(2) $127.4(18)$ $102.60(18)$ $123.84(18)$ $103.62(19)$ 109.1 109.1 107.9 $107.9(17)$ $119.8(2)$ $124.0(19)$ $120.1(2)$ 120.0 120.0 120.0	132.5(2) $C(5)-N(6)-N(7)$ $127.4(18)$ $N(7)-N(6)-H(6)$ $102.60(18)$ $N(7)-C(8)-N(9)$ $123.84(18)$ $N(9)-C(8)-C(10)$ $103.62(19)$ $C(8)-C(10)-C(8)#1$ 109.1 $C(8)#1-C(10)-H(10A)$ 109.1 $C(8)#1-C(10)-H(10B)$ 107.9 $N(12)-N(11)-H(11A)$ $107.9(17)$ $H(11A)-N(11)-H(11B)$ $119.8(2)$ $C(13)-N(12)-H(12)$ $124.0(19)$ $N(15)-C(13)-N(14)$ 120.0 $C(13)-N(14)-H(14B)$ 120.0 $C(13)-N(15)-H(15A)$ 120.0 $H(15A)-N(15)-H(15B)$

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2

Table S11. Anisotropic displacement parameters (Å²x 10³) for 15. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U11	U ²²	U33	U ²³	U13	U12	
O(1)	26(1)	41(1)	27(1)	-14(1)	2(1)	-3(1)	
O(2)	22(1)	54(1)	33(1)	-14(1)	9(1)	-7(1)	
N(3)	19(1)	28(1)	22(1)	-2(1)	0(1)	3(1)	
N(4)	19(1)	28(1)	21(1)	-4(1)	2(1)	-1(1)	
C(5)	22(1)	20(1)	18(1)	3(1)	1(1)	5(1)	
N(6)	21(1)	27(1)	20(1)	-3(1)	2(1)	1(1)	
N(7)	29(1)	28(1)	21(1)	-3(1)	3(1)	1(1)	
C(8)	24(1)	17(1)	17(1)	4(1)	0(1)	4(1)	
N(9)	21(1)	22(1)	21(1)	-1(1)	1(1)	1(1)	
C(10)	30(2)	20(2)	21(2)	0	1(1)	0	
N(11)	26(1)	26(1)	25(1)	-2(1)	7(1)	3(1)	
N(12)	21(1)	30(1)	27(1)	-5(1)	5(1)	-2(1)	
C(13)	21(1)	22(1)	21(1)	5(1)	3(1)	3(1)	
N(14)	21(1)	34(1)	33(1)	-8(1)	6(1)	-1(1)	
N(15)	23(1)	28(1)	29(1)	-4(1)	8(1)	1(1)	

Table S12. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 15.

	х	у	Z	U(eq)	-
H(6)	2376(19)	1950(60)	2907(11)	32(7)	
H(10A) H(10B)	-208 208	-3867 -3867	2797 2203	28 28	

H(11A)	3424(13)	5010(40)	4888(10)	31
H(11B)	3713(15)	2650(50)	5301(7)	31
H(12)	3250(20)	200(70)	4461(12)	42(8)
H(14A)	4663	-2003	3637	35
H(14B)	3762	-2355	3762	35
H(15A)	5497	1406	4162	32
H(15B)	5134	3260	4627	32

Table S13. Torsion angles [°] for 15.

O(2)-N(3)-N(4)-C(5)	1.6(3)
O(1)-N(3)-N(4)-C(5)	-177.55(19)
N(3)-N(4)-C(5)-N(9)	-177.50(19)
N(3)-N(4)-C(5)-N(6)	4.7(4)
N(9)-C(5)-N(6)-N(7)	-0.4(2)
N(4)-C(5)-N(6)-N(7)	177.5(2)
C(5)-N(6)-N(7)-C(8)	0.7(2)
N(6)-N(7)-C(8)-N(9)	-0.7(2)
N(6)-N(7)-C(8)-C(10)	179.80(19)
N(6)-C(5)-N(9)-C(8)	0.0(2)
N(4)-C(5)-N(9)-C(8)	-178.23(18)
N(7)-C(8)-N(9)-C(5)	0.4(3)
C(10)-C(8)-N(9)-C(5)	179.96(19)
N(7)-C(8)-C(10)-C(8)#1	-115.2(2)
N(9)-C(8)-C(10)-C(8)#1	65.29(18)
N(11)-N(12)-C(13)-N(15)	1.4(3)
N(11)-N(12)-C(13)-N(14)	-178.8(2)

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z + 1/2

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(11)-H(11B)N(4)#4	0.910(10)	2.358(10)	3.267(3)	176(2)	
N(12)-H(12)O(1)#5	0.89(3)	2.04(3)	2.929(3)	174(3)	
N(14)-H(14A)N(9)#6	0.88	2.06	2.936(3)	170.9	
N(14)-H(14B)O(2)#5	0.88	1.97	2.847(3)	172.1	
N(15)-H(15A)N(4)#6	0.88	2.09	2.955(3)	167.2	
N(15)-H(15B)N(11)#7	0.88	2.39	3.097(3)	137.8	

Table S14. Hydrogen bonds for 15 [Å and °].

 \overline{S} ymmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2 #2 -x+1/2,y+1/2,-z+1/2 #3 -x+1/2,-y+3/2,-z+1

#4 -x+1/2,-y+1/2,-z+1 #5 x,y-1,z #6 x+1/2,y-1/2,z

#7 -x+1,-y+1,-z+1

Salt	N ^a %	O ^b %	V ^c (cm ³ /g)	D _T ^d (K)
3	73.65	0	0.5	2460
4	71.97	0	0.5	2208
5	78.24	0	0.48	2908
6	79.52	0	0.48	2931
7	69.28	0	0.46	1860
10	55.25	21.04	0.44	2882
11	58.67	19.15	0.47	2910
12	49.99	28.55	0.46	3299
13	59.81	13.66	0.45	2562
14	57.52	14.60	0.46	2917
15	60.27	15.30	0.49	2462
16	62.96	11.06	0.45	2755
RDX	37.84	43.22	0.42	3734
TNT	18.50	42.26	0.46	3170
ТАТВ	32.56	37.19	0.40	2749

Table S15. Nitrogen, oxygen content, volume of gaseous detonation products and detonation temperatures of compounds **3 to 16** compared with RDX. TATB and TNT.

^aNitrogen content; ^bOxygen content; ^cVolume of gaseous detonation products; ^dDetonation temperature.

5

6

4.277

-2.500

3

2

1

ppm

DSR-Eis TM 9

NH

8

9

Figure S5: ¹³C NMR spectrum of 3.

Figure S7: DSC plot of 3.

Figure S8: IR Spectrum of 3.

Figure S9: ¹H NMR spectrum of 4.

Figure S10: ¹³C NMR spectrum of 4.

Figure S11: ¹⁵N NMR spectrum of 4.

Figure S12: DSC plot of 4.

Figure S13: IR spectrum of 4.

Figure S15: ¹³C NMR spectrum of 5.

Figure S16: DSC plot of 5.

Figure S17: IR spectrum of 5.

Figure S19: ¹³C NMR spectrum of 6.

Figure S20: ¹⁵N NMR spectrum of 6.

Figure S21: DSC plot of 6.

Figure S22: IR spectrum of 6.

Figure S24: ¹³C NMR spectrum of 7.

Figure S25: ¹⁵N NMR spectrum of 7.

Figure S26: DSC plot of 7.

Figure S27: IR spectrum of 7.

Figure S28: ¹H NMR spectrum of 10.

Figure S29: ¹³C NMR spectrum of 10.

Figure S30: ¹⁵N NMR spectrum of 10.

Figure S31: DSC plot of 10.

Figure S32: IR spectrum of 10.

Figure S35: ¹⁵N NMR spectrum of 11.

Figure S36: DSC plot of 11.

Figure S37: IR spectrum of 11.

Figure S38: ¹H NMR spectrum of 12.

Figure S39: ¹³C NMR spectrum of 12.

Figure S40: ¹⁵N NMR spectrum of 12.

Figure S41: DSC plot of 12.

Figure S42: IR spectrum of 12.

Figure S43: ¹H NMR spectrum of 13.

Figure S44: ¹³C NMR spectrum of 13.

Figure S45: ¹⁵N NMR spectrum of 13.

Figure S46: DSC plot of 13.

Figure S47: IR spectrum of 13.

Figure S50: DSC plot of 14.

Figure S51: IR spectrum of 14.

Figure S54: DSC plot of 15.

Figure S55: IR spectrum of 15.

Figure S57: ¹³C NMR spectrum of 16.

15N-1H HMBC_2316 DSR-398

Figure S58: ¹⁵N NMR spectrum of 16.

Figure S59: DSC plot of 16.

Figure S60: IR spectrum of 16.

Computational Methods:

Computations were carried out using the Gaussian 09 program suite.³ The structure optimizations are performed with B3PW91 functional with 6-31G(d,p) basis set and characterized to be true local energy minima on the potential energy surface and no imaginary frequencies were found. Isodesmic reactions have been designed to predict the gas phase HOF (HOF_{gas}). The usage of HOF_{gas} in the calculation of detonation properties slightly

overestimates the values of detonation velocity and detonation pressure, and hence, the solid phase HOF (HOF_{solid}) can effectively reduce the errors. The HOF_{solid} is calculated as the difference between HOF_{gas} and heat of sublimation (HOF_{sub}) as,

$$HOF_{solid} = HOF_{gas} - HOF_{sub}$$
(1)

 HOF_{sub} depend on the molecular surface properties and calculated using equation (2) proposed by Politzer et al.,⁴

$$HOF_{sub} = 4.4307 \ x \ 10^{-4} A^2 + 2.0599 \left(\nu \sigma_{tot}^2 \right)^{0.5} - 2.4825 \tag{2}$$

where A represent the surface area of the 0.001 electrons/bohr³ isosurface of electronic density, *v* denotes the degree of balance between the positive and negative surface potentials, and σ_{tot}^2 is the electrostatic potential variance. The molecular surface properties were obtained using the Multiwfn program.⁵ The HOF of energetic salts were predicted using Born–Haber cycle (Figure S2) and can be simplified by the equation (3),

HOF (salt, 298 K) = HOF (cation, 298 K) + HOF (anion, 298 K) –
$$H_L$$
 (3)

in above equation, H_L is the lattice energy of the salts, which can be predicted by using the formula proposed by Jenkins et al.⁶

$$H_{L} = U_{POT} + \left[p(\frac{n_{M}}{2} - 2) + q(\frac{n_{X}}{2} - 2)\right]RT$$
(4)

Cation⁺ Anion⁻ (Solid)
$$\xrightarrow{-\Delta \text{HOF}} mC(s) + nH_2(g) + oN_2(g) + pO_2(g)$$

Cation⁺ (gas) + Anion⁻ (gas) $\xrightarrow{}$

Figure S2. Born-Haber cycle for the formation of energetic salts.

The nature of the cation M_p^+ and anion X_q^- decide n_M and n_x values, respectively and are equal to three for monoatomic ions, five for linear polyatomic ions, and six for nonlinear polyatomic ions. U_{POT} is the lattice potential energy, calculated using the density (ρ in g/cm³) and the chemical formula mass (M in g/mol) of the ionic salt.

Salt	Anion	2 V Cation	HOF _{cation}	HOF _{anion}	UPOT	H _L	HOF _{salt}
No.	Anion	2 A Cation	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)
3		$H_{2}N$	877.6	714.5	1164.7	1177.2	1292
4		H_2N N H_2 H_2N H_2 H_2N H H_2 H_2N H H H_2 H	753.8	714.5	1207.9	1220.3	1001
5		H_2N N H_2N N H	954.4	714.5	1258.9	1271.3	1351
6		H ₂ N N H ₂ N N H ₂ N N H ₂ N N NH ₂	1019	714.5	1222.5	1234.9	1517
7		HN ⁺ NH ₂ HN ⁺ N H ₂ N NH ₂	696.3	714.5	1180.8	1193.3	913

 Table S16. Energy content data for salts 3-7.

 Table S17. Energy content data for salts 10-16.

Salt	Anion	2 X Cation	HOF _{cation}	HOF _{anion}	UPOT	H _L	HOF _{salt}
No.			(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)
10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\overset{+}{NH}_4$	634.8	344.6	1333.2	1345.6	268
11	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	⁺ NH₃NH₂	761.2	344.6	1258.7	1271.1	596

12	$O_2 N \underset{N \neq V}{\overset{H}{\underset{N \neq N}}} H \underset{N = N}{\overset{H}{\underset{N \neq N}}} H \underset{N = N}{\overset{H}{\underset{N \neq N}}} NO_2$	ŇH₃OH	674.2	344.6	1258.7	1271.1	421
13	$\begin{array}{c} O_2N & \underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}}{\underset{N}{\underset{N}{\underset{N}}{\underset{N}}}}}}}}}}$	$H_{2}^{\uparrow} H_{2}^{\downarrow} H_{2$	753.8	344.6	1120.9	1133.3	719
14	$ \begin{array}{c} O_2N & \underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}}{\underset{N}{N$	NH₂ HŇ ↓ N H	796.4	344.6	1144.8	1157.2	779
15	$\begin{array}{c} O_2 N \underset{N = \sqrt{-N} \\ N = \sqrt{-N} \\ N = N \\ N \\$	$H_2N \overset{\stackrel{\stackrel{}{N}}{}H_2}{\underset{{H}_2}{}}_NH_2$	668.4	344.6	1133.7	1146.1	535
16	$O_2 N \underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{N}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\overset{H}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{\underset{N N}{\underset{N \rightarrow N}{\underset{N \rightarrow N}{N}{\underset{N N}{\underset{N N}{\underset{N N}{\underset{N N}{\underset{N N}{\underset{N N}{\underset{N N}{\underset{N N}{N}{\underset{N N}{N}{\underset{N N}{\underset{N N}{\underset{N N}{\underset{N N}{\underset{N N}{N}{N}}{\underset{N N}{N}{N}}{\underset{N N}{N}{N}}{N}{N}}}}}}}}}}$	$\begin{array}{c} H_2 N \\ N \\ H_2 N \\ N $	1112.0	344.6	1044.0	1056.4	1512

- References
 - 1. Arulsamy, N.; Bohle, D. S.; Doletski, B. G. Inorg. Chem. 1999, 38, 2709-2715.
 - Westwell, M. S.; Searle, M. S.; Wales, D. J.; Williams, D. H. J. Am. Chem. Soc. 1995, 117, 5013 5015.
 - Gaussian 09, Revision E.01, M. J.Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian*, Inc., Wallingford CT, **2013**.

- 4. Politzer P, Ma Y, Lane P, Concha MC (2005) Int J Quant Chem 105: 341-347.
- 5. Lu T, Chen F (2012) J Comput Chem 33: 580–592.
- H. D. B.Jenkins, D. Tudela, L. Glasser, Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements, *Inorg. Chem.* 2002, *41*, 2364.