Supplementary Information

Dense SnS₂ Nanoplates Vertically Anchored on Graphene Aerogel for Pseudocapacitive Sodium Storage

Xin Guo,^a Shuai Wang,^a Linpeng Yu,^a Chunyu Guo, *^a Peiguang Yan,^a Hong Gao,^b Hao

Liu*^{b,c}

^aCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China, 518060.

^bJoint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.

^cCentre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.

*Corresponding authors. E-mail: cyguo@szu.edu.cn; hao.liu@uts.edu.au.

Figure S1. XRD pattern of the SnO₂@GA precursor.

Figure S2. (a, b) TEM and (c) HRTEM images of SnO₂@GA. (d) SAED pattern of the

SnO₂@GA precursor.

Figure S3. Thermogravimetric analysis (TGA) curve of $SnO_2@GA$, which indicates that the graphene content is around ~37 wt%.

Figure S4. XRD patterns of the derived products after sulfurizing at 300 °C, 350 °C, 400 °C for 4 h.

Figure S5. (a) Low-magnification and (b) high-magnification SEM images of the asprepared SnS_{2} .

Figure S6. (a) TEM, (b) HRTEM and (c) EDS mapping images of the as-prepared SnS₂.

Figure S7. (a) Typical XPS survey spectrum and (b) the corresponding C 1s XPS spectrum of $SnS_2@GA$.

Figure S8. (a) STEM image and the corresponding (b) C, (c) Sn and (d) S elemental mapping results of $SnS_2@GA$ composite.

Figure S9. Cycling performance of the derived products sulfurizing under different temperatures at a current density of $200 \text{ mA} \cdot \text{g}^{-1}$.

Figure S10. (a) SEM and TEM images of the post-cycled $SnS_2@GA$ composite electrode after 150 cycles at 0.2 A g⁻¹.

Figure S11. (a) Cycling and (b) rate performance of the GA electrode.

Figure S12. Nyquist plots of the $SnS_2@GA$ and SnS_2 anodes after one cycle.

Materials	Rate performance	Cycling performance	Ref.
SnS ₂ @N-doped Carbon	362 mAh g ⁻¹ at 5	295 mAh g ⁻¹ at 2 A g ⁻¹ after	[22]
Box	A g ⁻¹	500 cycles	
SnS ₂ /RGO	544 mAh g ⁻¹ at 2	500 mAh g ⁻¹ at 1 A g ⁻¹ after	[24]
	A g ⁻¹	400 cycles	
SnS ₂ /EDA-	278 mAh g ⁻¹ at 4.2	360 mAh g ⁻¹ at 0.75 A g ⁻¹	[25]
functionalized RGO	A g ⁻¹	after 1,000 cycles	
3D Gr@SnS ₂ /SnS@C	288.5 mAh g ⁻¹ at 5	305 mAh g ⁻¹ at 1 A g ⁻¹ after	[27]
	A g ⁻¹	200 cycles	
$SnS_2 QDs/Ti_3C_2$	$\sim 165 \text{ mAh g}^{-1} \text{ at } 2$	345.3 mAh g ⁻¹ at 0.1 A g ⁻¹	[29]
	A g ⁻¹	after 600 cycles	
SnS ₂ /N-doped graphene	364 mAh g ⁻¹ at 5	453 mAh g ⁻¹ at 0.5 A g ⁻¹ after	[34]
	A g ⁻¹	200 cycles	
SnS ₂ /graphene	463 mAh g ⁻¹ at	670 mAh g ⁻¹ at 0.02 A g ⁻¹	[51]
	0.64 A g ⁻¹	after 60 cycles	
SnS ₂ @GA	492 mAh g ⁻¹ at 4	437 mAh g ⁻¹ at 2 A g ⁻¹ after	This
	A g ⁻¹	1,000 cycles	work

Table S1. Comparison of electrochemical performance of the $SnS_2@GA$ and some previously reported similar composites in sodium-ion batteries.