Effect of methoxy group/s on D- π -A porphyrin based DSSC:

efficiency enhanced by co-sensitization

Devulapally Koteshwar,^{1,2} Seelam Prasanthkumar,^{1,2} Surya Prakash Singh,^{1,2} Towhid H. Chowdhury,³ Idriss Bedja,⁴ Ashraful Islam,^{3*} Lingamallu Giribabu,^{1,2*}

¹Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India.

²Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, India.

³Photovoltaic Materials Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan. E-mail: <u>Islam.Ashraful@nims.go.jp</u>

⁴Cornea Research Chair, Optometry Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia

Corresponding authors: <u>giribabu@iict.res.in</u>, <u>Islam.Asraful@nims.go.jp</u> Phone: +91-40-27191724, Fax: +91-40-27160921;

	Table of Contents	Page No.			
Figure S1	¹ H NMR spectrum (400 MHz, CDCl ₃) of D1				
Figure S2	ESI-MS of 1 (APPIFTMS) D1	S3			
Figure S3	¹ H NMR spectrum (500 MHz, CDCl3) of $D2$	S4			
Figure S4	S4 ESI-MS of 1 (APPIFTMS) D2				
Figure S5	¹ H NMR spectrum (300 MHz, CDCl3) of 3	S5			
Figure S6	MALDI-TOF of 3	S5			
Figure S7	¹ H NMR spectrum (300 MHz, CDCl3) of 4	S6			
Figure S8	MALDI-TOF of 4	S6			
Figure S9	¹ H NMR spectrum (300 MHz, CDCl3+C5D5N) of LG24.	S7			
Figure S10	MALDI-TOF of LG24 .	S7			
Figure S11	¹ H NMR spectrum (300 MHz, CDCl3+C5D5N) of LG25.	S8			
Figure S12	MALDI-TOF of LG25 .	S8			
Figure S13	¹ H NMR spectrum (300 MHz, CDCl3+C5D5N) of LG26.	S9			
Figure S14	MALDI-TOF of LG26.	S9			
Figure S15	¹ H NMR spectrum (300 MHz, CDCl3+C5D5N) of LG27.	S10			
Figure S16	MALDI-TOF of LG27.	S10			
Figure S17	Theoretical absorption spectra of $LG24-LG27$ Dyes by using B3LYP method PCM model in tetrahydrofuran solvent with B3LYP/6-31G(d,p) method.	S11			
Figure S18	Singlet excited-state lifetimes of LG24, LG25, LG26 and LG27 in THF solution	S12			
Figure S19	Reduction spectra of LG24, LG25, LG26 and LG27.	S12			
Figure S20	Oxidative OTTLE studies porphyrin sensitizers in 0.3M TBAP/THF with an	S13			

	applied potential of +0.90V (vs. SCE/KCl)					
Figure S19.	319. Isodensity (0.02) plots of FMOs and the energy values in eV by using the					
	B3LYP method 6-31G(d,p).					
Figure S22	2 Photocurrent action spectra porphyrin sensitizers using different					
	concentrations of 4-tert butylpyridine.					
Figure S23	Current-voltage characteristics of porphyrin sensitizers using different S					
	concentrations of 4-tert butylpyridine.					
Figure S24	A TG/DTG curves of LG24, LG25, LG26 and LG27 porphyrins with heating					
	rate 10 °C.min ⁻¹ under nitrogen					
Table S1	Optimized energies, HOMO-LUMO energies and ground state dipole	S16				
	moment by DFT studies by using B3LYP/6-31G (d,p) in vacuum.					
Table S2	Singlet excited state properties of dyes by B3LYP method function in	S17				
	tetrahydrofuran solvent in PCM model. a Total minimum energy of dyads					
	and triad, ^b values in eV, ^c values in debye units.					

Figure S1. ¹H NMR spectrum (500 MHz, CDCl3) of D1.

Figure S2. ESI-MS of *D1*

Figure S3. ¹H NMR spectrum (500 MHz, CDCl3) of D2.

Figure S4. ESI-MS of D2.

Figure S5. ¹H NMR spectrum (500 MHz, CDCl3) of 3.

Figure S6. MALDI-TOF of 3.

Figure S7. ¹H NMR spectrum (500 MHz, CDCl3) of 4.

Figure S8. MALDI-TOF of 4.

Figure S9. ¹H NMR spectrum (500 MHz, CDCl3) LG24

Figure S10. MALDI-TOF of LG24.

Figure S11. ¹H NMR spectrum (500 MHz, CDCl3) of LG25.

Figure S12. MALDI-TOF of LG25.

Figure S13. ¹H NMR spectrum (500 MHz, CDCl3) of LG26.

Figure S14. MALDI-TOF of LG26.

Figure S15. ¹H NMR spectrum (500 MHz, CDCl3) of LG27.

Figure S16. MALDI-TOF of LG27.

Figure S17. Theoretical absorption spectra of LG24-LG27 Dyes by using B3LYP method PCM model in tetrahydrofuran solvent with B3LYP/6-31G(d,p) method.

Figure S18. Singlet excited-state lifetimes of LG24, LG25, LG26 and LG27 in THF solution

Figure S19. Reduction spectra of LG24, LG25, LG26 and LG27 in THF.

Figure S20. Oxidative OTTLE studies of LG24, LG25, LG27 series sensitizers in 0.3M TBAP/THF with an applied potential of +0.95V (vs. SCE/KCl).

Figure S21. Isodensity (0.02) plots of FMOs and the energy values in eV by using the B3LYP method 6-31G(d,p).

Figure S22. *Photocurrent action spectra porphyrin sensitizers using different concentrations of 4-tert* butylpyridine.

Figure S23. *Current–voltage characteristics of porphyrin sensitizers using different concentrations of 4-tert butylpyridine.*

Figure S24. *TG/DTG curves of LG24, LG25 and LG27 porphyrins with heating rate 10* °*C.min-1 under nitrogen.*

Table 1: Optimized energies, HOMO-LUMO energies and ground state dipole moment by DFT studies by using B3LYP/6-31G (d,p) in vacuum.

Dye	<i>ªE</i> , K.cal.∕mol	♭HOMO (H),	^b LUMO (L)	^b H-Lgap	°µ
LG24	-4380303	-4.74	-3.08	1.66	17.517
LG25	-4975847	-4.69	-3.06	1.63	16.047
LG26	-4236628	-4.77	-3.10	1.67	15.372
LG27	-4832119	-4.75	-3.07	1.68	13.477

^aTotal minimum energy of LG24-LG27, ^bvalues in eV, ^cvalues in debye units.

Dye	^a \u00c0 _{max}	${}^{b}\!f$	¢Е (eV)	% of Molecular Orbital Contribution
LG24	430	0.128	2.878	H-1->LUMO (59%), H-1->L+1 (11%), HOMO->L+3
				(17%) H-1->L+2 (4%), HOMO->L+2 (5%)
	583	0.016	2.123	H-1->LUMO (38%), H-1->L+1 (27%), HOMO->L+3
				(24%) HOMO->L+2 (7%)
	653	1.689	1.898	HOMO->LUMO (64%), HOMO->L+1 (16%) H-
				3->LUMO (3%), H-2->LUMO (3%), H-1->L+3 (8%)
LG25	415	0.131	2.986	H-3->LUMO (33%), H-1->L+2 (23%), HOMO-
				>LUMO (13%)H-7->L+1 (4%), H-3->L+1 (3%), H-2-
				>LUMO (9%), HOMO->L+3 (4%)
	580	0.018	2.136	H-1->LUMO (36%), H-1->L+1 (25%), HOMO->L+2
				(34%)
	662	2.00	1.870	HOMO->LUMO (66%), HOMO->L+1 (15%)H-3-
				>L+1 (3%), H-2->LUMO (3%), H-1->L+2 (9%)
LG26	416	0.679	2.977	H-1->LUMO (51%), HOMO->L+2 (46%)
	581	0.021	2.132	H-1->LUMO (38%), H-1->L+1 (25%), HOMO->L+2
				(33%)
	663	1.845	1.869	HOMO->LUMO (69%), HOMO->L+1 (14%) H-
				3->L+1 (3%), H-2->LUMO (2%), H-1->L+2 (9%)
LG27	413	0.672	2.995	H-1->LUMO (44%), HOMO->L+2 (43%) H-3-
				>LUMO (3%), H-1->L+2 (2%)
	580	0.041	2.196	H-1->LUMO (37%), H-1->L+1 (24%), HOMO->L+2
				(34%)

 Table 2: Singlet excited state properties of dyes by B3LYP method in tetrahydrofuran solvent in PCM model.

^aTheoretical absorbance in nm, ^bOscillator strength, and ^cExcited state energy in eV.