Supporting Information

Glutathione-Responsive Multifunctional Nanoparticles Based on Mannose-Modified Pillar[5]arene for Targeted Antibiotic Delivery against Intracellular Methicillin-Resistant *S. aureus*

Haibo Peng,^{a, b} Beibei Xie,^b Jiaojiao Dai,^b Xianfeng Cen,^a Yuanwei Dai,^b Xiaohong Yang,^{a,b*} Yun He^{b,*}

^a Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China;

^b School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China.

* Corresponding Author: Email: <u>yangxiaohong@cigit.ac.cn; yun.he@cqu.edu.cn</u>

Experimental Section

Chemicals were used as received without special purification unless stated otherwise. ¹H and ¹³C NMR spectra were recorded at ambient temperature on a 400 MHz NMR spectrometer (100 MHz for ¹³C NMR). NMR results were reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (7.26 or 77.0 ppm) as the internal standard. The coupling constants *J* are given in Hz.

1. Syntheses of the WP5 and G

Scheme S1: Synthetic route for WP5.

Synthesis of compound **3**: A mixture of $1^{1,2}$ (99 mg, 0.1 mmol), 2^2 (0.835 g, 2 mmol), CuSO₄ (32 mg, 0.2 mmol) and Sodium ascorbate (39.6 mg, 0.2 mmol) in DMF (10 mL) was stirred under N₂ at room temperature for 24 h. The mixture was concentrated in vacuum and the residue was soluble in water and DCM. The organic layer was separated and dried over Na₂SO₄. The filtrate was concentrated to yield the crude product, which was purified by silica column chromatography (DCM/EA, 5:1) to yield compound **3** (0.13 g, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (s, 10H), 6.89 (s, 10H), 5.18 (s, 30H), 4.91-4.82 (m, 30H), 4.61 (s, 20H), 4.21 - 4.20 (m, 10H), 4.11 (s, 10H), 4.03 - 4.01 (m, 10H), 3.92 (s, 10H), 3.71 (s, 20H), 2.10 (s, 30H), 2.04 (s, 30H), 1.96 (s, 30H), 1.92 (s, 30H); ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 169.9, 169.9, 169.7, 149.6, 144.6, 129.1, 128.7, 123.9, 115.7, 97.5, 69.1, 68.8, 66.4, 66.3, 65.6, 62.1, 49.6, 20.8, 20.7, 20.6, 20.6.

Figure S2. ¹³C NMR spectrum (400 MHz, CDCl₃) of compound 3.

Synthesis of compound **WP5**: A mixture of **3** (0.13 g, 0.09 mmol) in MeONa (5 mL) was stirred under N_2 at room temperature. Then a solution of MeONa in MeOH was added to mixture until the pH value reached to 11. The mixture was stirred at room temperature for 12 h and concentrated in vacuum. After removal of the solvent under reduced pressure, 10 mL of H_2O was added. And the solution was neutralized by Amberlite IR 120 (H+ resin form), the resulted solution was filtered, and residues were washed by H₂O several times. The obtained filtrate was concentrated to afford the target host molecule WP5 (0.1 g, ~100%). ¹H NMR (400 MHz, DMSO-*d*6): δ 8.24 (s, 10H), 6.98 (s, 10H), 5.06 (s, 10H), 4.74 (s, 30H), 4.63 (s, 10H), 4.56 (s, 20H), 4.49-4.48 (s, 40H), 3.93 (s, 10H), 3.78 (s, 10H), 3.64 (s, 20H), 3.57 (s, 10H), 3.40-3.37 (m, 80H), 3.22 (s, 10H); ¹³C NMR (101 MHz, DMSO-d6): δ 149.2, 143.7, 129.2, 128.6, 124.8, 114.9, 100.2, 74.5, 71.3, 70.5, 67.2, 65.3, 61.6, 49.7, 36.2, 31.2.

Figure S4. ¹³C NMR spectrum (400 MHz, DMSO-d6) of compound WP5.

Scheme S2: Synthetic route for G

Synthesis of compound **8**: Compounds **4** (2.6 g, 8.3 mmol) and pyridine (2.0 g, 24.9 mmol) in DCM (100 mL) was stirred at 0 °C. The 5 was added to the solution and was stirred under N₂ for overnight. After completed, the mixture was concentrated in vacuum and washed with Et₂O to yield compound **6** without further purification. ¹H NMR (400 MHz, CDCl₃): δ ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.13 (dd, *J* = 8.0, 12 Hz, 1H), 7.92-7.81 (m, 1H), 7.72 (t, *J* = 8.0 Hz, 0.5H), 7.55 (t, *J* = 8.0 Hz, 0.5H), 7.45-7.38 (m, 2H), 7.30-7.15 (m, 6H), 6.81 (d, *J* = 8.0 Hz, 2H). The compound **7** (1.7g, 9.3 mmol) and DIPEA (9.3 mmol) in DMF (10 mL) was stirred at rt. Then added **6** to the mixture for reacting 8 h. After complected, the mixture was concentrated to yield the crude product, which was purified by silica column chromatography (DCM/EA, 5:1) to yield compound **8** (3.9 g, 73.4%). ¹H NMR (400 MHz, DMSO-*d*6): δ 8.66 (d, *J* = 8.0 Hz, 1H), 8.44 (m, 1H), 8.10 (m, 1H), 7.87 (t, *J* = 8.0 Hz, 1H), 7.84-7.77 (m, 2H), 7.72 (t, *J* = 8.0 Hz, 3H), 7.66-7.64 (m, 1H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.42 (m, 1H), 6.95 (s, 1H), 3.36 (t, *J* = 8.0 Hz, 2H), 2.97 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*6): δ 159.4, 158.4, 154.4, 153.4, 152.9, 152.4, 150.1, 138.3, 138.1, 135.9, 132.3, 129.7, 126.6, 125.0, 122.7, 121.7, 119.7, 119.5, 117.6, 117.5, 116.2, 107.2, 60.8, 37.8. HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁N₄O₃S₂ (M+H)+ 525.1050, found 525.1052.

Figure S5. ¹H NMR spectrum (400 MHz, DMSO-d6, 298 K) of compound 8.

Figure S6. ¹³C NMR spectrum (400 MHz, DMSO-*d6*, 298 K) of compound 8.

Synthesis of compound **G**: A mixtures of **8** (0.39 g, 0.74 mmol), **9** (0.29 g, 0.74 mmol) in MeOH (10 mL) were stirred under N₂ at room temperature for 8 h. The mixture was concentrated in vacuum and the residue was washed with MeOH and Et₂O respectively to yield compound **G** (0.46 g, 59%). ¹H NMR (400 MHz, DMSO-*d*6): δ 8.70 (d, *J* = 8.0 Hz, 1H), 8.10-8.08 (m, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.90 (t, *J* = 8.0 Hz, 1H), 7.77-7.71 (m, 4H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 16.0 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.00-6.99 (m, 1H), 3.37-3.28 (m, 4H), 3.23 (t, *J* = 8.0 Hz, 2H), 3.01 (s, 9H), 2.84 (t, *J* = 8.0 Hz, 2H), 2.77 (t, *J* = 8.0 Hz, 2H), 2.02 (t, *J* = 8.0 Hz, 2H), 1.61 (s, 2H), 1.44 (s, 2H), 1.21 (s, 12H); ¹³C NMR (101 MHz, DMSO-*d*6): δ 172.7, 158.5, 154.4, 153.4, 153.0, 152.4, 138.2, 135.9, 132.2, 129.7, 126.6, 125.1, 122.7, 119.8, 119.5, 117.5, 116.2, 107.2, 65.7, 65.4, 60.7, 52.5, 38.2, 37.8, 37.6, 35.8, 29.3, 29.2, 29. 1, 28.9, 26.2, 25.7, 22.5. HRMS (ESI-TOF) m/z calcd for C₃₉H₅₁BrN₅O₄S₂ (M+H)⁺ 796.2560, found 796.2561.

Figure S7. ¹H NMR spectrum (400 MHz, DMSO-*d6*) of compound G.

Figure S8. ¹³C NMR spectrum (400 MHz, DMSO-*d6*) of compound G.

2. Results

2.1 Host-guest complexation of WP5 and G

Figure S9. ¹H NMR (400 MHz, D₂O, 298 K) spectra: (a) WP5 (2.0 mM), (b) WP5 (2.0 mM) and G (2.0 mM).

2.2 Host-guest complexation of WP5 and Gm

Figure S10. ¹H NMR spectra (400 MHz, D₂O, and 298 K) of Gm at a constant concentration of 4.0 mM with different concentrations of WP5 (mM): (a) 0.0, (b) 1.0, (c) 2.0, (d) 3.0, (e) 4.0, (f) 5.0, (g) 6.0, (h) 7.0, (i) 8.0, (j) 10.0, (k) 12.0 and (l) WP5 (4.0 mM).

2.3 Critical aggregation concentration (CAC) determination of $WP5 \supset G$

Figure S11. Plot of the surface tension of water vs. the concentration of WP5 \supset G. There are two linear segments in the plot and a sudden decrease of the slope, implying that the CAC of WP5 \supset G is approximately 18 μ M.

2.4 Emission spectra of G and DCM

Figure S12. Emission spectra of G and DCM in a DMSO/PBS solution (50/50, v/v, pH7.4, 10 mM) at 37 °C. λ_{ex} = 490 nm.

2.5 The DLS and TEM images of WP5 ⊃G nanoparticles in PBS (pH 7.4)

Figure S13 (a) DLS of WP5⊃G in PBS (pH 7.4) at scattering angle of 90°; (b) TEM images of WP5⊃G in PBS (pH 7.4); (c) DLS of LZD-WP5⊃G in PBS (pH 7.4); (c) DLS of LZD-WP5⊃G in PBS (pH 7.4);

2.6 CLSM images of RAW 264.7 cells cultured with WP5⊃G nanoparticles

Figure S14. CLSM images of RAW 264.7 cells cultured with WP5⊃G nanoparticles (equiv. G, 10 µM) for 1, 2, 4, and 8 h. Scale bars is 20 µm.

2.7 Flow cytometry analysis of RAW 264.7 cells cultured with WP5 DG nanoparticles

Figure S15. Cellular fluorescence intensity of RAW 264.7 cells cultured with WP5 \supset G nanoparticles (equiv. G, 10 μ M) in the absence or presence of GSH.

2.8 Competitive experiments

Figure S16. Cellular fluorescence intensity of Raw264.7 cells incubated with DCM or WP5 \supset G (1 µg·mL⁻¹, equiv. G) in the absence (a) or presence of mannosamine (50 mM).

2.9 The standard curve of LZD

Figure S17. The standard curve of LZD

2.10 Stability of WP5 \supset G and LZD-WP5 \supset G in H₂O

Figure S18. Time-dependent size changes of WP5⊃G and LZD-WP5⊃G in water.

2.11 Release of LZD from LZD-WP5 $\supset G$

Figure S19. The in vitro release profile of LZD from LZD-WP5⊃G was determined in PBS with different concentrations of GSH

2.12 In vitro cytotoxicity assay

Figure S20 In vitro cytocompatibility of WP5⊃G and LZD-WP5⊃G nanoparticles (1-30 µM, equiv. G) against cells after incubation for 48 h. (a) 293T and (b) RAW264.7 respectively. Data represent the mean ±SD of three independent experiments in triplicate.

3 Reference

- 1. G. Yu, Z. Zhang, J. He, Z. Abliz and F. Huang, Cavity-extended pillar[5]arenes: syntheses and hos-guest complexation with paraquat and bispyridinium derivatives, *Eur. J. Org. Chem.* 2012, **30**, 5902-5907.
- 2. I. Nierengarten, M. Nothisen, D. Sigwalt, T. Biellmann, M. Holler, J.-S. Remy and J.-F. Nierengarten, Polycationic pillar[5]arene derivatives: interaction with DNA and biological applications, *Chem. Eur. J.* 2013, **19**, 17552-17558.
- 3. S. Zhang and Y. Zhao, Facile synthesis of multivalent water-soluble organic nanoparticles via "surface clicking" of alkynylated surfactant micelles, *Macromolecules* 2010, **43**, 4020–4022