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Experimental Section

Chemicals were used as received without special purification unless stated otherwise. 'H and '*C NMR spectra were recorded
at ambient temperature on a 400 MHz NMR spectrometer (100 MHz for 13C NMR). NMR results were reported in & units, parts
per million (ppm), and were referenced to CDCl; (7.26 or 77.0 ppm) as the internal standard. The coupling constants J are given

in Hz.

1. Syntheses of the WP5 and G
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Scheme S1: Synthetic route for WP5.

Synthesis of compound 3: A mixture of 12 (99 mg, 0.1 mmol), 22 (0.835 g, 2 mmol), CuSO4 (32 mg, 0.2 mmol) and Sodium
ascorbate (39.6 mg, 0.2 mmol) in DMF (10 mL) was stirred under N, at room temperature for 24 h. The mixture was
concentrated in vacuum and the residue was soluble in water and DCM. The organic layer was separated and dried over Na,SO,.
The filtrate was concentrated to yield the crude product, which was purified by silica column chromatography (DCM/EA, 5:1) to
yield compound 3 (0.13 g, 93%). 'H NMR (400 MHz, CDCl3):  7.90 (s, 10H), 6.89 (s, 10H), 5.18 (s, 30H), 4.91-4.82 (m, 30H),
4.61 (s, 20H), 4.21 - 4.20 (m, 10H), 4.11 (s, 10H), 4.03- 4.01 (m, 10H), 3.92 (s, 10H), 3.71 (s, 20H), 2.10 (s, 30H), 2.04 (s, 30H),
1.96 (s, 30H), 1.92 (s, 30H); '3C NMR (101 MHz, CDCls): § 170.6, 169.9, 169.9, 169.7, 149.6, 144.6, 129.1, 128.7, 123.9, 115.7,
97.5, 69.1, 68.8, 66.4, 66.3, 65.6, 65.6, 62.1, 49.6, 20.8, 20.7, 20.6, 20.6.
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Figure S1. '"H NMR spectrum (400 MHz, CDCl;) of compound 3.
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Figure S2. 3C NMR spectrum (400 MHz, CDCl;) of compound 3.

Synthesis of compound WPS: A mixture of 3 (0.13 g, 0.09 mmol) in MeONa (5 mL) was stirred under N, at room temperature.

Then a solution of MeONa in MeOH was added to mixture until the pH value reached to 11. The mixture was stirred at room

temperature for 12 h and concentrated in vacuum. After removal of the solvent under reduced pressure, 10 mL of H,O was added.



And the solution was neutralized by Amberlite IR 120 (H+ resin form), the resulted solution was filtered, and residues were
washed by H,O several times. The obtained filtrate was concentrated to afford the target host molecule WP5 (0.1 g, ~100%). 'H
NMR (400 MHz, DMSO-d6): J 8.24 (s, 10H), 6.98 (s, 10H), 5.06 (s, 10H), 4.74 (s, 30H), 4.63 (s, 10H), 4.56 (s, 20H), 4.49-4.48
(s, 40H), 3.93 (s, 10H), 3.78 (s, 10H), 3.64 (s, 20H), 3.57 (s, 10H), 3.40-3.37 (m, 80H), 3.22 (s, 10H); '3C NMR (101 MHz,
DMSO-d6): & 149.2, 143.7, 129.2, 128.6, 124.8, 114.9, 100.2, 74.5, 71.3, 70.5, 67.2, 65.3, 61.6, 49.7, 36.2, 31.2.
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Figure S3. 'H NMR spectrum (400 MHz, DMSO-d6, 298 K) of compound WPS5.
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Figure S4. 3C NMR spectrum (400 MHz, DMSO-d6) of compound WP5.
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Scheme S2: Synthetic route for G

Synthesis of compound 8: Compounds 4 (2.6 g, 8.3 mmol) and pyridine (2.0 g, 24.9 mmol) in DCM (100 mL) was stirred at 0
°C. The 5 was added to the solution and was stirred under N, for overnight. After completed, the mixture was concentrated in
vacuum and washed with Et,O to yield compound 6 without further purification. 'H NMR (400 MHz, CDCl;): 6 'H NMR (400
MHz, CDCl;): 8 8.78 (s, 1H), 8.13 (dd, J = 8.0, 12 Hz, 1H), 7.92-7.81 (m, 1H), 7.72 (t, J = 8.0 Hz, 0.5H), 7.55 (t, J = 8.0 Hz,
0.5H), 7.45-7.38 (m, 2H), 7.30-7.15 (m, 6H), 6.81 (d, J = 8.0 Hz, 2H). The compound 7 (1.7g, 9.3 mmol) and DIPEA (9.3 mmol)
in DMF (10 mL) was stirred at rt. Then added 6 to the mixture for reacting 8 h. After complected, the mixture was concentrated
to yield the crude product, which was purified by silica column chromatography (DCM/EA, 5:1) to yield compound 8 (3.9 g,
73.4%). 'H NMR (400 MHz, DMSO-d6): ¢ 8.66 (d, J = 8.0 Hz, 1H), 8.44 (m, 1H), 8.10 (m, 1H), 7.87 (t, J = 8.0 Hz, 1H), 7.84-
7.77 (m, 2H), 7.72 (t, J = 8.0 Hz, 3H), 7.66-7.64 (m, 1H), 7.55 (t, J= 8.0 Hz, 1H), 7.42 (m, 1H), 6.95 (s, 1H), 3.36 (t, /= 8.0 Hz,
2H), 2.97 (t, J = 8.0 Hz, 2H); 3C NMR (101 MHz, DMSO-d6): 6 159.4, 158.4, 154.4, 153.4, 152.9, 152.4, 150.1, 138.3, 138.1,
135.9, 132.3, 129.7, 126.6, 125.0, 122.7, 121.7, 119.7, 119.5, 117.6, 117.5, 116.2, 107.2, 60.8, 37.8. HRMS (ESI-TOF) m/z calcd
for CpsHyN4O;3S,; (M+H)+ 525.1050, found 525.1052.
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Figure S5. 'H NMR spectrum (400 MHz, DMSO-d6, 298 K) of compound 8.
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Figure S6. 3C NMR spectrum (400 MHz, DMSO-d6, 298 K) of compound 8.

Synthesis of compound G: A mixtures of 8 (0.39 g, 0.74 mmol), 9 (0.29 g, 0.74 mmol) in MeOH (10 mL) were stirred under N, at
room temperature for 8 h. The mixture was concentrated in vacuum and the residue was washed with MeOH and Et,0 respectively to
yield compound G (0.46 g, 59%). 'H NMR (400 MHz, DMSO-d6): § 8.70 (d, J = 8.0 Hz, 1H), 8.10-8.08 (m, 1H), 8.04 (d, /= 8.0 Hz,
1H), 7.90 (t, J = 8.0 Hz, 1H), 7.77-7.71 (m, 4H), 7.59 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 16.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.00-6.99
(m, 1H), 3.37-3.28 (m, 4H), 3.23 (t, J = 8.0 Hz, 2H), 3.01 (s, 9H), 2.84 (t, J = 8.0 Hz, 2H), 2.77 (t, J = 8.0 Hz, 2H), 2.02 (t, J = 8.0 Hz,
2H), 1.61 (s, 2H), 1.44 (s, 2H), 1.21 (s, 12H); 3*C NMR (101 MHz, DMSO-d6): § 172.7, 158.5, 154.4, 153.4, 153.0, 152.4, 138.2, 135.9,
132.2, 129.7, 126.6, 125.1, 122.7, 119.8, 119.5, 117.5, 116.2, 107.2, 65.7, 65.4, 60.7, 52.5, 38.2, 37.8, 37.6, 35.8, 29.3, 29.2, 29. 1, 28.9,
26.2,25.7,22.5. HRMS (ESI-TOF) m/z calcd for C39Hs;BrNsO4S, (M+H)" 796.2560, found 796.2561.
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Figure S8. 13C NMR spectrum (400 MHz, DMSO-d6) of compound G.
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2. Results

2.1 Host-guest complexation of WP5 and G
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Figure $9. 'H NMR (400 MHz, D,0, 298 K) spectra: (a) WP5 (2.0 mM), (b) WP5 (2.0 mM) and G (2.0 mM).

2.2 Host-guest complexation of WP5 and Gm
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Figure S10. 'H NMR spectra (400 MHz, D,0, and 298 K) of Gm at a constant concentration of 4.0 mM with different concentrations of WP5
(mM): (a) 0.0, (b) 1.0, (¢) 2.0, (d) 3.0, (e) 4.0, (f) 5.0, (g) 6.0, (h) 7.0, (i) 8.0, (j) 10.0, (k) 12.0 and (1) WPS (4.0 mM).

2.3 Critical aggregation concentration (CAC) determination of WP55G
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Figure S11. Plot of the surface tension of water vs. the concentration of WP52G. There are two linear segments in the plot and a sudden

decrease of the slope, implying that the CAC of WP52G is approximately 18 uM.

2.4 Emission spectra of G and DCM
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Figure S12. Emission spectra of G and DCM in a DMSO/PBS solution (50/50, v/v, pH7.4, 10 mM) at 37 °C. A= 490 nm.

2.5 The DLS and TEM images of WP525G nanoparticles in PBS (pH 7.4)
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Figure S13 (a) DLS of WP5DG in PBS (pH 7.4) at scattering angle of 90°; (b) TEM images of WP52G in PBS (pH 7.4); (c) DLS of LZD-WP5>G in PBS
(pH 7.4) at scattering angle of 90°; (d) TEM images of LZD-WP5>G in PBS (pH 7.4);

2.6 CLSM images of RAW 264.7 cells cultured with WP5 5G nanoparticles

10
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Figure S14. CLSM images of RAW 264.7 cells cultured with WP52G nanoparticles (equiv. G, 10 uM) for 1, 2, 4, and 8 h. Scale bars is 20 gm.

2.7 Flow cytometry analysis of RAW 264.7 cells cultured with WP55G nanoparticles
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Figure S15. Cellular fluorescence intensity of RAW 264.7 cells cultured with WP52G nanoparticles (equiv. G, 10 uM) in the absence or

2.8 Competitive experiments

presence of GSH.
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Figure S16. Cellular fluorescence intensity of Raw264.7 cells incubated with DCM or WP52G (1 pg-mL-, equiv. G) in the absence (a) or
presence of mannosamine (50 mM).

2.9 The standard curve of LZD
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Figure S17. The standard curve of LZD

2.10 Stability of WP55G and LZD-WP55G in H,0
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Figure S18. Time-dependent size changes of WP55G and LZD-WP5>G in water.

2.11 Release of LZD from LZD-WP5 OG
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Figure S19. The in vitro release profile of LZD from LZD-WP5>G was determined in PBS with different concentrations of GSH

2.12 In vitro cytotoxicity assay
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Figure S20 /n vitro cytocompatibility of WP52G and LZD-WP5>G nanoparticles (1-30 uM, equiv. G) against cells after incubation for 48 h. (a)
293T and (b) RAW264.7 respectively. Data represent the mean SD of three independent experiments in triplicate.
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