Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Information for

Tricolor fluorescent switching in the three crystal polymorphs of tetraphenylethylene modified fluorenone AIEgen

Bingwen Zhang,^{‡,a} Jingjing Jiang,^{‡,a} Wenji Wang,^{‡,a} QinTu,^a Ruijin Yu,^a Jinyi Wang^{*,a} and Mao-Sen Yuan,^{*,a,b}

^a College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100 (P. R. China), ^b State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (P.R. China)
 [‡] These three authors contributed equally to this work.

Table of contents

1. Synthesis and the single-crystal preparation	2
2. ¹ H NMR, ¹³ C NMR and MS	5
3. PL and Absorption Spectra of TFT solution	9
4. Single crystal structure	
5. PL, Absorption Spectra and XRD of TFT powder	11
6. X-ray Crystal Data	
7. Theoretical calculation	
8 References	

1. Synthesis and the single-crystal preparation

Scheme S1 Synthetic routes to TFT.

Synthesis of 1-(4-bromophenyl)-1, 2, 2-triphenylethene (compound 2) [1]

To a 250 mL three-necked flask, diphenylmethane (1.53 mL, 9.04 mmol) and 30 mL dry THF was added. Evacuated replacement and then 2.9 mL (7.00 mol) of n-butyllithium (2.4 mol/L solution in hexane) was injected to the solution slowly with a syringe at 0°C under nitrogen. After stirring for 30 min, 40 mL dry THF solution of 4-bromobenzophenone (1.56 g, 5.99 mmol) was added dropwise to the reaction mixture. Stirred over night at room temperature and then quenched by adding an aqueous solution of ammonium chloride into the mixture. Extracted with DCM, the DCM phase was alternately washed with deionized water and saturated sodium chloride aqueous for three times, and then dried over anhydrous magnesium sulfate. After filtration followed by solvent evaporation, the intermediate (**compound 2**) was obtained. Then, the intermediate 1 and 0.21 g anhydrous p-toluenesulfonic acid were dissolved in 30 mL toluene and refluxed for 8 h. After evaporating to remove toluene, the obtained solid was dissolved in DCM and then alternately

washed with deionized water and saturated sodium chloride aqueous for three times. The DCM phase was dried over anhydrous magnesium sulfate and the blue-white crude TPE-Br was obtained after filtration followed by solvent evaporation. Purified by silica gel column chromatography using hexane/DCM (v/v=4:1) as eluent, **compound 2** was obtained as a white solid in 56.14% yield. The resulting product was directly synthesized into **compound 3**.

Synthesis of 4, 4, 5, 5-tetramethyl-2-(4-(1, 2, 2-triphenylvinyl) phenyl)-1, 3, 2-dioxaborolane (compound 3)[2]

In a 100 mL three-necked flask, B₂Pin₂ (1.14 g, 4.5 mmol), TPE-Br (1.5 g, 3.6 mmol) and potassium acetate (1.46 g, 14.9 mmol) were dissolved in 20 mL dioxane, and then Pd(dppf)Cl₂ (30 mg, 0.04 mmol) was added to the solution under nitrogen. The resulting mixture was stirred at 90 °C for 16 h. After filtration with silica gel, the filtrate was evaporated under reduced pressure to remove dioxane. Then, the slight-yellow residue was purified by silica gel column chromatography, using PE/DCM (V/V=3:1) as eluent to give **compound 3** in yield of 66.42% (1.02 g). ¹H NMR (DMSO-*d*₆, 500 MHz, ppm) δ 7.46 (d, *J* = 7.6 Hz, 2H), 7.15 (dq, 9H), 7.05 – 6.96 (m, 8H), 3.37 (s, 12H).

The synthesis of 2,7-bis(4-(1,2,2-triphenylvinyl)phenyl)-9H-fluoren-9-one (TFT)

A mixture of **compound 3** (733.7 mg, 1.6 mmol), 2,7-bis(4-bromophenyl)-9H-fluoren-9-one (264.3 mg, 0.78 mmol), Pd(PPh₃)₄ (56 mg, 0.047 mmol), K₂CO₃ (431.2mg, 3.12 mmol) in toluene (15 mL) and water (2 mL) was heated to reflux and stirred under nitrogen overnight. After cooling down to room temperature, the organic layer was separated and the water layer was extracted with dichloromethane (DCM). The combined organic solution was dried with Na₂SO₄. After filtration, the resulting solution was concentrated on a rotary evaporator. The residue was purified by column chromatography on silica gel using DCM/PE (v/v: 1: 2) as the eluent to obtain **TFT** (86.67%, yield) as an orange powder. ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.91 (s, 2H), 7.72 (dd, J = 7.6, 1.8 Hz, 2H), 7.58 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 8.1 Hz, 4H), 7.23 – 7.06 (m, 34H). ¹³C NMR (CDCl₃, 101 MHz, ppm) δ 193.79, 143.64, 143.61, 143.56, 143.54, 142.92, 141.71, 141.46, 140.29, 137.49, 135.15, 132.97, 131.96, 131.40, 131.32, 127.81, 127.74, 127.65, 126.63, 126.55, 126.49, 125.89, 122.82, 120.66. HRMS (ESI) m/z calcd for C₆₅H₄₅O⁺ (M+H)⁺ 841.34649, found 841.34644.

The preparation of yellow single crystals Y-TFT

The yellow single crystals **Y-TFT** were obtained by slow evaporation. Firstly, the compound **TFT** was dissolved in DCM to prepare a saturated solution, then *n*-hexane was slowly added along the bottle wall and the bottle mouth was sealed. Finally, the culture bottle was placed in a quiet and vibration free environment and volatilized slowly at room temperature over a week to obtain yellow single crystals **Y-TFT**.

The preparation of orange single crystals O-TFT

The orange single crystals **O-TFT** were also obtained by slow evaporation. Firstly, the compound **TFT** was dissolved in DCM to prepare a saturated solution, then methanol was slowly added along the bottle wall and the bottle mouth was sealed. Finally, the culture bottle was placed in a quiet and vibration free environment and volatilized slowly at room temperature over a week to obtain orange single crystals **O-TFT**.

The preparation of red single crystals R-TFT

Similar to the preparation of yellow single crystals **Y-TFT** and orange single crystals **O-TFT**, the red single crystals **R-TFT** was prepared by using tetrahydrofuran and methanol mixed system, sealing and static, and slowly evaporating at room temperature over a week.

2. ¹H NMR, ¹³C NMR and MS.

Figure S1¹H NMR spectrum (500 MHz, DMSO-*d*₆) of compound 3

Figure S2 ¹H NMR spectrum (500 MHz, CDCl₃) of compound TFT

Figure S3 ¹³C NMR spectrum (101 MHz, CDCl₃) of compound TFT

Figure S4 HRMS (ESI) spectrum of TFT

3. PL and Absorption Spectra of TFT solution

Figure S5 (a) UV-Vis absorption spectra of **TFT** in varying solvents; (b)UV-Vis absorption spectra of **TFT** in DMSO–water mixtures with different water fractions $(2\mu M)$

4.Single crystal structure

Figure S6 The single crystal structure of Y-TFT, O-TFT and R-TTF

5. PL, Absorption Spectra and XRD of TFT powders

Figure S7 (a) (b)Powder XRD profiles of the yellow crystal **Y-TFT**, orange crystal **O-TFT** and red crystal **R-TFT**; (c)The absorbance spectra of **Y-TFT**, **O-TFT** and **R-TFT**; (d)Repeated switching of the solid-state fluorescence of **Y-TFT** and **O-TFT** by repeated grinding and heating cycles.

6. X-ray Crystal Data

	<i>, 8</i>	7 -	
Crystals	Y-TFT	O-TFT	R-TFT
formula	C ₆₅ H ₄₄ O	C ₆₅ H ₄₄ O	C ₆₅ H ₄₄ O
Fw [g/mol]	841.00	841.00	841.00
Crystal color	yellow	orange	red
Crystal system	orthorhombic	triclinic	monoclinic
Space group	Pbcn	P_1	$P_{1}2_{1}/c_{1}$
a[Å]	15.467(2)	10.1631(15)	29.085(3)
b[Å]	16.015(3)	12.8711(18)	9.7598(9)
c[Å]	20.695(4)	19.294(3)	19.4264
β[°]	90	99.038(4)	99.500(4)
V[Å ³]	5126.2(15)	2445.2(6)	5438.8(9)
Z	4	2	4
$\rho_{calcd}[g/cm^3]$	1.310	1.258	1.027
μ [mm ⁻¹]	1.615	1.007	0.289
T[K]	150(2)	150(2)	150(2)
θmin-θmax[°]	3.46-54.81	3.04-54.98	2.68- 54.82
$R/wR[I>2\sigma_{(1)}]$	0.074/0.1326	0.038/0.1027	0.0703/0.2106

Table S1. Selected crystallographic data for Y-TFT, O-TFT and R-TFT

7. Theoretical Calculations

Table S2 The graphic representations of the frontier molecular orbits of QB-Zn. Geometric optimization was performed using the B3LYP functional.

8. Reference

- Zhang S, Cui H, Gu M, Zhao N, Cheng M, Lv J. *Small*, 2019, 15:1804662-4804670
 Jiang Y, Duan Q, Zheng G, Yang L, Zhang J, Wang Y, Zhang H, He J, Sun H, Ho D. *Analyst*, 2019, 144:1353-1360