Cobalt- and Iron-Catalyzed Regiodivergent Alkene Hydrosilylations

Sheng Zhang, Jia-Shia Liao, Daniel K. Unruh, Guigen Li and Michael Findlater*

Department of Chemistry & Biochemistry, Texas Tech University, Lubbock TX, 79409, USA.

Supporting Information

Table of Contents	
Part I Experimental Section	S2
1. General information	S2
2. General procedure for the synthesis of substrates 4y-4aa	
S2-S3	
3. General procedure for the synthesis of ligands	S3-S7
4. Optimization of reaction conditions	S8-S17
5. General Procedures for Hydrosilylation	S17-S19
6. Procedure for Catalyst-Recycling Experiment	S19-S20
7. Procedure for KIE Study	S19-S21
8. Derivatization of Hydrosilylation products	S22
9. Preparation of precatalyst single crystals and the structures	S23-S26
10. Experimental data for Hydrosilylation Products	S28-S46
11. References	
S47	
Part II NMR Spectra	S48-S129

1. General Information

¹H NMR and ¹³C NMR were recorded on a Jeol 400 MHz spectrometer (¹H NMR: 400MHz, ³¹P NMR: 162 MHz, ¹³C NMR: 100MHz). The chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz respectively. ¹H NMR spectra were referenced to the solvent residual peak (CDCl₃, δ 7.26 ppm) and ¹³C{1H} NMR spectra were referenced to the solvent residual peak (CDCl₃, δ 77.0 ppm). IR was recorded on Nicolet iS5 FTIR spectrometer. High Resolution mass spectra were obtained using Thermo Scientific Exactive mass spectrometer, Santa Clara, CA with HESI electrospray with 50% acetonitrile water containing either 0.1% Formic acid at infusion rate of 5 µL/min. All solvents were purified and dried according to the standard procedures unless otherwise noted. Commercially substrates was purchased and used directly. Substrates 5-vinylbenzo[*d*][1,3]dioxole (**4n**),^{S1} 1-(prop-1-en-2-yl)-3-vinylbenzene (**4u**),^{S2} and (S)-4,8-dimethylnona-1,7-diene (**4w**)^{S3} were prepared according to the literature procedures.

2. General procedure for the synthesis of substrates 4y-4aa (4aa as an example)

To a solution of the estrone **11** (1g, 3.7 mmol) in CH₃CN (10 mL) were added K_2CO_3 (1g, 7.4 mmol) and allyl bromide (640µL, 7.4 mmol). The suspension was stirred at 50 °C until the starting material was fully consumed, as indicated by TLC (about 3 h). After cooling to r.t., the mixture was filtered through a short pad of Celite, which was subsequently washed with EtOAc (50 mL). After evaporation of the organic solvent, the crude product **12** was obtained, which can be used in the next step without further purification.

To a suspension of ^tBuOK (628 mg, 5.6 mmol, 1.5 equiv.) in anhydrous THF (15 mL) was added MePPh₃Br (2.0 g, 5.6 mmol, 1.5 equiv.) under argon atmosphere. The suspension was stirred at room temperature for 1 h, and then the crude product **12** was added. The resulting mixture was warmed to 50 °C and stirred for 5 h. After cooling to r.t., the mixture was filtered through a short pad of silica gel, which was subsequently washed with diethyl ether (200 mL). After evaporation of the organic solvent, the residue was purified by silica gel column chromatography (hexane/EtOAc 50/1 followed by hexane/EtOAc 20/1) to provide 1.05 g (92% yield) of **4aa** as a colorless oil.

1-(Allyloxy)-4-(prop-1-en-2-yl)benzene (**4y**): colorless oil, 1.67 g (starting material 10 mmol), 96% yield; ¹H NMR (CDCl₃, 400 MHz): 7.45-7.42 (d, J = 8.8 Hz, 2H), 6.91-6.89 (d, J = 9.2 Hz, 2H), 6.13-6.04 (m, 1H), 5.47-5.41 (m, 1H), 5.33-5.30 (m, 2H), 5.03-5.01 (m, 1H), 4.58-4.55 (m, 2H), 2.16-2.15 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): 158.0, 142.5, 133.8, 133.2, 126.5, 117.6, 114.3, 110.7, 68.7, 21.9; IR (neat): 3083, 1971, 1604, 1509, 1241, 1179, 1022, 996, 923, 886, 830 cm⁻¹; HRMS: calcd. for C₁₂H₁₄O [M+H]⁺ 175.1117, found: 175.1116.

1-(Allyloxy)-4-(1-phenylvinyl)benzene (**4z**): white solid, m.p.: 61-62 °C, 2.22 g (starting material 10 mmol), 94% yield; ¹H NMR (CDCl₃, 400 MHz): 7.40-7.36 (m, 5H), 7.33-7.31 (d, J = 8.8 Hz, 2H), 6.94-6.92 (d, J = 8.8 Hz, 2H), 6.16-6.07 (m, 1H), 5.50-5.40 (m, 3H), 5.36-5.33 (m, 1H), 4.60-4.58 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): 158.3, 149.4, 141.7, 134.0, 133.2, 129.3, 128.3, 128.1, 127.6, 117.7, 114.2, 113.0, 68.7; IR (neat): 2979, 2882, 1505, 1388, 1235, 1178, 939, 840 cm⁻¹; HRMS: calcd. for C₁₇H₁₆O [M+H]⁺ 237.1274, found: 237.1270.

(85,95,135,145)-3-(allyloxy)-13-methyl-17-methylene-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthrene (**4aa**): colorless oil, 1.05 g, 92% yield; ¹H NMR (CDCl₃, 400 MHz): 7.25-7.23 (d, *J* = 8.4 Hz, 1H), 6.77-6.74 (dd, *J* = 8.4 Hz, *J* = 2.8 Hz, 1H), 6.68-6.67 (d, *J* = 2.8 Hz, 1H), 6.13-6.03 (m, 1H), 5.46-5.40 (m, 1H), 5.31-5.28 (m, 1H), 4.71-4.70 (t, *J* = 2.0 Hz, 2H), 4.54-4.52 (m, 2H), 2.96-2.83 (m, 2H), 2.61-2.54 (m, 1H), 2.41-2.21 (m, 3H), 2.00-1.94 (m, 2H), 1.88-1.80 (m, 1H), 1.62-1.36 (m, 5H), 1.32-1.23 (m, 1H), 0.85 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 161.7, 156.4, 138.0, 133.6, 132.9, 126.2, 117.4, 114.7, 112.1, 100.8, 68.7, 53.4, 44.3, 44.0, 38.7, 35.7, 29.8, 29.4, 27.6, 26.6, 23.9, 18.5; IR (neat): 2919, 2866, 1607, 1497, 1253, 1231, 1024, 874, 783 cm⁻¹; HRMS: calcd. for C₂₂H₂₈O [M+H]⁺ 309.2213, found: 309.2207.

3. General procedure for the synthesis of ligands (L1 as an example)

To a 250 mL schlenk flask was added a solution of *o*-Phenylenediamine (**1**) (30 mmol, 3.24g) in anhydrous THF (80 mL) and the solution was cooled to 0 °C under argon atmosphere. To the above solution, NaH (60% in mineral oil) (30 mmol, 1.2 g) was added portionwise under argon atmosphere. The resulting solution was warmed to 40 °C and stirred at 40 °C for 1 hour, then was cooled to 0 °C. To the solution was added a solution of $2a^{S4}$ (20 mmol, 5.57g) in 20 mL anhydrous THF. The resulting solution was warmed to 40 °C and stirred at 40 °C overnight. To quench the reaction, 50 mL saturated NH₄Cl aqueous solution was slowly added to the reaction mixture. The resulting suspension was extracted with diethyl ether for three times (3×100 mL), and the combined organic phase was dried over anhydrous MgSO₄. After filtering MgSO₄, the organic solvent was removed under vacuum and the product was purified by silica gel column chromatography (CH₂/EtOAc 2/1 followed by EtOAc/MeOH 20/1) to provide 3.7 g (53% yield)

of **3a** as a white solid.

To a solution of **3a** (350mg, 1 mmol) in methanol (5 mL) was added picolinaldehyde (190 μ L, 2 mmol). The solution was stirred overnight at room temperature then the solvent was evaporated. The residue was purified by silica gel column chromatography (EtOAc/Hexane/Et₃N 50/50/1 followed by EtOAc/MeOH/Et₃N 100/5/1) to give the corresponding **L1** (431mg, 98% yield).

(3aR, 7aR)-2-((2-Aminophenyl)amino)-1,3-diisopropyloctahydro-1*H*-benzo[*d*][1,3,2]diazaphosphole 2-oxide (**3a**): white solid, m.p.: 216-218 °C; ¹H NMR (400MHz, CDCl₃): 7.51-7.49 (d, *J* = 8.0 Hz, 1H), 6.79-6.75 (m, 1H), 6.65-6.58 (m, 2H), 6.43-6.41 (d, *J* = 6.0 Hz, 1H), 4.45 (s, 2H), 3.61-3.41 (m, 2H), 3.09-2.99 (m, 2H), 2.13-2.01 (m, 2H), 1.82-1.75 (m, 2H), 1.41-1.39 (d, *J* = 6.8 Hz, 3H), 1.37-1.27 (m, 4H), 1.22-1.20 (d, *J* = 6.4 Hz, 3H), 1.08-1.06 (d, *J* = 6.8 Hz, 3H), 0.95-0.93 (d, *J* = 6.4 Hz, 3H); ³¹P NMR (162 MHz, CDCl₃): 18.8; ¹³C NMR (100MHz, CDCl₃): 138.8 (d, *J*_{*P*-*C*} = 8.2 Hz), 128.7, 122.3, 120.1 (d, *J*_{*P*-*C*} = 4.9 Hz), 30.6 (d, *J*_{*P*-*C*} = 8.2 Hz), 29.7 (d, *J*_{*P*-*C*} = 11.0 Hz), 24.4, 24.2, 22.6 (d, *J*_{*P*-*C*} = 2.6 Hz), 21.1 (d, *J*_{*P*-*C*} = 3.2 Hz), 19.8 (d, *J*_{*P*-*C*} = 1.2 Hz), 19.7 (d, *J*_{*P*-*C*} = 2.7 Hz); IR (neat): 3231, 2925, 2852, 1653, 1504, 1281, 1202, 1178, 1018, 946, 751; HRMS: calcd. for C₁₈H₃₁N₄OP [M+H]⁺ 351.2308, found: 351.2307.

(*3aR*, *7aR*)-2-((2-Aminophenyl)amino)-1,3-dibenzyloctahydro-1*H*-benzo[*d*][1,3,2]diazaphosphole 2-oxide (**3b**): white solid, m.p.: 190-192 °C; ¹H NMR (400MHz, CDCl₃): 7.35-7.31 (m, 4H), 7.22-7.16 (m, 7H), 6.93-6.89 (t, *J* = 7.6 Hz, 1H), 6.71-6.65 (m, 2H), 6.03-6.01 (d, *J* = 7.2 Hz, 1H), 4.47-4.33 (m, 2H), 4.08-4.03 (m, 3H), 3.63-3.57 (dd, *J* = 16.4 Hz, *J* = 8.8 Hz, 1H), 2.97-2.88 (m, 2H), 1.75-1.73 (d, *J* = 9.6 Hz, 1H), 1.58-1.53 (m, 3H), 1.16-1.09 (m, 3H), 0.97-0.92 (m, 1H); ³¹P NMR (162 MHz, CDCl₃): 24.3; ¹³C NMR (100MHz, CDCl₃): 140.4 (d, *J*_{P-C} = 4.3 Hz), 140.1 (d, *J*_{P-C} = 7.1 Hz), 138.9 (d, *J*_{P-C} = 4.9 Hz), 128.3, 128.1, 128.0, 127.3, 126.9, 126.8, 126.6, 123.9, 122.4 (d, *J*_{P-C} = 2.1 Hz), 118.1, 116.3, 65.0 (d, *J*_{P-C} = 10.4 Hz), 63.0 (d, *J*_{P-C} = 10.0 Hz), 47.3 (d, *J*_{P-C} = 3.0 Hz), 46.4 (d, *J*_{P-C} = 4.9 Hz), 30.2 (d, *J*_{P-C} = 7.8 Hz), 29.3 (d, *J*_{P-C} = 10.4 Hz), 24.2, 24.1; IR (neat): 3413, 3261, 2949, 1589, 1504, 1440, 1279, 1201, 1179, 940, 782; HRMS: calcd. for C₂₆H₃₁N₄OP [M+H]⁺ 447.2308, found: 447.2302.

(3aR, 7aR)-1,3-Diisopropyl-2-((2-((*E*)-(pyridin-2-ylmethylene)amino)phenyl)amino)octahydro-1*H*-benzo[*d*][1,3,2]diazaphosphole 2-oxide (**L1**): yellow solid, m.p.: 137-139 °C; ¹H NMR (400MHz, CDCl₃): 8.70 (s, 1H), 8.69-8.67 (m, 1H), 8.28-8.26 (d, *J* = 7.6 Hz, 1H), 7.83-7.79 (m, 1H), 7.55-7.53 (dd, *J* = 8.0 Hz, *J* = 0.8 Hz, 1H), 7.38-7.35 (m, 1H), 7.24-7.15 (m, 2H), 6.92-6.88 (m, 1H), 6.29-6.27 (d, *J* = 6.8 Hz, 1H), 3.57-3.40 (m, 2H), 3.19-3.12 (m, 2H), 2.16-2.07 (m, 2H), 1.84-1.81 (m, 2H), 1.40-1.38 (m, 4H), 1.35-1.33 (d, *J* = 6.8 Hz, 3H), 1.21-1.20 (d, *J* = 6.8 Hz, 3H), 1.18-1.16 (d, *J* = 6.8 Hz, 3H), 1.00-0.98 (d, *J* = 6.4 Hz, 3H); ³¹P NMR (162 MHz, CDCl₃): 16.8; ¹³C NMR (100MHz, CDCl₃): 158.6, 154.6, 149.7, 138.2, 137.4 (d, *J*_{P-C} = 8.9 Hz), 136.8, 128.3, 125.3, 121.9, 120.7, 117.1 (d, *J*_{P-C} = 1.6 Hz), 117.0, 60.8 (d, *J*_{P-C} = 10.7 Hz), 59.7 (d, *J*_{P-C} = 10.6 Hz), 44.9 (d, *J*_{P-C} = 2.4 Hz), 44.2 (d, *J*_{P-C} = 4.8 Hz), 30.5 (d, *J*_{P-C} = 8.2 Hz), 30.0 (d, *J*_{P-C} = 11.3 Hz), 24.5 (d, *J*_{P-C} = 1.0 Hz), 24.4 (d, *J*_{P-C} = 1.4 Hz), 22.5 (d, *J*_{P-C} = 2.8 Hz), 21.6 (d, *J*_{P-C} = 4.7 Hz), 20.3 (d, *J*_{P-C} = 2.4 Hz), 20.1 (d, *J*_{P-C} = 0.8 Hz); IR (neat): 3361, 2970, 2934, 2865, 1585, 1488, 1385, 1201, 1180, 1015, 990, 977, 747; HRMS: calcd. for C₂₄H₃₄N₅OP [M+H]⁺ 440.2574, found: 440.2563.

(3aR, 7aR)-1,3-Dibenzyl-2-((2-((*E*)-(pyridin-2-ylmethylene)amino)phenyl)amino)octahydro-1*H*-benzo[*d*][1,3,2]diazaphosphole 2-oxide (**L2**): yellow solid, m.p.: 129-131 °C; ¹H NMR (400MHz, CDCl₃): 8.69-8.68 (d, *J* = 4.4 Hz, 1H), 8.66 (s, 1H), 8.24-8.22 (d, *J* = 8.0 Hz, 1H), 7.81-7.77 (t, *J* = 7.8 Hz, 1H), 7.40-7.35 (m, 4H), 7.32-7.30 (m, 2H), 7.24-7.19 (m, 4H), 7.15-7.12 (m, 4H), 6.99-6.96 (t, *J* = 7.8 Hz, 1H), 6.40-6.38 (d, *J* = 6.8 Hz, 1H), 4.45-4.36 (m, 2H), 4.02-3.96 (dd, *J* = 15.2 Hz, *J* = 8.8 Hz, 1H), 3.86-3.79 (dd, *J* = 16.4 Hz, *J* = 9.2 Hz, 1H), 3.22-3.09 (m, 2H), 1.84-1.64 (m, 4H), 1.22-1.17 (m, 3H), 1.13-1.07 (m, 1H); ³¹P NMR (162 MHz, CDCl₃): 21.7; ¹³C NMR (100MHz, CDCl₃): 158.6, 154.3, 149.5, 139.5 (d, *J*_{P-C} = 3.8 Hz), 138.7 (d, *J*_{P-C} = 5.9 Hz), 137.3 (d, *J*_{P-C} = 8.9 Hz), 137.0 (d, *J*_{P-C} = 0.7 Hz), 136.6, 128.3, 128.12, 128.09, 128.0, 127.5, 126.8 (d, *J*_{P-C} = 10.0 Hz), 47.4 (d, *J*_{P-C} = 2.3 Hz), 46.5 (d, *J*_{P-C} = 5.1 Hz), 30.1 (d, *J*_{P-C} = 7.7 Hz), 29.5 (d, *J*_{P-C} = 11.0 Hz), 24.2, 24.1; IR (neat): 2937, 1587, 1494, 1322, 1211, 1173, 930, 739; HRMS: calcd. for C₃₂H₃₄N₅OP [M+H]⁺ 536.2574, found: 536.2565.

(3aR, 7aR)-1,3-Bis(4-methoxybenzyl)-2-((2-((E)-(pyridin-2-

ylmethylene)amino)phenyl)amino)octahydro-1*H*-benzo[*d*][1,3,2]diazaphosphole 2-oxide (L3): yellow solid, m.p.: 87-89 °C; ¹H NMR (400MHz, CDCl₃): 8.70-8.68 (m, 1H), 8.66 (s, 1H), 8.23-8.21 (d, *J* = 7.6 Hz, 1H), 7.82-7.77 (m, 1H), 7.38-7.32 (m, 2H), 7.25-7.17 (m, 6H), 6.97-6.93 (m, 1H), 6.72-6.70 (d, *J* = 8.8 Hz, 2H), 6.66-6.64 (d, *J* = 8.8 Hz, 2H), 6.34-6.32 (d, *J* = 7.2 Hz, 1H), 4.32-4.25 (m, 2H), 3.98-3.92 (dd, *J* = 14.8 Hz, *J* = 10.0 Hz, 1H), 3.82-3.76 (dd, *J* = 16.0 Hz, *J* = 9.6 Hz, 1H), 3.72 (s, 3H), 3.66 (s, 3H), 3.17-3.03 (m, 2H), 1.88-1.76 (m, 2H), 1.68-1.65 (m, 2H), 1.25-1.17 (m, 3H), 1.14-1.08 (m, 1H); ³¹P NMR (162 MHz, CDCl₃): 21.3; ¹³C NMR (100MHz, CDCl₃): 158.4, 154.3, 149.5, 137.2, 136.6, 131.3 (d, *J*_{P-C} = 3.6 Hz), 130.4 (d, *J*_{P-C} = 5.3 Hz), 129.5, 128.8, 128.2, 125.2, 121.9, 121.0, 116.9, 116.6 (d, *J*_{P-C} = 1.8 Hz), 113.4 (d, *J*_{P-C} = 10.4 Hz), 64.5 (d, *J*_{P-C} = 10.8 Hz), 63.2 (d, *J*_{P-C} = 10.7 Hz), 24.3, 24.2; IR (neat): 3340, 2936, 2832, 1610, 1510, 1490, 1277, 1241, 1171, 1033, 817, 742; HRMS: calcd. for C₃₄H₃₈N₅O₃P [M+H]⁺ 596.2785, found: 596.2777.

(3aR,7aR)-2-((2-((E)-(Pyridin-2-ylmethylene)amino)phenyl)amino)-1,3-bis(4-

(trifluoromethyl)benzyl)octahydro-*1H*-benzo[*d*][1,3,2]diazaphosphole 2-oxide (**L4**): yellow solid, m.p.: 95-97 °C; ¹H NMR (400MHz, CDCl₃): 8.69-8.68 (d, *J* = 4.8 Hz, 1H), 8.66 (s, 1H), 8.18-8.16 (d, *J* = 8.0 Hz, 1H), 7.80-7.76 (m, 1H), 7.50-7.45 (m, 4H), 7.43-7.35 (m, 5H), 7.31-7.29 (d, *J* = 8.0 Hz, 1H), 7.25-7.20 (m, 2H), 7.02-6.98 (m, 1H), 6.41-6.39 (d, *J* = 7.2 Hz, 1H), 4.48-4.44 (d, *J* = 13.6 Hz, 1H), 4.41-4.37 (d, *J* = 12.4 Hz, 1H), 4.06-4.00 (dd, *J* = 15.6 Hz, *J* = 9.2 Hz, 1H), 3.91-3.85 (dd, *J* = 16.4 Hz, *J* = 10.0 Hz, 1H), 3.25-3.10 (m, 2H), 1.82-1.69 (m, 4H), 1.29-1.20 (m, 3H), 1.13-1.05 (m, 1H); ³¹P NMR (162 MHz, CDCl₃): 21.4; ¹³C NMR (100MHz, CDCl₃): 158.9, 154.1, 149.6, 143.6 (m), 142.7 (m), 137.3 (d, $J_{P-C} = 8.9$ Hz), 136.63, 136.61, 129.2 (m), 128.4, 128.3, 127.7, 125.3, 125.1 (m), 124.1 (m, $J_{F-C} = 270.5$ Hz, $J_{P-C} = 7.2$ Hz), 121.8, 121.6, 117.2, 116.3 (d, $J_{P-C} = 2.0$ Hz), 64.8 (d, $J_{P-C} = 10.5$ Hz), 63.5 (d, $J_{P-C} = 9.8$ Hz), 47.0 (d, $J_{P-C} = 4.2$ Hz), 46.2 (d, $J_{P-C} = 5.1$ Hz), 30.1 (d, $J_{P-C} = 7.5$ Hz), 29.4 (d, $J_{P-C} = 10.8$ Hz), 24.1, 24.0; IR (neat): 3353, 2937, 2865, 1618, 1586, 1492, 1321, 1159, 1105, 1064, 836, 742; HRMS: calcd. for $C_{34}H_{32}F_6N_5OP$ [M+H]⁺ 672.2321, found: 672.2313.

(3aR, 7aR)-2-((2-((E)-(Pyridin-2-ylmethylene)amino)phenyl)amino)-1,3-bis(2,4,6-

trimethylbenzyl)octahydro-*1H*-benzo[*d*][1,3,2]diazaphosphole 2-oxide (L5): yellow solid, m.p.: 201-203 °C; ¹H NMR (400MHz, CDCl₃): 8.72-8.70 (m, 1H), 8.51 (s, 1H), 8.15-8.13 (d, *J* = 7.6 Hz, 1H), 7.86-7.82 (m, 1H), 7.41-7.38 (m, 1H), 7.14-7.09 (m, 2H), 7.05-7.03 (d, *J* = 7.6 Hz, 1H), 6.88-6.84 (m, 1H), 6.71 (s, 2H), 6.35 (s, 2H), 5.92-5.91 (d, *J* = 6.8 Hz, 1H), 4.25-4.16 (m, 2H), 4.06-4.01 (dd, *J* = 14.0 Hz, *J* = 6.0 Hz 1H), 3.91-3.82 (dd, *J* = 24.0 Hz, *J* = 13.2 Hz, 1H), 3.20-3.05 (m, 2H), 2.34 (s, 6H), 2.24 (s, 6H), 2.18 (s, 3H), 2.16-2.14 (m, 1H), 1.91 (s, 3H), 1.81-1.58 (m, 3H), 1.42-1.25 (m, 3H), 1.08-0.99 (m, 1H); ³¹P NMR (162 MHz, CDCl₃): 23.6; ¹³C NMR (100MHz, CDCl₃): 156.8, 154.6, 149.4, 137.7 (d, *J*_{P-C} = 3.8 Hz), 137.4 (d, *J*_{P-C} = 1.1 Hz), 136.7, 136.5, 136.4, 136.3, 136.2, 130.8 (d, *J*_{P-C} = 7.7 Hz), 130.0 (d, *J*_{P-C} = 2.9 Hz), 129.0, 128.6, 128.0, 125.0, 121.7, 120.3, 116.6 (d, *J*_{P-C} = 1.7 Hz), 115.9, 65.3 (d, *J*_{P-C} = 11.0 Hz), 63.3 (d, *J*_{P-C} = 1.4 Hz), 24.5, 20.8 (d, *J*_{P-C} = 17.3 Hz), 20.2 (d, *J*_{P-C} = 14.9 Hz); IR (neat): 3330, 2929, 2854, 1585, 1490, 1207, 1102, 941, 756; HRMS: calcd. for C₃₈H₄₆N₅OP [M+H]⁺ 620.3513, found: 620.3507.

4. Optimization of reaction conditions

Table S1. Cobalt Catalyzed Anti-Markovnikov Hydrosilylation^a SiPh₂ CoBr₂ (5 mol%), L (5 mol%), activator (10 mol%) Ph₂SiH₂ solvent (1 mL), 40 °C 5 6a 4a Yield (%)^b r.r (l/b)^c Entry Ligand Solvent Activator L1 THF ^tBuONa 5/1 1 52 2 L2 THF ^tBuONa 87 11/1 3 L3 ^tBuONa 7/1 THF 76 ^tBuONa 4 L4 THF 64 4/1 5 L5 THF ^tBuONa 56 4/1 6 L2 Toluene ^tBuONa 82 10/1 7 L2 69 1,4-dioxane ^tBuONa 10/1 8 L2 THF NaHBEt₃ 85 23/1

^{*a*} The reaction of **4a** (0.2 mmol) with **5** (0.3 mmol) was performed in the presence of $CoBr_2$ (5 mol%), **L** (5 mol%) and activator (10 mol%) in solvent (1 mL) at 40 °C for 24 h. ^{*b*} Yield of isolated product. ^{*c*} The regioisomer ratio (r.r) of the product **6a** was determined by ¹H NMR.

Entry 1

S9

Entry 4

Table S2. Iron Catalyzed Markovnikov Hydrosilylation^a

Entry	Ligand	Solvent	х	Yield (%) ^b	r.r (b/l) ^c
1	L1	THF	15	trace	n.d
2	L1	THF	20	43	52/1
3	L1	THF	25	84	71/1
4	L2	THF	25	67	44/1
5	L3	THF	25	58	30/1
6	L4	THF	25	56	11/1
7	L5	THF	25	50	29/1
8	L1	Toluene	25	62	23/1
9	L1	1,4-dioxane	25	82	51/1
10^{d}	L1	THF	15	98	>99/1

^{*a*} The reaction of **4a** (0.2 mmol) with **5** (0.6 mmol) was performed in the presence of FeBr₂ (5 mol%), **L** (5 mol%) and ^{*t*}BuONa (10 mol%) in solvent (1 mL) at 40 °C for 24 h. ^{*b*} Yield of isolated product. ^{*c*} The regioisomer ratio (r.r) of the product **7a** was determined by ¹H NMR. ^{*d*} **L1** was *insitu* formed in the reaction from **3a** (5 mol%) and picolinaldehyde (5 mol%).

S13

5.General Procedures for Hydrosilylation

5.1 General Procedures for Cobalt Catalyzed Hydrosilylation

Procedure I (4a as an example)

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with $CoBr_2$ (3.2 mg, 0.015 mmol) and L2 (8.1 mg, 0.015 mmol), with anhydrous THF (1mL) as solvent. Subsequently, NaBHEt₃ (30 µL) (1 mol/L in THF) was added as activator. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. Subsequently, diphenylsilane 5 (84 µL, 0.45 mmol, 1.5 equiv.) was added and the mixture was stirred for 30 min before adding styrene 4a (34 µL, 0.3 mmol). The reaction mixture was removed from the glovebox and stirred at 40 °C under an argon atmosphere for 24 hours. The reaction solvent was evaporated in vacuum and the resulting residue was purified by silica gel column chromatography (hexane followed by diethyl ether/hexane = 1/200) affording 73 mg (84% yield) product 6a as colorless oil.

Procedure II (4g as an example)

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with CoBr₂ (3.2

mg, 0.015 mmol) and L3 (8.9 mg, 0.015 mmol), with anhydrous THF (1mL) as solvent. Subsequently, NaBHEt₃ (30 μ L) (1 mol/L in THF) was added as activator. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. Subsequently, diphenylsilane 5 (84 μ L, 0.45 mmol, 1.5 equiv.) was added and the mixture was stirred for 30 min before adding 4-vinylanisole 4g (40 μ L, 0.3 mmol). The reaction mixture was removed from the glovebox and stirred at 40 °C under an argon atmosphere for 24 hours. The reaction solvent was evaporated in vacuum and the resulting residue was purified by silica gel column chromatography (hexane followed by diethyl ether/hexane = 1/100) affording 87 mg (91% yield) product 6g as colorless oil.

Procedure III (4p as an example)

$$\begin{array}{c} & \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$$

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with CoBr₂ (3.2 mg, 0.015 mmol), **L2** (8.1 mg, 0.015 mmol) and NaO^tBu (2.9 mg, 0.03 mmol). Subsequently, anhydrous THF (1mL) was added as solvent. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. Subsequently, diphenylsilane **5** (84 μ L, 0.45 mmol, 1.5 equiv.) and allylboronic acid pinacol ester **4p** (56 μ L, 0.3 mmol) were added. The reaction mixture was removed from the glovebox and stirred at 40 °C under an argon atmosphere for 24 hours. The reaction solvent was evaporated in vacuum and the resulting residue was purified by silica gel column chromatography (diethyl ether/hexane = 1/200 followed by diethyl ether/hexane = 1/50) affording 75 mg (71% yield) product **6p** as colorless oil.

5.2 General Procedures for Iron Catalyzed Hydrosilylation

Procedure I (4a as an example)

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with FeBr₂ (3.2 mg, 0.015 mmol), **3a** (5.3 mg, 0.015 mmol), picolinaldehyde (1.4 μ L, 0.015 mmol) and ^tBuONa (4.3 mg, 0.045 mmol), with anhydrous THF (1mL) as solvent. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. Subsequently, diphenylsilane **5** (167 μ L, 0.9 mmol, 3.0 equiv.) was added and the mixture was stirred for 30 min before adding styrene **4a** (34 μ L, 0.3 mmol). The reaction mixture was removed from the glovebox and stirred at 40 °C under an argon atmosphere for 24 hours. Then the reaction solvent was evaporated in vacuum and the resulting residue was purified by silica gel column chromatography (hexane followed by diethyl ether/hexane = 1/200) affording 84 mg (97% yield) product **7a** as colorless oil.

Procedure II (4g as an example)

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with FeBr₂ (3.2 mg, 0.015 mmol), **L2** (8.1 mg, 0.015 mmol) and 'BuONa (7.2 mg, 0.075 mmol), with anhydrous 1,4-dioxane (1mL) as solvent. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. Subsequently, diphenylsilane **5** (167 µL, 0.9 mmol, 3.0 equiv.) was added and the mixture was stirred for 30 min before adding 1-(trifluoromethoxy)-4-vinylbenzene **4g** (56 mg, 0.3 mmol). The reaction mixture was removed from the glovebox and stirred at 40 °C under an argon atmosphere for 24 hours. Then the reaction solvent was evaporated in vacuum and the resulting residue was purified by silica gel column chromatography (hexane followed by diethyl ether/hexane = 1/100) affording 56 mg (50% yield) product **7g** as colorless oil.

6. Procedure for Gram Scale Hydrosilylation

Before performing the reaction, the active catalyst was prepared in the glovebox. A borosilicate glass vial was charged with CoBr₂ (26.2 mg, 0.12 mmol), L2 (64.3 mg, 0.12 mmol) and NaO^tBu (35 mg, 0.36 mmol). Subsequently, anhydrous THF (2 mL) was added as solvent. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. The solvent was removed in vacuum and the vial containing the catalyst was removed from the glovebox.

To the above vial was added substrate **4ag** (0.75 mL, 8 mmol) and diphenylsilane (1.11 mL, 6 mmol) under air atmosphere. The reaction mixture was stirred at 40 °C under air atmosphere for 72 hours. Then the reaction mixture was purified by silica gel column chromatography (hexane followed by diethyl ether/hexane = 1/200) affording 1.2 g (75% yield) product **6ag** as colorless oil.

7. Procedure for KIE Study 7.1 Cobalt Catalyzed Hydrosilylation

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with $CoBr_2$ (3.2 mg, 0.015 mmol) and L2 (8.1 mg, 0.015 mmol), with anhydrous THF (1mL) as solvent. Subsequently, NaBHEt₃ (30 µL) (1 mol/L in THF) was added as activator. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. Subsequently, diphenylsilane 5 (42 µL, 0.23 mmol) and d^2 -diphenylsilane d^2 -5 (42 µL, 0.23 mmol) were added and the mixture was stirred for 30 min before adding styrene 4a (34 µL, 0.3 mmol). The reaction

mixture was removed from the glovebox and stirred at 40 °C under an argon atmosphere for 1 hours. The reaction solvent was evaporated in vacuum and the resulting residue was purified by silica gel column chromatography (hexane followed by diethyl ether/hexane = 1/200) affording 13 mg (15% yield) mixture **6a** and **d³-6a** as colorless oil. The ratio of **6a** and **d³-6a** was determined by ¹H NMR spectra (as shown below).

The reaction of d^2 -diphenylsilane (**d^2-5**) (84 µL, 0.45 mmol) with styrene (34 µL, 0.3 mmol) was similar to the above procedure. The deuterated product was determined by ¹H NMR spectra (as shown below).

7.2 Iron Catalyzed Hydrosilylation

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with FeBr₂ (3.2 mg, 0.015 mmol), **3a** (5.3 mg, 0.015 mmol), picolinaldehyde (1.4 μ L, 0.015 mmol) and ^tBuONa (4.3 mg, 0.045 mmol), with anhydrous THF (1mL) as solvent. The resulting mixture was stirred at room temperature for 5 hours to form the active catalyst. Subsequently, diphenylsilane **5** (84 μ L, 0.45 mmol) and *d*²-diphenylsilane **d**²-**5** (84 μ L, 0.45 mmol). The reaction mixture was removed form the glovebox and stirred at 40 °C under an argon atmosphere for 1 hours. Then the reaction solvent was evaporated in vacuum and the resulting residue was purified by silica gel column chromatography (hexane followed by diethyl ether/hexane = 1/200) affording 15 mg (17% yield) mixture **7a** and *d*²-**7a** as colorless oil. The ratio of **7a** and *d*²-**7a** was determined by ¹H NMR spectra (as shown below).

8. Derivatization of hydrosilylation products

To a solution of **7a** (144mg, 0.5 mmol, 1.0 equiv.) in MeOH and THF (6 mL, MeOH/THF = 1/1, v/v), KF (116 mg, 2.0 mmol, 4.0 equiv.), KHCO₃ (200 mg, 2.0 mmol, 4 equiv.) and hydrogen peroxide (1.2 ml, 30% aqueous solution) were added. Then the mixture was stirred at room temperature. After 20 h, the mixture was extracted with EtOAc and them the organic layer was separated and washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/DCM = 1/1 followed by DCM) affording 132 mg (87% yield) of the title compound as a colorless oil.

To a solution of **7a** (144mg, 0.5 mmol, 1.0 equiv.) in MeOH and THF (6 mL, MeOH/THF = 1/1, v/v), KF (232 mg, 4.0 mmol, 8.0 equiv.), KHCO₃ (250 mg, 2.5 mmol, 5 equiv.) and hydrogen peroxide (1.2 ml, 30% aqueous solution) were added. Then the mixture was stirred at 50 °C. After 20 h, the mixture was extracted with EtOAc and them the organic layer was separated and washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc = 10/1 followed by hexane/EtOAc = 6/1) affording 50 mg (82% yield) of the title compound as a colorless oil.

To a solution of **7a** (144mg, 0.5 mmol, 1.0 equiv.) in CH_3CN (2 mL), Selectfluor (425 mg, 1.2 mmol, 2.4 equiv.) and K_2CO_3 (83 mg, 0.6 mmol, 1.2 equiv.) were added. Then the mixture was stirred at 50 °C. After 20 h, the mixture was filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane followed by hexane/Et₂O = 100/1) affording 112 mg (73% yield) of the title compound as a colorless oil.

9. Preparation of precatalyst single crystals and their solid-state structures

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with CoBr₂ (43.7 mg, 0.2 mmol) and L2 (107.1 mg, 0.2 mmol), ^tBuONa (19.2 mg, 0.2 mmol), with anhydrous THF (1mL) as solvent. The reaction mixture was removed from the glovebox and stirred at 60 °C under an argon atmosphere for 2 hours. The desired complex precipitated from the solution and it was obtained by filtration in the glovebox. The desired complex was dissolved in the DCM and filtered through a syringe filter to remove the byproduct sodium bromide. The complex DCM solution was covered with toluene. After two or three days, the complex crystals can be been collected from the solution. Air- and moisture-sensitivity of the crystals precluded further analysis.

Figure S1. The thermal ellipsoids are represented at 50% probability. Carbon, hydrogen, nitrogen, oxygen, phosphorus, bromine and cobalt atoms are represented by gray, white, light blue, red, light orange, orange and purple ellipsoids, respectively. The B sites of disordered atoms were omitted for clarity.

Table 55. Crystal uata allu structure	rennement for cobait-precataryst.	
Identification code	fin19_21	
Crystal color	red	
Crystal habit	needle	
Empirical formula	$C_{64}H_{66}Br_2Co_2N_{10}O_2P_2$	
Formula weight	1346.88	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 21.1593(7) Å alpha = 90 °.	
	b = 21.8994(6) Å beta = 112.926(3) °.	
	c = 20.9154(5) Å gamma = 90°.	
Volume	8926.1(5) Å ³	
Z	4	
Calculated density	1.002 Mg/m ³	
Absorption coefficient	4.584 mm ⁻¹	
F(000)	2760	
Crystal size	0.469 x 0.066 x 0.058 mm	
Theta range for data collection	3.035 to 77.231 °	
Limiting indices	-26<=h<=26, -27<=k<=27, -26<=l<=19	
Reflections collected / unique	57024 / 9235 [R(int) = 0.0650]	
Completeness to theta = 67.679°	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9235 / 893 / 507	
Goodness-of-fit on F ²	1.093	
Final R indices [I>2sigma(I)]	R1 = 0.0928, wR2 = 0.2811	
R indices (all data)	R1 = 0.1068, wR2 = 0.2950	
Extinction coefficient	0.00091(10)	
Largest diff. peak and hole	0.992 and -0.428 e.Å ⁻³	

Tahla S3	Crystal data and	structure	rofinoment fo	r cohalt-precatalys	÷
1 able 55.	Crystal uata and	structure	rennement id	or copait-precatalis	ι.

Inside an argon-atmosphere glovebox, a borosilicate glass vial was charged with FeBr₂ (43.1 mg, 0.2 mmol) and **L2** (107.1 mg, 0.2 mmol), ^tBuONa (19.2 mg, 0.2 mmol), with anhydrous THF (1mL) as solvent. The reaction mixture was removed from the glovebox and stirred at 60 °C under an argon atmosphere for 2 hours. The desired complex precipitated from the solution and it was obtained by filtration in the glovebox. The desired complex was dissolved in the DCM and filtered through a syringe filter to remove the byproduct sodium bromide. The complex DCM solution

was covered with toluene. After one or two days, the complex crystals can be been collected from the solution. Air- and moisture-sensitivity of the crystals precluded further analysis.

Figure S2. The thermal ellipsoids are represented at 50% probability. Carbon, hydrogen, nitrogen, oxygen, phosphorus, bromine and iron atoms are represented by gray, white, light blue, red, light orange, orange and light red ellipsoids, respectively. The B sites of disordered atoms were omitted for clarity.

-		
Identification code	fin19_23	
Crystal color	red	
Crystal habit	needle	
Empirical formula	$C_{64}H_{66}Br_2Fe_2N_{10}O_2P_2$	
Formula weight	1340.72	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 21.2987(13) Å alpha = 90 °.	
	b = 21.5281(13) Å beta = 113.418(7) °.	
	c = 21.0374(11) Å gamma = 90 °.	
Volume	8851.5(10) Å ³	
Z	4	
Calculated density	1.006 Mg/m ³	
Absorption coefficient	4.315 mm ⁻¹	
F(000)	2752	
Crystal size	0.355 x 0.044 x 0.031 mm	
Theta range for data collection	3.054 to 77.265 °	
Limiting indices	-26<=h<=26, -26<=k<=26, -20<=l<=26	
Reflections collected / unique	30025 / 8928 [R(int) = 0.0649]	
Completeness to theta = 67.679°	99.0 %	

 Table S4.
 Crystal data and structure refinement for iron-precatalyst.

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8928 / 893 / 507
Goodness-of-fit on F ²	1.281
Final R indices [I>2sigma(I)]	R1 = 0.1055, wR2 = 0.3224
R indices (all data)	R1 = 0.1342, wR2 = 0.3509
Extinction coefficient	0.0022(2)
Largest diff. peak and hole	1.139 and -0.504 e.Å-3

10. Experimental data for hydrosilylation products

Phenethyldiphenylsilane (**6a**): colorless oil, 73mg, 84% yield, regioselectivity: 24/1; ¹H NMR (400 MHz, CDCl₃): 7.50-7.48 (m, 4H), 7.31-7.25 (m, 6H), 7.19-7.15 (m, 2H), 7.11-7.07 (m, 3H), 4.82-4.81 (t, *J* = 3.6 Hz, 1H), 2.70-2.66 (m, 2H), 1.45-1.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 144.3, 135.1, 134.0, 129.6, 128.3, 128.0, 127.8, 125.7, 30.4, 14.2; These data are in accordance with the literature.⁵⁵

(4-Methylphenethyl)diphenylsilane (**6b**): colorless oil, 73mg, 80% yield, regioselectivity: 11/1; ¹H NMR (400 MHz, CDCl₃): 7.50-7.47 (m, 4H), 7.33-7.25 (m, 6H), 6.99 (s, 4H), 4.82-4.80 (t, *J* = 3.6 Hz, 1H), 2.66-2.62 (m, 2H), 2.22 (s, 3H), 1.43-1.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 141.3, 135.1, 134.1, 129.6, 129.0, 128.0, 127.7, 29.9, 21.0, 14.4; These data are in accordance with the literature.^{S5}

(3-Methylphenethyl)diphenylsilane (**6c**): Colorless oil, 71mg, 78% yield, regioselectivity:11/1; ¹H NMR (400 MHz, CDCl₃): 7.63-7.61 (m, 4H), 7.44-7.38 (m, 6H), 7.22-7.18 (m, 1H), 7.03-7.01 (d, J = 7.6 Hz, 3H), 4.95-4.93 (t, J = 3.8 Hz, 1H), 2.79-2.75 (m, 2H), 2.35 (s, 3H), 1.57-1.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 144.3, 137.9, 135.1, 134.1, 129.6, 128.6, 128.2, 128.0, 126.4, 124.8, 30.3, 21.4, 14.3; These data are in accordance with the literature.⁵⁵

(2-Methylphenethyl)diphenylsilane (**6d**): colorless oil, 67mg, 74%, regioselectivity: 29/1; ¹H NMR (400 MHz, CDCl₃): 7.52-7.49 (m, 4H), 7.32-7.26 (m, 6H), 7.06-7.00 (m, 4H), 4.86-4.84 (t, *J* = 3.8 Hz, 1H), 2.66-2.62 (m, 2H), 2.14 (s, 3H), 1.41-1.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 142.6, 135.4, 135.1, 134.1, 130.1, 129.6, 128.03, 127.99, 126.0, 125.8, 27.8, 19.1, 13.0; IR (neat): 3066, 2924, 2114, 1486, 1427, 1115, 798, 726, 695; HRMS (ESI): cacld. for C₂₁H₂₂Si [M+H]⁺: 303.1564, found: 303.1566.

(4-(*tert*-Butyl)phenethyl)diphenylsilane (**6e**): colorless oil, 89mg, 86% yield, regioselectivity: 14/1; ¹H NMR (400 MHz, CDCl₃): 7.68-7.65 (m, 4H), 7.49-7.43 (m, 6H), 7.39-7.37 (d, *J* = 8.4 Hz, 2H), 7.23-7.21 (d, *J* = 8.0 Hz, 2H), 5.02-5.00 (t, *J* = 3.6 Hz, 1H), 2.86-2.82 (m, 2H), 1.64-1.58 (m, 2H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 148.5, 141.3, 135.1, 134.1, 129.6, 128.0, 127.4, 125.2, 34.3, 31.4, 29.8, 14.1; These data are in accordance with the literature.⁵⁵

(2-([1,1'-Biphenyl]-4-yl)ethyl)diphenylsilane (**6f**): colorless oil, 100mg, 91% yield, regioselectivity: 9/1; ¹H NMR (400 MHz, CDCl₃): 7.64-7.60 (m, 6H), 7.54-7.52 (d, *J* = 8.4 Hz, 2H), 7.48-7.40 (m, 9H), 7.30-7.28 (d, *J* = 8.4 Hz, 2H), 4.98-4.96 (t, *J* = 3.8 Hz, 1H), 2.87-2.83 (m, 2H), 1.61-1.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 143.5, 141.1, 138.7, 135.5, 135.1, 134.0, 129.6, 128.7, 128.3, 128.0, 127.1, 127.0, 30.1, 14.2; These data are in accordance with the literature.^{S5}

(4-Methoxyphenethyl)diphenylsilane (**6g**): colorless oil, 87mg, 91% yield, regioselectivity: 19/1; ¹H NMR (400 MHz, CDCl₃): 7.61-7.58 (m, 4H), 7.45-7.37 (m, 6H), 7.13-7.11 (d, *J* = 8.8 Hz, 1H), 6.84-6.82 (d, *J* = 8.4 Hz, 1H), 4.92-4.90 (t, *J* = 3.8 Hz, 1H), 3.80 (s, 3H), 2.76-2.72 (m, 2H), 1.54-1.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 157.6, 136.4, 135.1, 134.1, 129.6, 128.7, 128.0, 113.7, 55.2, 29.5, 14.5; These data are in accordance with the literature.⁵⁵

Diphenyl(4-(trifluoromethyl)phenethyl)silane (**6h**): colorless oil, 72mg, 67% yield, regioselectivity: 14/1; ¹H NMR (400 MHz, CDCl₃): 7.59-7.57 (m, 4H), 7.52-5.50 (d, *J* = 8.0 Hz, 2H), 7.43-7.37 (m, 6H), 7.29-7.27 (d, *J* = 8.0 Hz, 2H), 4.93-4.91 (t, *J* = 3.8 Hz, 1H), 2.85-2.81 (m, 2H), 1.55-1.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 148.3, 135.8, 135.1, 133.7, 129.8, 128.2, 128.1, 125.2 (q, *J*_{*F*-*C*} = 4.3 Hz), 124.3 (q, *J*_{*F*-*C*} = 270.5 Hz), 30.4, 14.1; IR (neat): 3068, 2925, 2118, 1616, 1428, 1322, 1162, 1115, 1065, 819, 799, 696; HRMS (ESI): cacld. for $C_{21}H_{19}F_3Si$ [M+H]⁺: 357.1281, found: 357.1274.

(4-Chlorophenethyl)diphenylsilane (**6i**): colorless oil, 68mg, 70% yield, regioselectivity: 16/1; ¹H NMR (400 MHz, CDCl₃): 7.49-7.46 (m, 4H), 7.32-7.26 (m, 6H), 7.13-7.10 (m, 2H), 7.00-6.98 (m, 2H), 4.80-4.79 (t, *J* = 3.2 Hz, 1H), 2.65-2.61 (t, *J* = 8.4 Hz, 2H), 1.41-1.35 (m, 2H); ¹³C NMR: 142.7, 135.1, 133.8, 131.3, 129.7, 129.2, 128.4, 128.1, 29.8, 14.2; These data are in accordance with the literature.^{S5}

(3-Chlorophenethyl)diphenylsilane (**6**j): colorless oil, 70 mg, 72% yield, regioselectivity: 13/1; ¹H NMR (400 MHz, CDCl₃): 7.61-7.59 (m, 4H), 7.44-7.38 (m, 6H), 7.22-7.15 (m, 3H), 7.10-7.06 (m, 1H), 4.93-4.91 (t, *J* = 3.8 Hz, 1H), 2.78-2.74 (m, 2H), 1.54-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 146.3, 135.1, 134.0, 133.7, 129.7, 129.5, 128.1, 128.0, 126.1, 125.9, 30.2, 14.0; These data are in accordance with the literature.^{S6}

(2-Chlorophenethyl)diphenylsilane (**6**k): colorless oil, 49 mg, 51% yield, regioselectivity: 32/1; ¹H NMR (400 MHz, CDCl₃): 7.61-7.59 (m, 4H), 7.44-7.31 (m, 6H), 7.33-7.31 (dd, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.21-7.19 (dd, *J* = 7.6 Hz, *J* = 2.0 Hz, 1H), 7.18-7.14 (m, 1H), 7.13-7.09 (m, 1H), 4.95-4.93 (t, *J* = 3.6 Hz, 1H), 2.88-2.84 (m, 2H), 1.54-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 141.9, 135.8, 135.1, 133.9, 129.72, 129.67, 129.4, 128.0, 127.2, 126.8, 28.6, 12.7; IR (neat): 3066, 2922, 2116, 1472, 1442, 1115, 791, 728, 695; HRMS (ESI): cacld. for C₂₀H₁₉ClSi [M-H]⁺: 321.0861, found: 321.0858.

(4-Fluorophenethyl)diphenylsilane (**6**I): colorless oil, 66mg, 72% yield, regioselectivity: 22/1; ¹H NMR (400 MHz, CDCl₃): 7.50-7.47 (m, 4H), 7.33-7.26 (m, 6H), 7.04-7.01 (m, 2H), 6.87-6.83 (t, J = 8.6 Hz, 2H), 4.81-4.79 (t, J = 3.6 Hz, 1H), 2.67-2.63 (m, 2H), 1.43-1.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 161.1 (d, $J_{F-C} = 241.9$ Hz), 139.8 (d, $J_{F-C} = 3.2$ Hz), 135.1, 133.9, 129.7, 129.1 (d, $J_{F-C} = 7.8$ Hz), 128.1, 115.0 (d, $J_{F-C} = 21.0$ Hz), 29.7, 14.4; These data are in accordance with the literature.^{S5}

(3-Fluorophenethyl)diphenylsilane (**6m**): colorless oil, 71 mg, 77% yield, regioselectivity: 15/1; ¹H NMR (400 MHz, CDCl₃): 7.61-7.59 (m, 4H), 7.46-7.38 (m, 6H), 7.25-7.20 (m, 1H), 6.98-6.96 (d, J = 7.6 Hz, 1H), 6.92-6.86 (m, 2H), 4.94-4.92 (t, J = 3.6 Hz, 1H), 2.80-2.76 (m, 2H), 1.55-1.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 162.9 (d, $J_{F-C} = 244.0$ Hz), 146.9 (d, $J_{F-C} = 7.0$ Hz), 135.1, 133.8, 129.7, 129.6, 128.1, 123.5 (d, $J_{F-C} = 2.9$ Hz), 114.7 (d, $J_{F-C} = 20.7$ Hz), 112.5 (d, $J_{F-C} = 20.9$ Hz), 30.2 (d, $J_{F-C} = 2.0$ Hz), 14.0; These data are in accordance with the literature.⁵⁵

(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)diphenylsilane (6n): colorless oil, 70 mg, 70% yield, regioselectivity: 12/1; ¹H NMR (400 MHz, CDCl₃): 7.58-7.56 (m, 4H), 7.42-7.35 (m, 6H), 6.71-6.68 (m, 2H), 6.63-6.61 (d,*J*= 8.8 Hz, 1H), 5.91 (s, 2H), 4.89-4.87 (t,*J*= 3.8 Hz, 1H), 2.71-2.67 (m, 2H), 1.50-1.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 147.5, 145.5, 138.3, 135.1, 134.0, 129.6, 128.0, 120.4, 108.4, 108.0, 100.7, 30.2, 14.6; IR (neat): 2883, 2115, 1500, 1487, 1427, 1240, 1114, 1037, 938, 801, 729, 695; HRMS (ESI): cacld. for C₂₁H₂₀O₂Si [M-H]⁺: 331.1149, found: 331.1146.

Diphenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenethyl)silane (**6o**): colorless oil, 90mg, 71% yield, regioselectivity: 8/1; ¹H NMR (400 MHz, CDCl₃): 7.77-7.75 (d, *J* = 8.0 Hz, 2H), 7.62-7.59 (m, 4H), 7.44-7.38 (m, 6H), 7.24-7.22 (d, *J* = 8.0 Hz, 2H), 4.93-4.91 (t, *J* = 3.8 Hz, 1H), 2.82-2.78 (m, 2H), 1.56-1.51 (m, 2H), 1.37 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): 147.8, 135.1,

134.9, 133.9, 129.6, 128.0, 127.3, 83.6, 30.6, 24.8, 14.1; IR (neat): 2975, 2117, 1609, 1357, 1142, 1087, 859, 804, 731, 697; HRMS (ESI): cacld. for C₂₆H₃₁BO₂Si [M+H]⁺: 415.2259, found: 415.2251.

Diphenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane (**6p**): colorless oil, 75mg, 71% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.56-7.54 (m, 4H), 7.37-7.31 (m, 6H), 4.85-4.83 (t, J = 3.6 Hz, 1H), 1.64-1.56 (m, 2H), 1.22-1.16 (m, 14H), 0.91-0.88 (t, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 135.1, 134.7, 129.4, 127.9, 82.9, 24.8, 19.1, 15.2; IR (neat): 2976, 2924, 2112, 1427, 1369, 1311, 1142, 1115, 803, 730, 696; HRMS (ESI): cacld. for C₂₁H₂₉BO₂Si [M+Na]⁺: 375.1922, found: 375.1924.

(6-(Oxiran-2-yl)hexyl)diphenylsilane (**6q**): colorless oil, 64mg, 69% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.57-7.55 (m, 4H), 7.42-7.34 (m, 6H), 4.86-4.85 (t, J = 3.6 Hz, 1H), 2.91-2.86 (m, 1H), 2.75-2.73 (t, J = 4.6 Hz, 1H), 2.46-2.44 (dd, J = 5.2 Hz, J = 2.8 Hz, 1H), 1.51-1.33 (m, 10H), 1.18-1.13 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 135.1, 134.6, 129.5, 127.9, 52.4, 47.1, 33.0, 32.5, 29.0, 25.8, 24.3, 12.1; IR (neat): 2921, 2852, 2112, 1427, 1115, 802, 728, 696; HRMS (ESI): cacld. for C₂₀H₂₆OSi [M+H]⁺: 311.1826, found: 311.1820.

(4-(Diethoxymethyl)phenethyl)diphenylsilane (**6r**): colorless oil, 76mg, 65% yield, regioselectivity: 10/1; ¹H NMR (400 MHz, d⁶-acetone): 7.60-7.58 (m, 4H), 7.41-7.37 (m, 6H), 7.32-7.30 (d, *J* = 8.0 Hz, 2H), 7.19-7.17 (d, *J* = 8.4 Hz, 2H), 5.43 (s, 1H), 4.85-4.83 (t, *J* = 3.6 Hz, 1H), 3.57-3.51 (m, 2H), 3.47-3.42 (m, 2H), 2.75-2.71 (m, 2H), 1.56-1.51 (m, 2H), 1.15-1.12 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, d⁶-acetone): 144.2, 137.2, 135.1, 134.1, 129.7, 128.2, 127.5, 126.7, 101.3, 60.4, 30.1, 14.8, 14.0; IR (neat): 2972, 2878, 2116, 1442, 1332, 1109, 1050, 802, 729, 696; HRMS (ESI): cacld. for C₂₅H₃₀O₂Si [M-H]⁺: 389.1931, found: 389.1929.

(3,3-Diethoxypropyl)diphenylsilane (**6s**): colorless oil, 58mg, 62% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, d⁶-acetone): 7.58-7.55 (m, 4H), 7.42-7.34 (m, 6H), 4.84-4.82 (t, J = 3.8 Hz, 1H), 4.44-4.41 (t, J = 5.4 Hz, 1H), 3.57-3.50 (m, 2H), 3.42-3.35 (m, 2H), 1.67-1.62 (m, 2H), 1.22-1.17 (m, 2H), 1.10-1.06 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, d⁶-acetone): 135.7, 135.0, 130.4, 128.8, 104.7, 61.4, 29.1, 15.6, 7.2; IR (neat): 2972, 2876, 2115, 1428, 1116, 1057, 804, 729, 696; HRMS (ESI): cacld. for C₁₉H₂₆O₂Si [M+H]⁺: 315.1775, found: 315.1769.

6-(Diphenylsilyl)hexyl acetate (**6t**): colorless oil, 60mg, 61% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.49-7.46 (m, 4H), 7.33-7.25 (m, 6H), 4.78-4.76 (t, *J* = 3.8 Hz, 1H), 3.96-3.93 (t, *J* = 6.6 Hz, 2H), 1.95 (s,3H), 1.53-1.46 (m, 2H), 1.41-1.24 (m, 6H), 1.09-1.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 171.2, 135.0, 134.5, 129.5, 127.9, 64.5, 32.7, 28.4, 25.5, 24.3, 21.0, 12.1; IR (neat): 2922, 2854, 2113, 1735, 1427, 1233, 1115, 1035, 803, 729, 696; HRMS (ESI): cacld. for C₂₀H₂₆O₂Si [M-H]⁺: 325.1618, found: 325.1622.

Diphenyl(3-(prop-1-en-2-yl)phenethyl)silane (**6u**): colorless oil, 69mg, 70% yield, regioselectivity: 22/1; ¹H NMR (400 MHz, CDCl₃): 7.51-7.49 (m, 4H), 7.33-7.27 (m, 6H), 7.20-7.13 (m, 3H), 7.03-7.01 (d, *J* = 7.6 Hz, 1H), 5.25 (m, 1H), 4.98-4.97 (m, 1H), 4.83-4.82 (t, *J* = 3.6 Hz, 1H), 2.72-2.67 (m, 2H), 2.05 (s, 3H), 1.47-1.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 144.2, 143.4, 141.3, 135.1, 134.0, 129.6, 128.2, 128.0, 126.9, 125.1, 123.0, 112.3, 30.5, 21.9, 14.3; IR (neat): 3066, 2920, 2116, 1683, 1600, 1427, 1272, 1114, 798, 728, 695; HRMS (ESI): cacld. for C₂₃H₂₄Si [M+H]⁺: 329.1720, found: 329.1719.

(2-(Cyclohex-3-en-1-yl)ethyl)diphenylsilane (**6v**): colorless oil, 71mg, 81% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.58-7.55 (m, 4H), 7.43-7.35 (m, 6H), 5.68-5.62 (m, 2H), 4.86-4.85 (t, *J* = 3.6 Hz, 1H), 2.16-2.10 (m, 1H), 2.04-2.00 (m, 2H), 1.79-1.75 (m, 1H), 1.66-1.51 (m, 2H), 1.46-1.40 (m, 2H), 1.24-1.15 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): 135.1, 134.6, 129.5, 128.0, 127.1, 126.6, 36.3, 31.5, 31.1, 28.4, 25.3, 9.2; These data are in accordance with the literature. ^{S5}

(S)-(4,8-Dimethylnon-7-en-1-yl)diphenylsilane (**6w**): colorless oil, 66mg, 65% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.57-7.55 (m, 4H), 7.42-7.34 (m, 6H), 5.10-5.06 (m, 1H), 4.86-4.85 (t, *J* = 3.6 Hz, 1H), 2.00-1.87 (m, 2H), 1.68 (s, 3H), 1.59 (s, 3H), 1.42-1.35 (m, 3H), 1.30-1.06 (m, 6H), 0.83-0.81 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 135.1, 134.7, 131.0, 129.4, 127.9, 125.0, 40.5, 37.0, 32.0, 25.7, 25.5, 21.8, 19.5, 17.6, 12.3; IR (neat): 2960, 2918, 2854, 2114, 1427, 1114, 802, 728, 696; HRMS (ESI): cacld. for C₂₃H₃₂Si [M+H]⁺: 337.2346, found: 337.2346.

(5-Methylhex-5-en-1-yl)diphenylsilane (**6x**): colorless oil, 54mg, 64% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.57-7.55 (m, 4H), 7.40-7.34 (m, 6H), 4.87-4.85 (t, *J* = 3.8 Hz, 1H), 4.67-4.63 (m, 2H), 2.01-1.98 (t, *J* = 7.0 Hz, 2H), 1.68 (s, 3H), 1.53-1.45 (m, 4H), 1.19-1.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 146.0, 135.1, 134.6, 129.5, 127.9, 109.6, 37.4, 31.1, 24.1, 22.4, 12.0; IR (neat): 3067, 2924, 2853, 2114, 1647, 1427, 1114, 884, 801, 728, 695; HRMS (ESI): cacld. for $C_{19}H_{24}$ Si [M+H]⁺: 281.1720, found: 281.1718.

Diphenyl(3-(4-(prop-1-en-2-yl)phenoxy)propyl)silane (**6**y): colorless oil, 90mg, 84% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.51-7.49 (m, 4H), 7.33-7.28 (m, 8H), 6.75-6.73 (d, J = 8.8 Hz, 2H), 5.20 (m, 1H), 4.91-4.90 (m, 1H), 4.85-4.83 (t, J = 3.8 Hz, 1H), 3.90-3.86 (t, J = 6.4 Hz, 2H), 2.05 (m, 3H), 1.89-1.83 (m, 2H), 1.25-1.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 158.4, 142.6, 135.1, 134.0, 133.5, 129.7, 128.0, 126.5, 114.1, 110.5, 69.9, 24.3, 21.9, 8.4; IR (neat): 3066, 2920, 2116, 1605, 1510, 1427, 1243, 1178, 1115, 831, 804, 730, 696; HRMS (ESI): cacld. for $C_{24}H_{26}OSi [M+H]^+$: 359.1826, found: 359.1822.

Diphenyl(3-(4-(1-phenylvinyl)phenoxy)propyl)silane (**6z**): colorless oil, 96mg, 76% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.60-7.57 (m, 4H), 7.43-7.31 (m, 11H), 7.26-7.24 (d, *J* = 9.6 Hz, 2H), 6.83-6.80 (d, *J* = 8.8 Hz, 2H), 5.40-5.39 (d, *J* = 1.2 Hz, 1H), 5.35 (d, *J* = 1.2
Hz, 1H), 4.93-4.92 (t, J = 3.8 Hz, 1H), 3.99-3.95 (t, J = 6.6 Hz, 1H), 1.99-1.92 (m, 2H), 1.33-1.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 158.7, 149.5, 141.8, 135.1, 134.0, 133.8, 129.7, 129.3, 128.3, 128.1, 128.0, 127.6, 114.0, 112.8, 69.9, 24.3, 8.5; IR (neat): 3065, 2929, 2115, 1650, 1598, 1507, 1427, 1245, 1172, 1114, 804, 731, 696; HRMS (ESI): cacld. for $C_{29}H_{28}OSi$ [M+H]⁺: 421.1982, found: 421.1983.

(3-(((8S,9S,13S,14S)-13-Methyl-17-methylene-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl)oxy)propyl)diphenylsilane (**6aa**): white solid, m.p.: 102-104 °C; 101mg, 68% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.59-7.56 (m, 4H), 7.42-7.35 (m, 6H), 7.21-7.19 (d, *J* = 8.4 Hz, 1H), 6.68-6.66 (dd, *J* = 8.8 Hz, *J* = 2.8 Hz, 1H), 6.59 (d, *J* = 2.4 Hz, 1H), 4.92-4.90 (t, *J* = 3.8 Hz, 1H), 4.68-4.67 (m, 2H), 3.94-3.91 (t, *J* = 6.6 Hz, 2H), 2.88-2.79 (m, 2H), 2.58-2.51 (m, 1H), 2.38-2.19 (m, 3H), 1.98-1.88 (m, 4H), 1.85-1.78 (m, 1H), 1.55-1.27 (m, 8H), 0.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 161.8, 156.8, 137.9, 135.1, 134.1, 132.7, 129.6, 128.0, 126.3, 114.4, 112.0, 100.8, 69.9, 53.4, 44.4, 44.0, 38.8, 35.7, 29.9, 29.4, 27.6, 26.6, 24.3, 23.9, 18.5, 8.4; IR (neat): 2931, 2854, 2119, 1611, 1499, 1427, 1279, 1249, 1109, 1014, 846, 802, 772, 696; HRMS (ESI): cacld. for C₃₄H₄₀OSi [M-H]⁺: 491.2765, found: 491.2769.

Diphenyl(3-phenylpropyl)silane (**6ab**): colorless oil, 74mg, 82% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.59-7.57 (m, 4H), 7.45-7.37 (m, 6H), 7.32-7.29 (m, 2H), 7.23-7.17 (m, 3H), 4.93-4.91 (t, J = 3.6 Hz, 1H), 2.74-2.70 (t, J = 7.6 Hz, 2H), 1.88-1.80 (m, 2H), 1.26-1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 142.1, 135.1, 134.3, 129.5, 128.5, 128.2, 128.0, 125.7, 39.2, 26.3, 11.8; These data are in accordance with the literature.⁵⁵

(3-(4-Methoxyphenyl)propyl)diphenylsilane (**6ac**): colorless oil, 93mg, 93% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.57-7.54 (m, 4H), 7.42-7.31 (m, 6H), 7.08-7.05 (d, *J* = 8.8 Hz, 2H), 6.84-6.82 (d, *J* = 8.8 Hz, 2H), 4.90-4.88 (t, *J* = 4.0 Hz, 1H), 3.79 (s, 3H), 2.65-2.61 (t, *J* = 8.0 Hz, 2H), 1.81-1.73 (m, 2H), 1.21-1.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 157.7, 135.1, 134.4, 134.2, 129.5, 129.4, 127.9, 113.6, 55.2, 38.3, 26.5, 11.7; These data are in accordance with the literature.⁵⁷

Diphenyl(4-phenylbutyl)silane (**6ad**): colorless oil, 72mg, 76%, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.48-7.46 (m, 4H), 7.31-7.25 (m, 6H), 7.19-7.15 (m, 2H), 7.10-7.04 (m, 3H), 4.79-4.77 (t, J = 3.6 Hz, 1H), 2.53-2.49 (t, J = 7.8 Hz, 2H), 1.65-1.58 (m, 2H), 1.48-1.41 (m, 2H), 1.13-1.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 142.6, 135.1, 134.5, 129.5, 128.4, 128.2, 128.0, 125.6, 35.5, 34.9, 24.1, 12.0; These data are in accordance with the literature.^{S8}

(2-Cyclohexylethyl)diphenylsilane (**6ae**): colorless oil, 70mg, 79% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.61-7.58 (m, 4H), 7.45-7.37 (m, 6H), 4.89-4.87 (t, *J* = 3.6 Hz, 1H), 1.80-1.66 (m, 5H), 1.41-1.35 (m, 2H), 1.28-1.14 (m, 6H), 0.93-0.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 135.1, 134.7, 129.4, 127.9, 40.5, 32.9, 31.8, 26.7, 26.4, 9.2; These data are in accordance with the literature.⁵⁵

(3-Cyclopentylpropyl)diphenylsilane (**6af**): colorless oil, 62mg, 70% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.59-7.57 (m, 4H), 7.43-7.35 (m, 6H), 4.89-4.87 (t, *J* = 3.6 Hz, 1H), 1.80-1.67 (m, 3H), 1.60-1.55 (m, 2H), 1.53-1.46 (m, 4H), 1.42-1.37 (m, 2H), 1.19-1.14 (m, 2H), 1.08-0.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 135.1, 134.7, 129.4, 127.9, 39.8, 39.7, 32.6, 25.1, 23.5, 12.3; IR (neat): 2944, 2916, 2113, 1427, 1114, 802, 726, 695; HRMS (ESI): cacld. for C₂₀H₂₆Si [M+H]⁺: 295.1877, found: 295.1876.

Hexyldiphenylsilane (**6ag**): colorless oil, 51mg, 63% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.49-7.46 (m, 4H), 7.33-7.25 (m, 6H), 4.78-4.76 (t, J = 3.8 Hz, 1H), 1.42-1.34 (m, 2H), 1.32-1.25 (m, 2H), 1.19-1.15 (m, 4H), 1.09-1.04 (m, 2H), 0.80-0.76 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 135.2, 134.8, 129.6, 128.0, 33.0, 31.6, 24.5, 22.7, 14.2, 12.3; These data are in accordance with the literature.⁵⁹

Octyldiphenylsilane (**6ah**): colorless oil, 58mg, 65% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.49-7.46 (m, 4H), 7.31-7.25 (m, 6H), 4.78-4.76 (t, J = 3.8 Hz, 1H), 1.41-1.34 (m, 2H), 1.31-1.26 (m, 2H), 1.20-1.15 (m, 8H), 1.09-1.04 (m, 2H), 0.80-0.77 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 135.1, 134.7, 129.4, 127.9, 33.2, 31.9, 29.20, 29.17, 24.4, 22.7, 14.1, 12.1; These data are in accordance with the literature.⁵¹⁰

Diphenyl(1-phenylethyl)silane (7a): colorless oil, 84mg, 97% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.46-7.43 (m, 2H), 7.33-7.25 (m, 6H), 7.20-7.17 (m, 2H), 7.12-7.08 (m, 2H), 7.03-6.99 (m, 1H), 6.94-6.92 (m, 2H), 4.76-4.75 (d, *J* = 3.2 Hz, 1H), 2.78-2.72 (m, 1H), 1.40-1.38 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 144.3, 135.7, 135.5, 133.0, 129.7, 129.5, 128.1, 127.9, 127.7, 127.68, 124.9, 26.9, 16.5. These data are in accordance with the literature.⁵⁵

Diphenyl(1-(*p*-tolyl)ethyl)silane (**7b**): colorless oil, 88mg, 97% yield, regioselectivity: 30/1; ¹H NMR (400 MHz, CDCl₃): 7.58-7.55 (m, 2H), 7.46-7.36 (m, 6H), 7.33-7.29 (m, 2H), 7.05-7.03 (d, J = 8.0 Hz, 2H), 6.96-6.94 (d, J = 8.4 Hz, 2H), 4.88-4.87 (d, J = 3.2 Hz, 1H), 2.87-2.80 (m, 1H), 2.32 (s, 3H), 1.49-1.47 (d, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 141.2, 135.7, 135.5, 134.2, 133.17, 133.15, 129.6, 129.5, 128.9, 127.9, 127.7, 127.6, 26.3, 20.9, 16.7; These data are in accordance with the literature. ^{S5}

(1-(4-Methoxyphenyl)ethyl)diphenylsilane (**7c**): colorless oil, 95mg, 99% yield, regioselectivity: 39/1; ¹H NMR (400 MHz, CDCl₃): 7.55-7.53 (m, 2H), 7.45-7.35 (m, 6H), 7.31-7.27 (m, 2H), 6.97-6.93 (m, 2H), 6.78-6.75 (m, 2H), 4.85-4.84 (d,*J*= 3.2 Hz, 1H), 3.78 (s, 3H), 2.82-2.76 (m, 1H), 1.46-1.44 (d,*J*= 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 157.2, 136.4, 135.8, 135.7, 133.3, 133.26, 129.8, 129.6, 128.7, 128.0, 127.8, 113.7, 55.3, 25.9, 17.0. These data are in accordance with the literature.⁵⁵

(1-(4-(*tert*-Butyl)phenyl)ethyl)diphenylsilane (**7d**): colorless oil, 101mg, 98 % yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.58-7.56 (m, 2H), 7.47-7.36 (m, 6H), 7.31-7.25 (m, 4H), 7.01-6.99 (d, *J* = 8.0 Hz, 2H), 4.89-4.88 (d, *J* = 3.2 Hz, 1H), 2.89-2.82 (m, 1H), 1.52-1.50 (d, *J* = 7.2 Hz, 3H), 1.35 (s, 9H); ¹³C NMR (CDCl₃, 100MHz): 147.7, 141.1, 135.7, 135.5, 133.21, 133.16, 129.6, 129.5, 127.9, 127.6, 127.3, 125.0, 34.2, 31.4, 26.2, 16.5. These data are in accordance with the literature. ^{S5}

(1-([1,1'-Biphenyl]-4-yl)ethyl)diphenylsilane (**7e**): colorless oil, 80mg,73% yield, regioselectivity: 71/1; ¹H NMR (400 MHz, CDCl₃): 7.61-7.56 (m, 4H), 7.47-7.28 (m, 13H), 7.10-7.08 (d, *J* = 8.4 Hz, 2H), 4.89-4.88 (d, *J* = 3.2 Hz, 1H), 2.94-2.87 (m, 1H), 1.53-1.51 (d, *J* =7.2 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 143.5, 141.0, 137.6, 135.7, 135.6, 132.9, 129.7, 129.6, 128.7, 128.1, 127.9, 127.7, 126.9, 126.82, 126.77, 26.7, 16.4. These data are in accordance with the literature. ^{S5}

4-(1-(Diphenylsilyl)ethyl)-N,N-dimethylaniline (**7f**): colorless oil, 98mg, 99% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.59-7.57 (m, 2H), 7.46-7.36 (m, 6H), 7.33-7.29 (m, 2H), 6.97-6.95 (d, *J* = 8.8 Hz, 2H), 6.69-6.67 (d, *J* = 8.8 Hz, 2H), 4.89-4.88 (d, *J* = 3.6 Hz, 1H), 2.93 (s, 6H), 2.81-2.75 (m, 1H), 1.48-1.46 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 148.4, 135.7, 135.6,

133.54, 133.48, 132.4, 129.5, 129.4, 128.3, 127.8, 127.6, 113.1, 40.9, 25.4, 16.9; IR (neat): 2948, 2863, 2111, 1612, 1515, 1443, 1342, 1113, 803, 730; HRMS (ESI): cacld. for C₂₂H₂₅NSi [M+H]⁺: 332.1829, found: 332.1819.

Diphenyl(1-(4-(trifluoromethoxy)phenyl)ethyl)silane (**7g**): colorless oil, 56mg, 50% yield, regioselectivity: 75/1; ¹H NMR (400 MHz, CDCl₃): 7.55-53 (m, 2H), 7.46-7.34 (m, 6H), 7.31-7.28 (m, 2H), 7.05-7.03 (d, J = 8.4 Hz, 2H), 7.00-6.98 (d, J = 8.8 Hz, 2H), 4.84-4.83 (d, J = 3.2 Hz, 1H), 2.90-2.83 (m, 1H), 1.49-1.47 (d, J = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 146.6 (q, $J_{F-C} = 2.1$ Hz), 143.2, 135.6, 135.4, 132.5, 132.4, 129.9, 129.7, 128.6, 128.0, 127.8, 120.7 (q, $J_{F-C} = 1.0$ Hz), 120.5 (q, $J_{F-C} =$ 255.1 Hz), 26.5, 16.3; IR (neat): 3069, 2952, 2126, 1505, 1252, 1154, 1111, 795, 730; HRMS (ESI): cacld. for C₂₁H₁₉F₃OSi [M+H]⁺: 371.1230, found: 371.1245.

(1-(4-Fluorophenyl)ethyl)diphenylsilane (**7h**): colorless oil, 85mg, 93 % yield, regioselectivity: 37/1; ¹H NMR (400 MHz, CDCl₃): 7.59-7.57 (m, 2H), 7.49-7.45 (m, 1H), 7.43-7.39 (m, 5H), 7.35-7.31 (m, 2H), 7.01-6.90 (m, 4H), 4.89-4.88 (d, J = 3.6 Hz, 1H), 2.90-2.83 (m, 1H), 1.51-1.49 (d, J =7.2 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 160.6 (d, $J_{F-C} = 241.3$ Hz), 139.9 (d, $J_{F-C} = 3.2$ Hz), 135.6, 135.5, 132.7, 129.8, 129.7, 128.84, 128.76, 128.0, 127.8, 114.8 (d, $J_{F-C} = 20.9$ Hz), 26.1, 16.6. These data are in accordance with the literature.⁵⁵

(1-(4-Chlorophenyl)ethyl)diphenylsilane (7i): colorless oil, 54mg, 56 % yield, regioselectivity: 71/1;

¹H NMR (400 MHz, CDCl₃): 7.55-7.52 (m, 2H), 7.46-7.42 (m, 1H), 7.40-7.37 (m, 5H), 7.33-7.29 (m, 2H), 7.17-7.15 (d, J = 8.4 Hz, 2H), 6.94-6.92 (d, J = 8.8 Hz, 2H), 4.84-4.83 (d, J = 3.2 Hz, 1H), 2.86-2.79 (m, 1H), 1.47-1.45 (d, J = 7.2 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 142.9, 135.6, 135.5, 132.53, 132.52, 130.4, 129.8, 129.7, 128.9, 128.2, 128.0, 127.8, 26.5, 16.4. IR (neat): 3067, 2955, 2868, 2118, 1488, 1427, 1112, 829, 798, 730; HRMS (ESI): cacld. for C₂₀H₁₉ClSi [M-H]⁺: 321.0861, found: 321.0858.

Diphenyl(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl)silane (**7**j): white solid, m.p.: 99-101 °C; 57mg, 46% yield; regioselectivity: 96/1; ¹H NMR (400 MHz, CDCl₃): 7.66-7.64 (d, *J* = 8.4 Hz, 2H), 7.53-7.51 (m, 2H), 7.44-7.34 (m, 6H), 7.30-7.26 (m, 2H), 7.04-7.02 (d, *J* = 8.0 Hz, 2H), 4.85-4.84 (d, *J* = 3.2 Hz, 1H), 2.90-2.84 (m, 1H), 1.48-1.46 (d, *J* = 7.6 Hz, 3H), 1.35 (s, 12H); ¹³C NMR (100MHz, CDCl₃): 148.0, 135.7, 135.5, 134.7, 132.8, 132.7, 129.7, 129.6, 127.9, 127.7, 127.2, 83.6, 27.4, 24.9, 24.8,16.3; IR (neat): 2976, 2923, 2159, 1605, 1397, 1357, 1327, 1140, 1091, 811, 793, 696; HRMS (ESI): cacld. for $C_{26}H_{31}BO_2Si$ [M+Na]⁺: 437.2079, found: 437.2074.

(1-(Naphthalen-2-yl)ethyl)diphenylsilane (**7k**): colorless oil, 72mg, 71 % yield, regioselectivity: 19/1; ¹H NMR (400 MHz, CDCl₃): 7.77-7.75 (m, 1H), 7.67-7.64 (m, 2H), 7.54-7.52 (m, 2H), 7.43-7.32 (m, 9H), 7.27-7.23 (m, 2H), 7.16-7.13 (dd, *J* = 8.4 Hz, *J* = 1.6 Hz, 1H), 4.91-4.90 (d, *J* = 3.2 Hz, 1H), 3.03-2.97 (m, 1H), 1.56-1.55 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 142.0, 135.7, 135.6, 133.6, 132.89, 132.87, 131.5, 129.7, 129.6, 127.9, 127.7, 127.51, 127.46, 127.3, 127.2, 125.7, 125.2, 124.7, 27.2, 16.5. These data are in accordance with the literature.^{S5}

Diphenyl(1-(thiophen-2-yl)ethyl)silane (**7I**): colorless oil, 55mg, 62 % yield, regioselectivity >99/1; ¹H NMR (400 MHz, CDCl₃): 7.57-7.55 (m, 2H), 7.46-7.36 (m, 6H), 7.34-7.30 (m, 2H), 7.03-7.02 (dd, J = 5.2 Hz, J = 1.2 Hz, 1H), 6.88-6.86 (dd, J = 5.2 Hz, J = 3.2 Hz, 1H), 6.61-6.59 (m, 1H), 4.93-4.92 (d, J = 3.2 Hz, 1H), 3.17-3.11 (m, 1H), 1.53-1.51 (d, J = 7.2 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 148.1, 135.6, 135.5, 132.7, 132.5, 129.83, 129.76, 128.0, 127.8, 126.7, 122.8, 121.8, 22.2, 18.0. These data are in accordance with the literature.^{S5}

Diphenyl(1-(o-tolyl)ethyl)silane (**7m**): colorless oil, 64mg, 70% yield, regioselectivity: 28/1; ¹H NMR (400 MHz, CDCl₃): 7.47-7.45 (m, 2H), 7.39-7.18 (m, 7H), 7.17-7.15 (d, *J* = 7.2 Hz, 1H), 7.07-7.03 (m, 1H), 6.99-6.93 (m, 3H), 4.72 (d, *J* = 3.2 Hz, 1H), 2.96-2.90 (m, 1H), 2.00 (s, 3H), 1.38-1.36 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 142.8, 135.8, 135.3, 135.1, 133.3, 132.8, 130.0, 129.7, 129.5, 127.9, 127.7, 126.7, 126.0, 124.7, 21.9, 20.1, 16.5. IR (neat): 3066, 2955, 2118, 1485, 1427, 1107, 796, 729, 695; HRMS (ESI): cacld. for C₂₁H₂₂Si [M+Na]⁺: 325.1383, found: 325.1378.

Diphenyl(1-(*m*-tolyl)ethyl)silane (**7n**): colorless oil, 90mg, 99 % yield, regioselectivity >99/1; ¹H NMR (400 MHz, CDCl₃): 7.60-7.57 (m, 2H), 7.49-7.45 (m, 1H), 7.43-7.38 (m, 5H), 7.34-7.31 (m, 2H), 7.16-7.12 (t, J = 7.6 Hz, 1H), 6.98-6.96 (d, J = 7.2 Hz, 1H), 6.89-6.87 (d, J = 8.0 Hz, 1H), 6.85 (s, 1H), 4.90-4.89 (d, J = 3.2 Hz, 1H), 2.88-2.82 (m, 1H), 2.29 (s, 3H), 1.52-1.50 (d, J = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 144.1, 137.5, 135.7, 135.6, 133.1, 129.6, 129.5, 128.6, 128.0, 127.8, 127.6, 125.6, 124.7, 26.8, 21.4, 16.4. These data are in accordance with the literature.^{5%}

Diphenyl(1-(3-(prop-1-en-2-yl)phenyl)ethyl)silane (**70**): colorless oil, 86mg, 87 % yield, regioselectivity >99/1; ¹H NMR (400 MHz, CDCl₃): 7.57-7.55 (m, 2H), 7.46-7.36 (m, 6H), 7.32-7.28 (m, 2H), 7.25-7.22 (m, 1H), 7.21-7.17 (t, J = 7.4 Hz, 1H), 7.05-7.04 (t, J = 1.8 Hz, 1H), 6.98-6.96 (m, 1H), 5.19 (m, 1H), 5.02-5.00 (m, 1H), 4.87-4.86 (d, J = 3.2 Hz, 1H), 2.91-2.85 (m, 1H), 2.04-2.03 (m, 3H), 1.52-1.50 (d, J = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 144.0, 143.5, 140.9, 135.7, 135.6, 133.0, 132.9, 129.7, 129.6, 128.0, 127.9, 127.7, 126.6, 125.2, 122.2, 112.0, 27.0, 21.7, 16.3. IR (neat): 3066, 2955, 2117, 1596, 1452, 1112, 888, 799, 729, 695; HRMS (ESI): cacld. for C₂₃H₂₄Si [M+H]⁺: 329.1720, found: 329.1716.

(1-(3-Fluorophenyl)ethyl)diphenylsilane (**7p**): colorless oil, 52 mg, 57 % yield, regioselectivity: 41/1; ¹H NMR (400 MHz, CDCl₃): 7.57-7.54 (m, 2H), 7.47-7.43 (m, 1H), 7.41-7.38 (m, 5H), 7.33-7.29 (m, 2H), 7.17-7.12 (m, 1H), 6.83-6.79 (m, 2H), 6.74-6.71 (m, 1H), 4.87-4.86 (d, *J* = 3.2 Hz, 1H), 2.90-2.84 (m, 1H), 1.49-1.47 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 162.8 (d, *J*_{F-C} = 243.5 Hz), 147.2 (d, *J*_{F-C} = 7.2 Hz), 135.6, 135.5, 132.5 (d, *J*_{F-C} = 3.2 Hz), 129.9, 129.7, 129.4, 129.3, 128.0, 127.8, 123.3 (d, *J*_{F-C} = 2.8 Hz), 114.3 (d, *J*_{F-C} = 21.3 Hz), 111.7 (d, *J*_{F-C} = 21.0 Hz), 27.0 (d, *J*_{F-C} = 1.9 Hz), 16.2; These data are in accordance with the literature.^{S%}

(1-Mesitylethyl)diphenylsilane (**7q**): colorless oil, 30mg, 30% yield, regioselectivity: >99/1; ¹H NMR (400 MHz, CDCl₃): 7.69-7.67 (m, 2H); 7.45-7.39 (m, 3H), 7.29-7.25 (m, 1H), 7.21-7.15 (m, 4H), 6.78 (s, 1H), 6.75 (s, 1H), 5.11-5.10 (d, *J* = 5.2 Hz, 1H), 3.24-3.17 (m, 1H), 2.36 (s, 3H), 2.23 (s, 3H),

2.12 (s, 3H), 1.47-1.45 (d, J = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): 138.0, 136.4, 135.8, 135.5, 134.9, 134.6, 134.2, 134.1, 130.5, 129.6, 129.3, 129.0, 128.1, 127.6, 21.9, 21.74, 21.67, 20.6, 15.8; IR (neat): 2920, 2867, 2125, 1459, 1427, 1108, 796, 730, 695; HRMS (ESI): cacld. for C₂₃H₂₆Si [M+Na]⁺: 353.1696, found: 353.1695.

Diphenyl(1-phenylethyl)silanol (8): colorless oil, 132 mg, 87% yield; ¹H NMR (400 MHz, CDCl₃): 7.58-7.56 (m, 2H), 7.48-7.34 (m, 6H), 7.32-7.30 (m, 2H), 7.22-7.18 (m, 2H), 7.13-7.09 (m, 1H), 7.03-7.00 (m, 2H), 2.88-2.82 (q, J = 7.6 Hz, 1H), 2.18 (br, 1H), 1.48-1.46 (d, J = 7.6 Hz, 3H); ¹³CNMR (100 MHz, CDCl₃): 143.4, 134.72, 134.67, 134.6, 134.2, 129.93, 129.90, 128.2, 127.9, 127.8, 127.7, 125.0, 29.0, 15.3; These data are in accordance with the literature.^{S11}

1-Phenylethanol (**9**): colorless oil, 50 mg, 82% yield; ¹H NMR (400 MHz, $CDCl_3$): 7.40-7.34 (m, 4H), 7.30-7.26 (m, 1H), 4.92-4.87 (q, *J* = 6.5 Hz, 1H), 1.95 (br, 1H), 1.51-1.49 (d, *J* = 6.4 Hz, 3H); ¹³CNMR (100 MHz, $CDCl_3$): 145.8, 128.5, 127.4, 125.3, 70.4, 25.1; These data are in accordance with the literature.^{S12}

Fluorodiphenyl(1-phenylethyl)silane (**10**): colorless oil, 112 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃): 7.58-7.56 (m, 2H), 7.51-7.39 (m, 6H), 7.36-7.32 (t, J = 7.6 Hz, 2H), 7.24-7.20 (t, J = 7.4 Hz, 2H), 7.17-7.13 (m, 1H), 7.07-7.05 (d, J = 7.2 Hz, 2H), 2.96-2.89 (m, 1H), 1.55-1.53 (d, J = 7.6 Hz, 3H); ¹³CNMR (100 MHz, CDCl₃): 142.0 (d, $J_{F-C} = 0.7$ Hz), 134.69, 134.67, 134.5 (d, $J_{F-C} = 2.5$ Hz), 131.9 (d, $J_{F-C} = 9.6$ Hz), 131.8 (d, $J_{F-C} = 9.9$ Hz), 130.5, 128.2, 128.1 (d, $J_{F-C} = 0.8$ Hz), 127.9, 127.8, 125.3, 28.4 (d, $J_{F-C} = 13.4$ Hz), 14.9; ¹⁹F NMR (CDCl₃, 376 MHz): -174.8 (d, J = 5.3 Hz); These data are in accordance with the literature.^{S11}

11. References:

- S1. Seo, H.; Liu, A.-F.; Jamison, T. F. J. Am. Chem. Soc. 2017, 139, 13969-13972.
- S2. Hirao, A.; Imai, T.; Watanabe, K.; Hayashi, M.; Sugiyam, K. *Monatshefte fűr Chemie*. **2006**, *137*, 855-867.
- S3. Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 12779-12782.
- S4. Kattuboina, A.; Kaur, P.; Ai, T.; Li, G.-G. Chem. Biol. Drug. Des. 2008, 71, 216-223.
- S5. Gao, Y.-F.; Wang, L.-J; Deng, L. ACS Catal. 2018, 8, 9637-9646.
- S6. Kuznetsov, A.; Gevorgyan, V. Org. Lett. 2012, 14, 914-917.
- S7. Vijaykumar, G.; Pariyar, A.; Ahmed, J.; Shaw, B. K.; Adhikari, D.; Mandal, S. K. Chem. Sci. 2018, 9, 2817-2825.
- S8. Zhou, R.; Goh, Y. Y.; Liu, H.-W.; Tao, H.-R.; Li, L.-H.; Wu, J. Angew. Chem. Int. Ed. 2017, 56, 16621-16625.
- S9. Kamata, K.; Suzuki, A.; Nakai, Y.; Nakazawa, H. Organometallics 2012, 31, 3825-3828.
- S10. Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X.-L. Angew. Chem. Int. Ed. 2015, 54, 14523-14526.
- S11. Guo, J.; Shen X.-Z.; Lu, Z. Angew. Chem. Int. Ed. 2017, 56, 615-618.
- S12. Zheng, T.-T.; Li, J.-Y.; Zhang, S.-M.; Xue, B.-J.; Sun, H.-J.; Li, X.-Y.; Fuhr, O.; Fenske, D. *Organometallics*, **2016**, *35*, 3538-3545.

Part II NMR spectra

4y ¹H NMR

4z ¹H NMR

000000000000	400	- ກິດ ແມ່ນ ແມ່ນ -
7307307007007	NON	
40000000000	-00	4440000000
	0 0 0	10 10 104 4 4 4 4 4

3b ¹H NMR

$\begin{array}{c} 7.347\\ 7.327\\ 7.327\\ 7.326\\ 7.195\\ 7.195\\ 7.195\\ 7.195\\ 7.195\\ 6.930\\ 6.011\\ 6.692\\ 6.692\\ 6.672\\ 6.692\\ 6.672\\ 6.692\\ 6.672\\ 6.692\\ 6.672\\ 6.692\\ 6.692\\ 6.672\\ 6.692\\ 6.672\\ 6.692\\ 6.$

3b ³¹P NMR

L1 ¹³C NMR

L2 ¹H NMR

L2 ¹³C NMR

S56

L3 ¹³C NMR

140

0 f1 (ppm)

-90

L4 ¹H NMR

S59

L5 ¹³C NMR

S63

S65


```
6d regioselectivity
```


S68

6g regioselectivity

6h regioselectivity

\4.925 -4.915 _4.906

--4.844 --4.836

S77

S78

60 regioselectivity

6p¹³C NMR

135.144 134.683 129.387 127.881	82.883 77.319 76.682	~24.824 19.127
		~ ` ` `

6q ¹H NMR

S85

6u¹H NMR


```
6v<sup>13</sup>C NMR
```



```
6w <sup>13</sup>C NMR
```


6y¹³C NMR

-158.441	142.557 135.117 134.011 133.540 129.657 128.034 126.521	~114.083 ~110.521	77.318 77.000 76.682 169.891	~24.262 ~21.899	-8.421
----------	---	----------------------	---------------------------------------	--------------------	--------

6z 13C NMR

6aa ¹³C NMR

6ab¹³C NMR

6ac ¹³C NMR

-157.661	77.319 77.000 76.681	-55.200	-38.274	-26.495	-11.705
		77.319 77.000 76.681	77.319 77.000 76.681 –55.200	$\begin{cases} 77.319 \\ 77.000 \\ 76.681 \\ -55.200 \\ -38.274 \end{cases}$	77.319 77.000 76.681 −55.200 −38.274 −26.495

.

S101

6ah ¹H NMR

6ah ¹³C NMR

7a ¹³C NMR

7c regioselectivity

⁷e regioselectivity

7g¹H NMR

232243 232248 232248 23224 23224 2324 23	557 338 93 93 93 93 93 93 93 93 93 93 93 93 93	
00004446000000000000000000000000000000	0000000000	
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	0000000	

7i regioselectivity

70 ¹H NMR

7p ¹H NMR

7p regioselectivity

S127

10 ¹³C NMR

