Supporting information

An Electrolyte- and Catalyst-Free Electrooxidative

Sulfonylation of Imidazo[1,2-a]pyridines

Lili Han, ‡ Mengmeng Huang, ‡ Yabo Li, Jianye Zhang, Yu Zhu, Jung Keun Kim* and Yangjie Wu*

College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China

*E-mail: wyj@zzu.edu.cn, kim@zzu.edu.cn

Table of Contents

1. General Information	2
2. Experimental Procedure	2
3. Cyclic Voltammetry Experiments	3
4. Control Experiments	4
5. Optical spectroscopy data	6
6. Computational Details	8
7. Characterization Data	17
8. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	
9. X-Ray Crystallographic Data	60

1. General Information

Solvents were dried and degassed by standard methods before they were used. Commercial grade reagents were used without further purification except as indicated below. Imidazo[1,2a]pyridines were synthesized according to the method in the literature.¹ Sodium sulfinates (**2a**-2b, 2e, 2f, 2k) were purchased from commercial suppliers and (2c-2d, 2g-2j) were prepared according to the method in the literature.² Electrolysis was conducted using a DC power supply (MWSTEK DP3005B) in constant current mode. The anode electrode is graphite rod ($\Phi = 6$ mm) and cathode electrode is Nickel plate electrode (10 mm × 10 mm × 0.2 mm). Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminum plates with F-254 indicator, visualized by irradiation with UV light. The LCD Digital Hotplate Magnetic Stirrer MS-H-Pro⁺ and Digital Single Channel Adjustable Automatic Electronic Pipette Micropipette dPettee⁺ were purchased from Dragon Laboratory Instruments Limited. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer in CDCl₃. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz relative to tetramethylsilane as internal standard ($\delta =$ 0 ppm). For the ¹⁹F NMR spectra, the chemical shifts δ are reported relative to CFCl₃ (δ = 0 ppm) as internal standard. High resolution mass spectra (HRMS) were obtained on an Agilent LC-MSD-Trap-XCT spectrometer with micromass MS software using electrospray ionization (ESI). The Cyclic voltammetry (CV) was recorded in CH₃CN by CHI650A. The UV/Vis absorption spectra were recorded on a Perkin Elmer Lambda 35 Spectrometer and the fluorescence emission spectra were recorded using a F-4500 FL spectrophotometer. The X-ray single crystal structure is determined by the Oxford Diffraction Xcalibur CCD single crystal diffractometer.

2. Experimental Procedure

General procedure for the electrochemical synthesis of 2-phenyl-3-tosylimidazo[1,2-a]pyridine

Compounds **1** (0.3 mmol), **2** (0.9 mmol, 3.0 equiv.) and MeCN:H₂O (2:1, 7 mL) were added in a three-necked flask (10 mL). The reaction mixture was electrolyzed with a C|Ni electrode at a constant current of 5 mA in an undivided cell under air at room temperature for 9 hours. After electrolysis, the reaction mixture was extracted with ethyl acetate, the organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The crude products were purified through silica gel column chromatography using dichloromethane/ethyl acetate (30:1, v/v) as eluent to give the corresponding product.

Experimental setup

3. Cyclic Voltammetry Experiments

Cyclic voltammetry was measured under Ar balloon protection with conventional threeelectrode system (Reference electrode: Ag/AgCl, working electrode: Glassy carbon, counter electrode: Pt wire, Supporting electrolyte: 0.1 M TBAPF_6 in CH₃CN)

Figure S1. Cyclic voltammograms of sodium naphthalene-2-sulfinate (2h) in CH_3CN at 100 mV/s scan rates.

4. Control Experiments

Scheme S1. Control experiments.

Figure S2. HRMS spectrum of compound [I + Na]⁺ for exp 2

Figure S3. HRMS spectrum of compound [II + H]⁺ for exp 2

Figure S4. HRMS spectrum of compound [III]⁺ for exp 2

5. Optical spectroscopy data

(1) The UV/Vis absorption spectra were recorded in CH_3CN of a $1x10^{-5}$ M solution in 10 mm path length quartz cuvette on a Perkin Elmer Lambda 35 Spectrometer.

Figure S5. Absorption spectra of 1a, 3aa, 7 and 9 in CH_3CN

(2) Fluorescence emission spectra were recorded using a F-4500 FL spectrophotometer in CH_3CN .

Figure S6. Fluorescence emission spectra of 1a, 3aa, 7 and 9 in CH₃CN

(3) The fluorescence quantum yields of the different samples were calculated using quinine sulfate (QY = 0.55) as the standard (in 0.1 M H_2SO_4).³

Table S1. Absorption, emission and fluorescence quantum yields (ΦF) of compounds **1a**, **3aa**, **7** and **9**

	λ_{abs} (nm)	λ _{em} (nm)	ΦF
1a	247, 326	389	0.43
3aa	234, 253, 291	440	0.006
7	232, 284, 336	411	0.16
9	231, 276, 317	402	0.08

6. Computational Details

All the calculations were performed using M06-2X method⁴ and def2-TZVP(D) basis sets⁵ with the Gaussian 16 program package.⁶ The polarizable continuum model (PCM)⁷ was employed to consider the solvent effect of CH₃CN/H₂O. The intrinsic reaction coordinate (IRC) analysis was carried out to confirm that all the saddle point connected the correct reactant and product on the potential energy surface. With the help of Multiwfn 3.7-dew⁸ and VMD version 1.9.3 programs,⁹ we drawn and analysed **TS** and the Electrostatic potential (ESP) map of **1a**.

1a

Sum of electronic and zero-point Energies=		-610.691638	
Sum of electronic and thermal Energies=		-610.681091	
Sum of electronic and	l thermal Entha	lpies=	-610.680146
Sum of electronic and	l thermal Free E	nergies=	-610.729207
С	-4.14210876	-0.78359072	0.02900009
С	-4.18393525	0.63758856	-0.02627111
С	-3.03382465	1.35265674	-0.05258306
Ν	-1.83582048	0.69024859	-0.02532515
С	-1.74914617	-0.69543301	0.02670916
С	-2.95047621	-1.44168992	0.05515284
С	-0.55158116	1.16895774	-0.04178485
С	0.25913043	0.05710660	0.00148961
Ν	-0.48635788	-1.08724595	0.04237687
С	1.72817953	0.02212914	0.00247142
С	2.39958711	-1.19894801	-0.06066628
С	3.78652382	-1.24154277	-0.06359247
С	4.52348040	-0.06569606	-0.00335844
С	3.86207199	1.15545799	0.06124231
С	2.47662321	1.19922608	0.06508479
Н	-5.06927334	-1.33961592	0.05025694
Н	-5.12856632	1.16010159	-0.04769686
Н	-2.98445191	2.43056378	-0.09393232
Н	-2.88539199	-2.51961605	0.09694935
Н	-0.34687084	2.22366282	-0.08762617
Н	1.82124144	-2.11169959	-0.10861391
Н	4.29360812	-2.19662757	-0.11396906
Н	5.60517163	-0.09909505	-0.00558533
н	4.42780786	2.07686195	0.11126246
н	1.97482805	2.15711130	0.12222875

2k

Sum of electronic and zero-point Energies=	-750.866792
Sum of electronic and thermal Energies=	-750.860254
Sum of electronic and thermal Enthalpies=	-750.859310

Sum of electronic and thermal Free Energies=		-750.897786	
S	-0.61767100	0.00000100	-0.55797900
0	0.22400400	1.22284200	-0.25512100
0	0.22402300	-1.22283000	-0.25513500
Na	2.08154600	-0.00000100	0.43354600
С	-1.77302800	-0.00001200	0.82658100
Н	-2.39244200	0.89386700	0.77100800
Н	-2.39243200	-0.89389800	0.77101100
Н	-1.17544300	-0.00000800	1.73919900

Α

Sum of electronic and zero-point Energies=		
l thermal Energie	es=	-588.632003
l thermal Enthalı	pies=	-588.631059
l thermal Free Er	nergies=	-588.663829
-0.40218600	0.17402200	0.00000000
0.24166200	0.73952700	1.24074000
0.24166200	0.73952700	-1.24074000
0.24166200	-1.51816100	0.00000000
-0.10588400	-2.03383000	0.89415300
-0.10588400	-2.03383000	-0.89415300
1.33018100	-1.44016500	0.00000000
	l zero-point Ener l thermal Energie l thermal Enthal l thermal Free En -0.40218600 0.24166200 0.24166200 0.24166200 -0.10588400 -0.10588400 1.33018100	zero-point Energies= thermal Energies= thermal Enthalpies= thermal Free Energies= -0.40218600 0.17402200 0.24166200 0.73952700 0.24166200 -1.51816100 -0.10588400 -2.03383000 -0.10588400 -2.03383000 1.33018100 -1.44016500

В

Sum of electronic and zero-point Energies=			-588.452309
Sum of electronic and	d thermal Energi	es=	-588.447666
Sum of electronic and	d thermal Enthal	pies=	-588.446722
Sum of electronic and	d thermal Free E	nergies=	-588.480365
S	0.28058000	0.17840900	0.00000000
0	-0.16910800	0.75653200	1.25489100
0	-0.16910800	0.75653200	-1.25489100
С	-0.16910800	-1.56100800	0.00000000
Н	0.24442600	-2.00310100	-0.90109200
Н	0.24442600	-2.00310100	0.90109200
н	-1.25776200	-1.58680900	0.00000000

С

Sum of electronic and zero-point Energies=		-588.220815	
Sum of electronic and thermal Energies=		-588.215953	
Sum of electronic and thermal Enthalpies=		-588.215009	
Sum of electronic and thermal Free Energies=		-588.248874	
S	-0.00786100	0.16688200	0.00000000
0	0.00209200	0.78336100	1.25502700
0	0.00209200	0.78336100	-1.25502700

С	0.00209200	-1.59245200	0.00000000
Н	1.06467600	-1.85442500	0.00000000
Н	-0.49246600	-1.89738100	0.91896500
Н	-0.49246600	-1.89738100	-0.91896500

D

Sum of electronic and zero-point Energies=			-1199.145976	
Sum of electronic and thermal Energies=			-1199.130072	
Sum of electronic and thermal Enthalpies=			-1199.129127	
Sum of electronic a	nd thermal Free E	nergies=	-1199.190878	
С	-3.83903400	-1.90193800	0.02157500	
С	-4.00000000	-0.72613100	-0.76750200	
С	-2.91906500	0.04162500	-1.04847600	
Ν	-1.69657300	-0.33618000	-0.57778700	
С	-1.48664200	-1.49404900	0.16339700	
С	-2.61238500	-2.28345900	0.47956100	
С	-0.43784100	0.34699000	-0.70333300	
С	0.49358800	-0.67846800	-0.12438000	
Ν	-0.20610900	-1.68953000	0.43311500	
С	1.92900100	-0.63117100	-0.15745600	
С	2.62448300	0.34707200	-0.88909800	
С	4.00842000	0.34614000	-0.92987700	
С	4.73589600	-0.61925100	-0.24198600	
С	4.05868500	-1.59355800	0.48790000	
С	2.67732600	-1.60542900	0.53037700	
S	-0.50971600	1.92169800	0.30723500	
0	0.74526100	2.61316800	0.14107300	
0	-1.72690000	2.61227200	-0.05421700	
Н	-4.70746300	-2.50393000	0.25240000	
Н	-4.96951000	-0.43756200	-1.14264500	
Н	-2.95220500	0.95441000	-1.62372600	
Н	-2.46634500	-3.17750800	1.06803200	
Н	-0.22987400	0.72303200	-1.70927400	
Н	2.07960600	1.11361300	-1.42326100	
Н	4.52439400	1.10564400	-1.50329000	
Н	5.81735000	-0.61390200	-0.27399600	
Н	4.61596200	-2.34967700	1.02636400	
Н	2.15198000	-2.36531000	1.09264200	
С	-0.64904800	1.35150600	1.97320300	
Н	-0.75421900	2.24754300	2.58296400	
Н	-1.53700400	0.72783900	2.05827900	
н	0.25439200	0.80582400	2.23415200	

Ε

Sum of electronic and zero-point Energies=		-1198.996016	
Sum of electronic and thermal Energies=		-1198.980468	
Sum of electronic and thermal Enthalpies=		-1198.979524	
Sum of electronic and	l thermal Free E	nergies=	-1199.039548
С	-3.93281300	-1.78586500	0.04159500
С	-4.08875000	-0.55569200	-0.60091500
С	-2.98304100	0.20409300	-0.88833700
Ν	-1.77409000	-0.26868700	-0.53337800
С	-1.58832300	-1.47209000	0.07251500
С	-2.67836000	-2.26034200	0.38230600
С	-0.47830600	0.35954800	-0.69992900
С	0.43004300	-0.74443500	-0.19858400
Ν	-0.25028100	-1.73931600	0.26801200
С	1.88111900	-0.68632200	-0.19812700
С	2.56981500	0.20500200	-1.02484000
С	3.95465500	0.21142300	-1.02614900
С	4.65394300	-0.65849900	-0.19965900
С	3.97192600	-1.54591800	0.62844900
С	2.59090900	-1.56667400	0.62766100
S	-0.37511800	1.90255600	0.31662700
0	0.86753800	2.51847800	-0.03952900
0	-1.61034300	2.59538900	0.08651300
Н	-4.80633300	-2.38188600	0.26755200
Н	-5.06447800	-0.19104800	-0.88194100
Н	-3.01085100	1.16318900	-1.38191000
Н	-2.52504600	-3.21292900	0.86570400
Н	-0.30300900	0.69709300	-1.72222600
Н	2.03339100	0.88472800	-1.67225700
Н	4.48785100	0.89473300	-1.67256400
Н	5.73601600	-0.64678300	-0.19955800
Н	4.52125500	-2.21859900	1.27278200
Н	2.04576300	-2.24908400	1.26560200
С	-0.31623800	1.33215900	1.97869400
Н	-0.32067100	2.23578200	2.58766900
Н	-1.20324100	0.73721100	2.18835500
Н	0.60482700	0.77343400	2.13037200

F

Sum of electronic and zero-point Energies=			-610.472812	
Sum of electronic and thermal Energies=			-610.462189	
Sum of electronic and thermal Enthalpies=			-610.461245	
Sum of electronic and thermal Free Energies=			-610.510702	
С	-4.13104803	-0.76123803	0.01554482	
С	-4.18166509	0.64570233	-0.01239955	

С	-3.02653517	1.36300132	-0.02706617
Ν	-1.84037832	0.68071861	-0.01384428
С	-1.75896877	-0.70271505	0.01218663
С	-2.92585795	-1.44197693	0.02776727
С	-0.56882676	1.15594304	-0.02166906
С	0.27651568	-0.01394745	0.00189205
Ν	-0.46085858	-1.10455368	0.02024943
С	1.72821464	-0.00473619	0.00121856
С	2.42362525	-1.21868659	-0.03011636
С	3.80501722	-1.22126086	-0.03184925
С	4.50478877	-0.01724655	-0.00121825
С	3.82011525	1.19097797	0.03172437
С	2.43557723	1.20094808	0.03259970
Н	-5.05557543	-1.32161076	0.02773266
Н	-5.12721868	1.16502642	-0.02222058
Н	-2.96444533	2.44039454	-0.04807490
Н	-2.87112609	-2.51986836	0.04904831
Н	-0.35206971	2.21044023	-0.04689644
Н	1.86690827	-2.14549699	-0.05465278
Н	4.34262006	-2.15938158	-0.05773583
Н	5.58685543	-0.02315960	-0.00299895
н	4.36484299	2.12473873	0.05707189
Н	1.91215313	2.14717230	0.06220206

G

Sum of electronic and zero-point Energies=			-610.004525	
Sum of electronic and thermal Energies= -609.9939				
Sum of electronic a	and thermal Enthal	pies=	-609.993014	
Sum of electronic a	and thermal Free E	nergies=	-610.042732	
С	4.15579489	0.74253065	-0.00000384	
С	4.18711634	-0.68118426	0.00001798	
С	3.03513189	-1.39157106	0.00002274	
Ν	1.84306654	-0.71331457	0.00000809	
С	1.76299606	0.67859228	-0.00001272	
С	2.97129728	1.41307140	-0.00001976	
С	0.55497453	-1.14323890	0.00000675	
С	-0.27129788	-0.05063936	-0.00000910	
Ν	0.50194904	1.08093894	-0.00002202	
С	-1.73487183	-0.02360375	-0.00000556	
С	-2.42061622	1.18972795	0.00001878	
С	-3.80831939	1.20876770	0.00002663	
С	-4.52521139	0.01901370	0.00001007	
С	-3.84580800	-1.19464520	-0.00001642	
С	-2.46054967	-1.21587370	-0.00002587	

Н	5.08784899	1.29045484	-0.00000801
Н	5.12871757	-1.20948257	0.00003025
Н	2.97304313	-2.46925173	0.00003774
Н	2.91579763	2.49258856	-0.00003767
Н	-1.85608658	2.11265616	0.00003432
Н	-4.33169523	2.15624188	0.00004704
Н	-5.60727659	0.03554694	0.00001691
Н	-4.39790774	-2.12553918	-0.00003132
н	-1.93136985	-2.16227010	-0.00004980

3ak

Sum of electronic and zero-point Energies=		-1198.588561	
Sum of electronic and thermal Energies=			-1198.573201
Sum of electronic and thermal Enthalpies=			-1198.572257
Sum of electroni	c and thermal Free E	nergies=	-1198.632238
С	-3.89166100	-2.03726700	-0.09595100
С	-4.09284900	-0.63627300	-0.16239500
С	-3.03423500	0.21156100	-0.19112900
Ν	-1.76646700	-0.30713000	-0.14510100
С	-1.53218000	-1.66682600	-0.07669800
С	-2.63008000	-2.55033300	-0.05749100
С	-0.51663700	0.29964400	-0.15483100
С	0.40634900	-0.74000800	-0.08956300
Ν	-0.22847300	-1.93092300	-0.04416700
С	1.87942800	-0.69785800	-0.07508100
С	2.56239600	-1.49693000	0.84137900
С	3.94901200	-1.51670700	0.85632100
С	4.66481200	-0.75056700	-0.05540600
С	3.98861100	0.03299900	-0.98200200
С	2.60157200	0.06145500	-0.99280300
Н	-4.74778800	-2.69728800	-0.07990200
Н	-5.08963500	-0.22331400	-0.19973200
Н	-3.11812600	1.28377000	-0.26939000
Н	-2.43250300	-3.61131700	-0.00997800
Н	1.99754500	-2.09763800	1.54256400
Н	4.47076500	-2.13173800	1.57786000
Н	5.74696700	-0.76872500	-0.04771700
Н	4.54239000	0.62041100	-1.70272900
Н	2.07523800	0.66659800	-1.71755200
S	-0.35295100	2.01791300	0.03930900
0	-1.33384200	2.66067900	-0.80261300
0	1.03087600	2.37061500	-0.12325500
С	-0.80861600	2.31172700	1.71911500
н	-0.78213900	3.39180300	1.85805800

Н	-1.81533500	1.93317800	1.88670200
Н	-0.08739400	1.81596600	2.36388300

TS1

Sum of electronic a	Sum of electronic and zero-point Energies=		-1198.936426
Sum of electronic and thermal Energies=			-1198.920979
Sum of electronic and thermal Enthalpies=			-1198.920035
Sum of electronic a	nd thermal Free E	nergies=	-1198.979282
С	-4.11218600	-0.42367000	0.94410900
С	-4.14287500	-1.19297900	-0.25247400
С	-2.99985500	-1.52626800	-0.89609100
Ν	-1.80474000	-1.11011800	-0.36495500
С	-1.73536900	-0.36988200	0.80956400
С	-2.92968000	-0.00932300	1.47094700
С	-0.54001300	-1.28953200	-0.82636100
С	0.29322100	-0.65616800	0.08326500
Ν	-0.47984900	-0.06784700	1.09614400
С	1.75185900	-0.71392400	0.16753100
С	2.50781100	-1.10035800	-0.94050700
С	3.88842700	-1.14350400	-0.85355500
С	4.52392400	-0.79981200	0.33505000
С	3.77464700	-0.41409400	1.43866800
С	2.39080300	-0.37049800	1.35911600
S	-0.07939900	1.64894000	-0.63217000
0	1.01513900	1.62258100	-1.53322000
0	-1.43543100	1.66612300	-1.04747600
Н	-5.04294300	-0.17081600	1.43160300
Н	-5.08555900	-1.52018700	-0.66512800
Н	-2.94838300	-2.10028500	-1.80814500
Н	-2.86184900	0.57643000	2.37602200
Н	-0.33092500	-1.85604900	-1.71690600
Н	2.01904600	-1.35257400	-1.87305100
Н	4.47142700	-1.44132500	-1.71460000
Н	5.60345600	-0.83397500	0.39938300
Н	4.26720100	-0.15125900	2.36520900
Н	1.79863400	-0.08564300	2.21894100
С	0.27713900	2.66726700	0.76737600
Н	1.17770100	2.26052100	1.22142500
Н	0.45335700	3.65656100	0.34173200
н	-0.58344700	2.62814800	1.42564000

Sum of electronic and zero-point Energies=			-1199.143520
Sum of electronic and thermal Energies= -119			-1199.127510
Sum of electronic and thermal Enthalpies=			-1199.126566
Sum of electroni	c and thermal Free E	nergies=	-1199.190167
С	-3.94758200	-1.74097100	0.19896800
С	-4.05545100	-0.63222300	-0.68211300
С	-2.93679000	0.01851100	-1.08836500
Ν	-1.72126600	-0.42465900	-0.65474500
С	-1.57200000	-1.50593200	0.20134600
С	-2.72860900	-2.17376700	0.63965000
С	-0.45349200	0.12114400	-0.86931600
С	0.42137300	-0.82717300	-0.22589100
Ν	-0.28581500	-1.74580200	0.45590300
С	1.87149500	-0.76906500	-0.22500900
С	2.54800900	0.27736600	-0.86343100
С	3.93310200	0.33168700	-0.84486900
С	4.66362500	-0.65289800	-0.19095500
С	3.99850500	-1.69506000	0.44822700
С	2.61591500	-1.75488900	0.43444600
Н	-4.84660200	-2.24747300	0.52226000
Н	-5.01948500	-0.29461100	-1.03044500
Н	-2.93223000	0.87640900	-1.74379100
Н	-2.61931300	-3.01468100	1.30881600
Н	-0.25528700	0.61374700	-1.81400900
Н	1.99273800	1.05918800	-1.36775500
Н	4.44342300	1.14666600	-1.34129100
Н	5.74466900	-0.60862900	-0.17743500
Н	4.56334900	-2.46368500	0.95972700
Н	2.09365700	-2.56215000	0.92997000
S	-0.44483600	1.99368900	0.29149900
0	0.37573100	2.98228500	-0.39497000
0	-1.83144700	2.34077100	0.57496200
С	0.34141400	1.60170000	1.84162700
н	0.28276500	2.50420400	2.44877400
н	-0.20686300	0.78337200	2.30368200
Н	1.37476000	1.32682100	1.64356100

H₂O

Sum of electronic and zero-point Energies=		-76.412226	
Sum of electronic and thermal Energies=		-76.409391	
Sum of electronic and t	thermal Enthalp	oies=	-76.408447
Sum of electronic and thermal Free Energies=		-76.429870	
0	0.00000000	0.00000000	0.11737400
Н	0.00000000	-0.76221000	-0.46949600
Н	0.00000000	0.76221000	-0.46949600

H-cation

Sum of electronic and zero-point Energies=		-0.163351	
Sum of electronic and thermal Energies=		-0.161935	
Sum of electronic and thermal Enthalpies=		-0.160991	
Sum of electronic and thermal Free Energies=			-0.173351
Н	0.00000000	0.00000000	0.00000000

OH-anion

Sum of electronic and zero-point Energies=		-75.916164	
Sum of electronic and thermal Energies=		-75.913804	
Sum of electronic and thermal Enthalpies=		-75.912860	
Sum of electronic and thermal Free Energies=		-75.932410	
0	0.00000000	0.00000000	0.10682400
Н	0.0000000	0.00000000	-0.85459600

7. Characterization Data

2-phenyl-3-tosylimidazo[1,2-a]pyridine (3aa)^{10,11,12}

White solid (84.9 mg, 81%). mp. 137.2-138.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.11 (dt, J_1 = 7.09 Hz, J_2 = 1.10 Hz, 1H), 7.77-7.69 (m, 3H), 7.55-7.50 (m, 2H), 7.49-7.41 (m, 4H), 7.14 (d, J = 8.07 Hz, 2H), 7.05 (td, J_1 = 6.97 Hz, J_2 = 1.22 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.8, 146.6, 144.4, 139.0, 132.7, 130.5, 129.7, 129.3, 128.5, 127.8, 126.8, 126.4, 118.0, 117.8, 114.6, 21.5. HRMS (ESI) calcd. for C₂₀H₁₆N₂O₂S (M+H)⁺: 349.1005, found: 349.1006.

2-phenyl-3-(phenylsulfonyl)imidazo[1,2-a]pyridine (3ab)^{10,12,13}

White solid (80.3 mg, 80%). mp. 123.9-124.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.14 (d, *J* = 7.03 Hz, 1H), 7.73 (d, *J* = 8.03 Hz, 3H), 7.63 (d, *J* = 7.78 Hz, 2H), 7.47 (br. s., 5H), 7.38-7.31 (m, 2H), 7.07 (t, *J* = 6.78 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 153.1, 146.7, 141.9, 133.4, 132.5, 130.5, 129.4, 129.1, 128.6, 127.8, 126.9, 126.3, 118.0, 117.4, 114.7. HRMS (ESI) calcd. for C₁₉H₁₄N₂O₂S (M+H)⁺: 335.0849, found: 335.0850.

3-((4-methoxyphenyl)sulfonyl)-2-phenylimidazo[1,2-a]pyridine (3ac)¹⁰

White solid (88.2mg, 81%). mp. 138.7-139.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.10 (d, J = 7.03 Hz, 1H), 7.77-7.72 (m, 2H), 7.70 (d, J = 9.03 Hz, 1H), 7.60-7.55 (m, 2H), 7.48-7.40 (m, 4H), 7.03 (td, J_1 = 7.03 Hz, J_2 = 1.00 Hz, 1H), 6.81-6.76 (m, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.5, 152.3, 146.4, 133.4, 132.7, 130.5, 129.3, 128.7, 128.4, 127.8, 126.8, 118.2, 117.9, 114.6, 114.3, 55.6. HRMS (ESI) calcd. for C₂₀H₁₆N₂O₃S (M+H)⁺: 365.0954, found: 365.0955.

3-((4-(tert-butyl)phenyl)sulfonyl)-2-phenylimidazo[1,2-a]pyridine (3ad)¹²

White solid (88.3 mg, 75%). mp. 149.9-150.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.13 (d, *J* = 7.03 Hz, 1H), 7.76-7.70 (m, 3H), 7.57 (d, *J* = 8.53 Hz, 2H), 7.49-7.43 (m, 4H), 7.35 (d, *J* = 8.78 Hz, 2H), 7.06 (td, *J*₁ = 6.90 Hz, *J*₂ = 1.00 Hz, 1H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 157.3, 152.7, 146.6, 138.9, 132.7, 130.5, 129.3, 128.5, 127.8, 126.9, 126.3, 126.1, 118.0, 117.9, 114.6, 35.2, 30.9. HRMS (ESI) calcd. for C₂₃H₂₂N₂O₂S (M+H)⁺: 391.1475, found: 391.1474.

3-((4-fluorophenyl)sulfonyl)-2-phenylimidazo[1,2-a]pyridine (3ae)^{10,12}

White solid (88.6mg, 84%). mp. 125.5-127.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.14 (d, *J* = 7.03 Hz, 1H), 7.77-7.68 (m, 3H), 7.65-7.58 (m, 2H), 7.52-7.42 (m, 4H), 7.08 (t, *J* = 7.03 Hz, 1H), 7.03-6.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 164.2, 153.1, 146.7, 138.0, 132.4, 130.5, 129.5, 129.2, 128.7, 127.9, 126.8, 118.1, 117.4, 116.4, 116.2, 114.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -103.67. HRMS (ESI) calcd. for C₁₉H₁₃FN₂O₂S (M+H)⁺: 353.0755, found: 353.0756.

3-((4-chlorophenyl)sulfonyl)-2-phenylimidazo[1,2-a]pyridine (3af)^{10,11}

White solid (47.7 mg, 43%). mp. 120.2-121.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.13 (d, *J* = 6.78 Hz, 1H), 7.79-7.66 (m, 3H), 7.57-7.41 (m, 6H), 7.29 (d, *J* = 8.28 Hz, 2H), 7.09 (t, *J* = 6.78 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 153.3, 146.8, 140.4, 140.0, 132.3, 130.5, 129.6, 129.3, 128.8, 127.9, 127.8, 126.8, 118.1, 117.2, 114.9. HRMS (ESI) calcd. for C₁₉H₁₃ClN₂O₂S (M+H)⁺: 369.0459, found: 369.0460.

2-phenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)imidazo[1,2-a]pyridine (3ag)^{10,12}

White solid (106 mg, 87%). mp. 137.6-138.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.16 (d, *J* = 7.03 Hz, 1H), 7.77-7.67 (m, 5H), 7.58 (d, *J* = 8.28 Hz, 2H), 7.53-7.43 (m, 4H), 7.10 (t, *J* = 6.90 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 153.9, 147.0, 145.4, 135.0, 134.7, 132.3, 130.5, 129.7, 129.1, 128.0, 126.8, 126.2, 124.4, 121.6, 118.2, 116.6, 115.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.28. HRMS (ESI) calcd. for C₂₀H₁₃F₃N₂O₂S (M+H)⁺: 403.0723.0738, found: 403.0722.

2-phenyl-3-(thiophen-2-ylsulfonyl)imidazo[1,2-a]pyridine (3ai)

White solid (97.7 mg, 95%). mp. 186.8-187.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.07 (d, J = 7.03 Hz, 1H), 7.81-7.72 (m, 3H), 7.53-7.43 (m, 6H), 7.09 (td, J_1 = 7.03 Hz, J_2 = 1.00 Hz, 1H), 6.95 (dd, J_1 = 4.89 Hz, J_2 = 3.89 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 146.7, 143.4, 133.2, 132.6, 132.3, 130.5, 129.4, 128.8, 127.8, 127.6, 126.9, 118.1, 117.8, 114.8. HRMS (ESI) calcd. for C₁₇H₁₂N₂O₂S₂ (M+H)⁺: 341.0413, found: 341.0416.

2-phenyl-3-(pyridin-3-ylsulfonyl)imidazo[1,2-a]pyridine (3aj)

Yellow solid (88.9 mg, 88%). mp. 130.8-131.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.22-9.14 (m, 1H), 8.84 (s, 1H), 8.71-8.63 (m, 1H), 7.81-7.67 (m, 4H), 7.54-7.42 (m, 4H), 7.27-7.22 (m, 1H), 7.15-7.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 147.3, 147.0, 138.5, 133.9, 132.2, 130.5, 129.7, 129.1, 128.0, 126.8, 123.6, 118.2, 116.8, 115.1. HRMS (ESI) calcd. for C₁₈H₁₃N₃O₂S (M+H)⁺: 336.0801, found: 336.0805.

3-(methylsulfonyl)-2-phenylimidazo[1,2-a]pyridine (3ak)

White solid (66.5 mg, 81%). mp. 186.9-187.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.11 (d, *J* = 7.03 Hz, 1H), 7.91-7.85 (m, 2H), 7.78 (d, *J* = 9.03 Hz, 1H), 7.53-7.46 (m, 4H), 7.08 (t, *J* = 6.78 Hz, 1H), 3.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 146.5, 132.4, 130.2, 129.6, 128.6, 128.3, 127.1, 118.0, 117.0, 114.7, 45.0. HRMS (ESI) calcd. for C₁₄H₁₂N₂O₂S (M+H)⁺: 273.0692, found: 273.0689.

6-methyl-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ba)

White solid (99.3 mg, 91%). mp. 148.7-149.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.89 (s, 1H), 7.74-7.68 (m, 2H), 7.61 (d, *J* = 9.29 Hz, 1H), 7.52 (d, *J* = 8.28 Hz, 2H), 7.47-7.42 (m, 3H), 7.29 (dd, *J*₁ = 9.16 Hz, *J*₂ = 1.38 Hz, 1H), 7.14 (d, *J* = 8.03 Hz, 2H), 2.42 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 145.6, 144.3, 139.2, 132.8, 131.5, 130.5, 129.6, 129.2, 127.7, 126.4, 124.6, 117.3, 117.2, 21.5, 18.6. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₂S (M+H)⁺: 363.1162, found: 363.1164.

6-methoxy-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ca)

White solid (81.7 mg, 72%). mp. 174.8-175.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H) 7.72 (d, *J* = 4.02 Hz, 2H), 7.58 (d, *J* = 9.79 Hz, 1H), 7.51 (d, *J* = 8.03 Hz, 2H), 7.44 (d, *J* = 3.51 Hz, 3H), 7.21 (dd, *J*₁ = 9.54 Hz, *J*₂ = 1.76 Hz, 1H), 7.13 (d, *J* = 7.78 Hz, 2H), 3.91 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.4, 150.4, 144.4, 143.4, 139.0, 132.8, 130.5, 129.6, 129.2, 127.7, 126.4, 123.2, 118.2, 117.9, 108.9, 56.4, 21.5. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₃S (M+H)⁺: 379.1111, found: 379.1113.

6-fluoro-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3da)

White solid (93.0 mg, 85%). mp. 144.1-145.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.13 (dd, J_1 = 4.64 Hz, J_2 = 2.13 Hz, 1H), 7.74-7.65 (m, 3H), 7.51 (d, J = 8.53 Hz, 2H), 7.48-7.42 (m, 3H), 7.36 (ddd, J_1 = 9.85 Hz, J_2 = 7.47 Hz, J_3 = 2.51 Hz, 1H), 7.14 (d, J = 8.28 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 155.1, 153.4, 152.8, 144.7, 144.1, 138.7, 132.4, 130.4, 129.8, 129.5, 127.9, 126.4, 120.4, 120.1, 119.2, 118.4, 114.5, 114.1, 21.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -135.38. HRMS (ESI) calcd. for C₂₀H₁₅FN₂O₂S (M+H)⁺: 367.0911, found: 367.0912.

6-chloro-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ea)

White solid (76.0 mg, 66%). mp. 173.7-174.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.22 (d, *J* = 1.00 Hz, 1H), 7.71 (dd, *J*₁ = 7.65 Hz, *J*₂ = 1.63 Hz, 2H), 7.65 (d, *J* = 9.54 Hz, 1H), 7.52-7.40 (m, 6H), 7.15 (d, *J* = 8.03 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.1, 144.8, 144.7, 138.7, 132.2, 130.5, 129.8, 129.5, 127.9, 126.5, 124.8, 122.9, 118.6, 118.2, 21.6. HRMS (ESI) calcd. for C₂₀H₁₅ClN₂O₂S (M+H)⁺: 383.0616, found: 383.0614.

6-bromo-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3fa)

White solid (56.3 mg, 44%). mp. 174.2-174.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.31 (s, 1H), 7.67-7.74 (m, 2H), 7.62-7.57 (m, 1H), 7.53-7.42 (m, 6H), 7.15 (d, *J* = 8.28 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 144.9, 144.7, 138.7, 132.2, 131.9, 130.5, 129.8, 129.5, 127.9, 126.9, 126.5, 118.5, 109.4, 21.6. HRMS (ESI) calcd. for C₂₀H₁₅BrN₂O₂S (M+H)⁺: 427.0110, found: 427.0110.

2-phenyl-3-tosyl-6-(trifluoromethyl)imidazo[1,2-a]pyridine (3ga)

White solid (52.4 mg, 42%). mp. 169.5-170.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.55 (s, 1H), 7.81 (d, *J* = 9.29 Hz, 1H), 7.76-7.70 (m, 2H), 7.60 (d, *J* = 9.54 Hz, 1H), 7.53-7.44 (m, 5H), 7.15 (d, *J* =

8.03 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.9, 146.2, 145.0, 138.4, 131.9, 130.5, 129.8, 127.9, 126.6, 126.0, 124.5, 124.3, 121.8, 119.6, 119.0, 118.7, 21.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.01. HRMS (ESI) calcd. for C₂₁H₁₅F₃N₂O₂S (M+H)⁺: 417.0879, found: 417.0881.

7-methyl-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ha)

White solid (100.5 mg, 92%). mp. 157.6-158.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.96 (d, *J* = 7.03 Hz, 1H), 7.77-7.71 (m, 2H), 7.51 (d, *J* = 8.28 Hz, 2H), 7.48-7.42 (m, 4H), 7.12 (d, *J* = 8.03 Hz, 2H), 6.87 (dd, *J*₁ = 7.15 Hz, *J*₂ = 1.63 Hz, 1H), 2.44 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 147.0, 144.2, 140.1, 139.2, 132.7, 130.5, 129.7, 129.3, 127.7, 126.3, 125.9, 117.1, 116.5, 21.5, 21.4. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₂S (M+H)⁺: 363.1162, found: 363.1164.

7-methoxy-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ia)

White solid (100.1 mg, 88%). mp. 159.2-160.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.90 (d, *J* = 7.53 Hz, 1H), 7.79-7.73 (m, 2H), 7.53-7.42 (m, 5H), 7.13 (d, *J* = 8.28 Hz, 2H), 6.95 (d, *J* = 2.51 Hz, 1H), 6.71 (dd, *J*₁ = 7.65 Hz, *J*₂ = 2.38 Hz, 1H), 3.86 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.4, 153.2, 148.7, 144.2, 139.4, 132.7, 130.5, 129.7, 129.3, 127.7, 127.2, 126.2, 116.5, 109.1, 95.5, 55.8, 21.5. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₃S (M+H)⁺: 379.1111, found: 379.1109.

7-chloro-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ja)¹¹

White solid (51.1 mg, 42%). mp. 179.5-180.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.06 (d, *J* = 7.53 Hz, 1H), 7.71 (dd, *J*₁ = 7.53 Hz, *J*₂ = 6.02 Hz, 3H), 7.52-7.43 (m, 5H), 7.13 (d, *J* = 8.03 Hz, 2H), 7.03 (dd, *J*₁ = 7.28 Hz, *J*₂ = 1.51 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 146.4, 144.7, 138.8, 135.4, 132.2, 130.5, 129.8, 129.6, 127.9, 127.2, 126.4, 118.3, 116.9, 116.1, 21.5. HRMS (ESI) calcd. for C₂₀H₁₅ClN₂O₂S (M+H)⁺: 383.0616, found: 383.0620.

8-methyl-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ka)

White solid (98.0 mg, 90%). mp. 161.5-162.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.96 (d, J = 6.78 Hz, 1H), 7.76-7.69 (m, 2H), 7.52 (d, J = 8.03 Hz, 2H), 7.48-7.42 (m, 3H), 7.23 (d, J = 7.03 Hz, 1H), 7.13 (d, J = 8.03 Hz, 2H), 6.95 (t, J = 6.90 Hz, 1H), 2.63 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 146.8, 144.2, 139.2, 133.0, 130.6, 129.6, 129.2, 128.1, 127.8, 127.3, 126.4, 124.5, 118.1, 114.6, 21.5, 17.1. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₂S (M+H)⁺: 363.1162, found: 363.1166.

8-chloro-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3la)

White solid (100.8 mg, 87%). mp. 151.7-152.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.09 (d, *J* = 6.78 Hz, 1H), 7.72 (d, *J* = 6.27 Hz, 2H), 7.55-7.41 (m, 6H), 7.13 (d, *J* = 8.03 Hz, 2H), 7.00 (t, *J* = 7.15 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 144.7, 143.9, 138.7, 132.2, 130.7, 129.7, 129.5, 127.8, 127.3, 126.5, 125.5, 123.9, 119.8, 114.2, 21.5. HRMS (ESI) calcd. for C₂₀H₁₅ClN₂O₂S (M+H)⁺: 383.0616, found: 383.0619.

8-bromo-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3ma)

White solid (68.6 mg, 53%). mp. 180.4-181.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.13 (d, *J* = 7.03 Hz, 1H), 7.74-7.67 (m, 3H), 7.51-7.42 (m, 5H), 7.13 (d, *J* = 8.28 Hz, 2H), 6.93 (t, *J* = 7.28 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 144.7, 144.4, 138.7, 132.3, 130.8, 129.7, 129.5, 127.8, 126.5, 126.1, 119.8, 114.5, 112.0, 21.5. HRMS (ESI) calcd. for C₂₀H₁₅BrN₂O₂S (M+H)⁺: 427.0110, found: 427.0107.

2-(p-tolyl)-3-tosylimidazo[1,2-a]pyridine (3na)

White solid (100.6 mg, 92%). mp. 188.4-189.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.08 (dt, J_1 = 7.02 Hz, J_2 = 1.14 Hz, 1H), 7.70 (dt, J_1 = 9.00 Hz, J_1 = 1.14 Hz, 1H), 7.66 (d, J = 8.09 Hz, 2H), 7.54 (d, J = 8.39 Hz, 2H), 7.43 (ddd, J_1 = 8.96 Hz, J_2 = 6.98 Hz, J_3 = 1.30 Hz, 1H), 7.29-7.25 (m, 2H), 7.15 (d, J = 7.93 Hz, 2H), 7.03 (td, J_1 = 6.94 Hz, J_2 = 1.22 Hz, 1H), 2.44 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 146.5, 144.4, 139.4, 139.1, 130.5, 129.7, 129.6, 128.5, 126.8, 126.4, 117.9, 117.5, 114.5, 21.5. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₂S (M+H)⁺: 363.1162, found: 363.1163.

2-(4-methoxyphenyl)-3-tosylimidazo[1,2-a]pyridine (3oa)

White solid (101.8 mg, 90%). mp. 137.2-138.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.09 (d, *J* = 7.03 Hz, 1H), 7.74 (d, *J* = 8.78 Hz, 2H), 7.69 (d, *J* = 9.03 Hz, 1H), 7.53 (d, *J* = 8.28 Hz, 2H), 7.43 (t, *J* = 7.65 Hz, 1H), 7.14 (d, *J* = 8.03 Hz, 2H), 7.06-6.96 (m, 3H), 3.89 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 152.7, 146.6, 144.3, 139.1, 132.0, 129.7, 128.5, 126.8, 126.3, 124.9, 117.8, 117.2, 114.4, 113.3, 55.3, 21.5. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₃S (M+H)⁺: 379.1111, found: 379.1109.

2-(4-fluorophenyl)-3-tosylimidazo[1,2-a]pyridine (3pa)

White solid (100.2 mg, 91%). mp. 171.3-172.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.10 (d, *J* = 7.03 Hz, 1H), 7.79-7.74 (m, 2H), 7.70 (d, *J* = 9.03 Hz, 1H), 7.52 (d, *J* = 8.28 Hz, 2H), 7.49-7.43 (m, 1H), 7.20-7.12 (m, 4H), 7.06 (td, *J*₁ = 6.90, *J*₂ = 1.25 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.9, 162.4, 151.7, 146.6, 144.5, 139.0, 132.6, 132.5, 129.8, 128.7, 128.6, 126.8, 126.3, 118.0, 117.8, 115.0, 114.8, 114.7, 21.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -111.86. HRMS (ESI) calcd. for C₂₀H₁₅FN₂O₂S (M+H)⁺: 367.0911, found: 367.0915.

2-(4-chlorophenyl)-3-tosylimidazo[1,2-a]pyridine (3qa)

White solid (95 mg, 83%). mp. 177.8-178.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.09 (d, *J* = 6.78 Hz, 1H), 7.76-7.68 (m, 3H), 7.53 (d, *J* = 8.03 Hz, 2H), 7.49-7.41 (m, 3H), 7.17 (d, *J* = 8.03 Hz, 2H), 7.06 (t, *J* = 6.78 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 151.4, 146.6, 144.6, 138.9, 135.6, 131.9, 131.1, 129.8, 128.7, 128.1, 126.8, 126.4, 118.0, 117.9, 114.7, 21.5. HRMS (ESI) calcd. for C₂₀H₁₅ClN₂O₂S (M+H)⁺: 383.0616, found: 383.0620.

3-tosyl-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine (3ra)

White (22.9 mg, 18%). mp. 201.9-202.2 °C.¹H NMR (400 MHz, CDCl₃): δ 9.09 (d, J = 7.03 Hz, 1H), 7.89 (d, J = 8.03 Hz, 2H), 7.75-7.70 (m, 3H), 7.54 (d, J = 8.28 Hz, 2H), 7.51-7.45 (m, 1H), 7.17 (d, J = 8.03 Hz, 2H), 7.09 (td, J_1 = 6.96, J_2 = 1.13 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 150.9, 146.7, 144.8, 138.7, 136.3, 131.3, 131.0, 129.9, 128.8, 126.8, 126.4, 125.5, 124.7, 122.8, 118.3, 118.1, 114.9, 21.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.64. HRMS (ESI) calcd. for C₂₁H₁₅F₃N₂O₂S (M+H)⁺: 417.0879, found: 417.0881.

(E)-2-phenyl-8-styryl-3-tosylimidazo[1,2-a]pyridine (7)

White (90.1 mg, 73%). mp. 175.8-176.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.00 (d, *J* = 6.6 Hz, 1H), 7.89-7.78 (m, 3H), 7.63-7.56 (m, 4H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.51-7.46 (m, 3H), 7.38-7.32 (m, 2H), 7.30-7.24 (m, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 7.05 (t, *J* = 7.2 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.4, 145.2, 144.4, 139.0, 136.9, 134.2, 132.9, 130.8, 129.7, 129.3, 128.7, 128.4, 127.8, 127.4, 127.2, 126.4, 124.9, 124.4, 122.3, 118.1, 114.7, 21.6. HRMS (ESI) calcd. for C₂₈H₂₂N₂O₂S (M+H)⁺: 451.1475, found: 451.1477.

2-phenyl-8-(phenylethynyl)-3-tosylimidazo[1,2-a]pyridine (9)

White (79.0 mg, 88%). mp. 151.6-152.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.10 (dd, J_1 = 6.97 Hz, J_2 = 0.98 Hz, 1H), 7.82-7.77 (m, 2H), 7.65 (dd, J_1 = 7.21 Hz, J_2 = 0.98 Hz, 1H), 7.63-7.58 (m, 2H), 7.52-7.43 (m, 5H), 7.37-7.31 (m, 3H), 7.12 (d, J = 8.07 Hz, 2H), 7.04 (t, J = 7.09 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.0, 146.2, 144.5, 138.8, 132.5, 132.1, 131.9, 130.9, 129.7, 129.4, 129.1, 128.3, 127.7, 126.4, 122.4, 118.6, 114.3, 114.1, 96.9, 83.4, 21.6. HRMS (ESI) calcd. for C₂₈H₂₀N₂O₂S (M+H)⁺: 449.1318, found: 449.1323.

References:

(1) (a) Y. Yu, Y. Yuan, H. Liu, M. He, M. Yang, P. Liu, B. Yu, X. Dong and A. Lei, *Chem. Commun.*, 2019, **55**, 1809; (b) S. Takizawa, J. Nishida, T. Tsuzuki, S. Tokito and Y. Yamashita, *Inorg. Chem.*, 2007, **46**, 4308.

(2) (a) M. Jiang, Y. Yuan, T. Wang, Y. Xiong, J. Li, H. Guo and A. Lei, *Chem. Commun.*, 2019, **55**, 13852; (b) W. Kim, H.Y. Kim and K. Oh, *Org. Lett.*, 2020, **22**, 6319.

(3) (a) A Guide to Recording Fluorescence Quantum Yields-Application Note 1996 (Middlesex: Jobin Yvon). (b) Y. Wei, N. Li and S. Qin, *Spectrosc. Spect. Anal.*, 2004, **24**, 647.

(4) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.

(5) (a) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297; (b) J. Zheng, X. Xu and D. G. Truhlar, *Theor. Chem. Accounts*, 2011, **128**, 295.

(6) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

(7) M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem. Phys. Lett., 1996, 255, 327.

(8) T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.

(9) W. Humphrey, A. Dalke and K. Schluten, J. Molec. Graphics, 1996, 14, 33.

(10) Y.-J. Guo, S. Lu, L.-L. Tian, E.-L. Huang, X.-Q. Hao, X.-J. Zhu, T. Shao, M.-P. Song, J. Org.

Chem., 2018, **83**, 338.

(11) D. Yang, P. Sun, W. Wei, F. Liu, H. Zhang and H. Wang, *Chem. Eur. J.*, 2018, **24**, 4423.

(12) C. Breton-Patient, D. Naud-Martin, F. Mahuteau-Betzer and S. Piguel, *Eur. J. Org. Chem.*, 2020, **2020**, 6653.

(13) D. C. Mohan, M. S. Rao, C. Ravi and S. Adimurthy, Asian J. Org. Chem., 2014, 3, 609.

8. ¹H, ¹³C and ¹⁹F NMR Spectra

12820-HLL46-1-1_H.ESP 12820-HLL46-1-1_H.ESP

Figure S7. ¹H NMR spectrum of compound 3aa

8901-HLL8-1_C.ESP

Figure S8. ¹³C NMR spectrum of compound 3aa

749-HLL97-1_H.ESP 749-HLL97-1_H.ESP

Figure S9. ¹H NMR spectrum of compound **3ab**

2021-HLL97-1-1_C.esp

Figure S10. ¹³C NMR spectrum of compound **3ab**

3751-HLL123-1_C.esp

Figure S12. ¹³C NMR spectrum of compound 3ac

Figure S13. ¹H NMR spectrum of compound 3ad

859-HLL132_C.esp

Figure S14 ¹³C NMR spectrum of compound 3ad

571-HLL100-1-1_H.esp 571-HLL100-1-1_H.esp

Figure S15. ¹H NMR spectrum of compound 3ae

2032-HLL100-1_C.esp

Figure S16. ¹³C NMR spectrum of compound 3ae

Figure S17. ¹⁹F NMR spectrum of compound **3ae**

669-HLL179-1-1_H.esp 669-HLL179-1-1_H.esp

Figure S18. ¹H NMR spectrum of compound 3af

966-HLL140-3_H.esp 966-HLL140-3_H.esp

Figure S20. ¹H NMR spectrum of compound 3ag

Figure S21. ¹³C NMR spectrum of compound 3ag

184-HLL140-1-1_F.esp

Figure S22. ¹⁹F NMR spectrum of compound 3ag

438-HLL172-1_H.ESP 438-HLL172-1_H.ESP

Figure S23. ¹H NMR spectrum of compound 3ai

458-HLL172-1_C.esp

Figure S24. ¹³C NMR spectrum of compound 3ai

891-HLL178_H.esp 891-HLL178_H.esp

Figure S25. ¹H NMR spectrum of compound 3aj

904-HLL178_C.esp

Figure S26. ¹³C NMR spectrum of compound 3aj

616-HLL104-1-1_H.ESP 616-HLL104-1-1_H.ESP

2611-HLL104-1-1_C.esp

Figure S28. ¹³C NMR spectrum of compound 3ak

617-HLL107-1-1_H.ESP 617-HLL107-1-1_H.ESP

638-HLL107-1-1_C.esp

Figure S30. ¹³C NMR spectrum of compound 3ba

606-HLL134-1-3_H.ESP 606-HLL134-1-3_H.ESP

Figure S31. ¹H NMR spectrum of compound 3ca

636-HLL134-1-3_C.esp

Figure S32. ¹³C NMR spectrum of compound 3ca

647-HLL113-1-1_H.ESP 647-HLL113-1-1_H.ESP

3161-HLL113-1_C.esp

Figure S34. ¹³C NMR spectrum of compound 3da

Figure S35. ¹⁹F NMR spectrum of compound 3da

769-HLL114_H.ESP 769-HLL114_H.ESP

Figure S36. ¹H NMR spectrum of compound 3ea

Figure S37. ¹³C NMR spectrum of compound 3ea

747-HLL142_H.ESP 747-HLL142_H.ESP

Figure S38. ¹H NMR spectrum of compound 3fa

746-HLL121_H.esp 746-HLL121_H.esp

Figure S40. ¹H NMR spectrum of compound 3ga

10-HLL121-1-1_F.esp

Figure S42. ¹⁹F NMR spectrum of compound 3ga

592-HLL120-1-1_C.esp

Figure S44. ¹³C NMR spectrum of compound 3ha

Figure S45. ¹H NMR spectrum of compound 3ia

861-HLL153_C.esp

Figure S46. ¹³C NMR spectrum of compound 3ia

745-HLL165_H.esp 745-HLL165_H.esp

792-HLL165_C.esp

Figure S48. ¹³C NMR spectrum of compound 3ja

741-HLL169-1_C.esp

Figure S50. ¹³C NMR spectrum of compound 3ka

525-HLL171-1-2_H.esp 525-HLL171-1-2_H.esp

339-H171-1-1_C.esp

Figure S52. ¹³C NMR spectrum of compound 3la

934-HLL173_C.esp

Figure S54. ¹³C NMR spectrum of compound 3ma

4440-HLL126-1_H.ESP 4440-HLL126-1_H.ESP

15-HLL126-1_C.esp

Figure S56. ¹³C NMR spectrum of compound 3na

788-HLL161_C.esp

Figure S58. ¹³C NMR spectrum of compound 3oa

452-HLL174-1_H.esp 452-HLL174-1_H.esp

Figure S59. ¹H NMR spectrum of compound 3pa

475-HLL174-1_C.esp

Figure S60. ¹³C NMR spectrum of compound 3pa

Figure S61. ¹⁹F NMR spectrum of compound 3pa

Figure S62. ¹H NMR spectrum of compound 3qa

982-HLL163-1_H.ESP 982-HLL163-1_H.ESP

Figure S64. ¹H NMR spectrum of compound 3ra

796-HLL163_F.esp

Figure S66. ¹⁹F NMR spectrum of compound 3ra

7220-HLL186_H.ESP 7220-HLL186_H.ESP

Figure S67. ¹H NMR spectrum of compound 7

6581-HLL186_C.ESP

Figure S68. ¹³C NMR spectrum of compound 7

7370-HLL187_H.esp 7370-HLL187_H.esp

Figure S69. ¹H NMR spectrum of compound 9

7371-HLL187_C.ESP

Figure S70. ¹³C NMR spectrum of compound 9

9. X-Ray Crystallographic Data

The structure of **3aa**, **3ad**, **3ca**, **3da** and **3na** were determined by the X-ray diffraction. Recrystallized from dichloromethane. Further information can be found in the CIF file. These crystals were deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 2003750 (**3aa**), 2046849 (**3ad**), 2046836 (**3ca**), 2046840 (**3da**) and 2046841 (**3na**).

Figure S71. X-ray structure of compound 3aa (CCDC 2003750)

•	
Identification code	201912329
Empirical formula	$C_{20}H_{16}N_2O_2S$
Formula weight	348.41
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.2243(9)
b/Å	9.2775(13)
c/Å	11.9174(11)
α/°	109.972(11)
β/°	100.537(9)
γ/°	108.093(11)

Table S2. Crystal data and structure refinement for 3aa.

Volume/Å ³	862.17(19)
Z	2
$\rho_{calc}g/cm^3$	1.342
µ/mm⁻¹	1.794
F(000)	364.0
Crystal size/mm ³	$0.15 \times 0.1 \times 0.08$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	8.342 to 141.842
Index ranges	$-11 \le h \le 10, -11 \le k \le 11, -9 \le l \le 14$
Reflections collected	6330
Independent reflections	3249 [R _{int} = 0.0318, R _{sigma} = 0.0509]
Data/restraints/parameters	3249/0/228
Goodness-of-fit on F ²	1.035
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0487$, $wR_2 = 0.1260$
Final R indexes [all data]	$R_1 = 0.0651$, $wR_2 = 0.1408$
Largest diff. peak/hole / e Å-	0.28/-0.29

Fable S3. Cryst	al data and	l structure	refineme	nt for 3ad.
-----------------	-------------	-------------	----------	--------------------

Identification code	202007110	

Empirical formula	$C_{23}H_{22}N_2O_2S$
Formula weight	390.48
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	17.5438(7)
b/Å	18.4815(6)
c/Å	13.4134(4)
α/°	90
β / °	107.063(4)
γ/°	90
Volume/Å ³	4157.6(3)
Z	8
$\rho_{calc}g/cm^3$	1.248
µ/mm⁻¹	1.541
F(000)	1648.0
Crystal size/mm ³	$0.22\times0.14\times0.1$
Radiation	CuKα (λ = 1.54184)
2⊖ range for data collection/°	7.118 to 134.152
Index ranges	$-20 \le h \le 17, -14 \le k \le 22, -16 \le l \le 15$
Reflections collected	17564
Independent reflections	7412 [R _{int} = 0.0364, R _{sigma} = 0.0460]
Data/restraints/parameters	7412/108/536
Goodness-of-fit on F ²	1.027
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0541$, $wR_2 = 0.1396$
Final R indexes [all data]	$R_1 = 0.0827$, $wR_2 = 0.1675$
Largest diff. peak/hole / e Å-	³ 0.50/-0.31

Figure S73. X-ray structure of compound 3ca (CCDC 2046836)

Identification code	202007107
Empirical formula	$C_{21}H_{18}N_2O_3S$
Formula weight	378.43
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	8.29236(19)
b/Å	14.5610(4)
c/Å	15.4305(3)
α/°	90
β/°	91.003(2)
γ/°	90
Volume/Å ³	1862.87(8)
Z	4
$\rho_{calc}g/cm^3$	1.349
µ/mm⁻¹	1.745
F(000)	792.0
Crystal size/mm ³	$0.2 \times 0.15 \times 0.1$
Radiation	CuKα (λ = 1.54184)

2Θ range for data collection/°	8.35 to 134.156
Index ranges	$-9 \le h \le 9$, $-17 \le k \le 16$, $-18 \le l \le 9$
Reflections collected	6802
Independent reflections	3322 [R _{int} = 0.0283, R _{sigma} =
	0.0393]
Data/restraints/parameters	3322/0/248
Goodness-of-fit on F ²	1.036
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0458$, $wR_2 = 0.1209$
Final R indexes [all data]	$R_1 = 0.0580$, $wR_2 = 0.1319$
Largest diff. peak/hole / e Å-3	0.32/-0.29

Identification code		202007108	
	Empirical formula	$C_{20H_{15}FN_2O_2S}$	
	Formula weight	366.40	
	Temperature/K	293(2)	
	Crystal system	monoclinic	
	Space group	P2 ₁ /c	
	a/Å	13.7672(3)	

Table S5. Crvs	stal data and s	structure refin	ement for 3da.
	star aata ama s		

b/Å	12.5717(3)
c/Å	10.2914(3)
α/°	90
β / °	100.758(2)
γ/°	90
Volume/Å ³	1749.90(7)
Z	4
$\rho_{calc}g/cm^3$	1.391
µ/mm⁻¹	1.881
F(000)	760.0
Crystal size/mm ³	$0.21 \times 0.14 \times 0.12$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/	° 9.604 to 134.126
Index ranges	$-9 \le h \le 16, -12 \le k \le 15, -12 \le l \le 12$
Reflections collected	6568
Independent reflections	3126 [$R_{int} = 0.0284$, $R_{sigma} = 0.0351$]
Data/restraints/parameters	3126/0/237
Goodness-of-fit on F ²	1.055
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0436$, $wR_2 = 0.1146$
Final R indexes [all data]	$R_1 = 0.0530$, $wR_2 = 0.1252$
Largest diff. peak/hole / e Å-	³ 0.30/-0.30

Table S6. Crystal data and structure refinement for 3na.		
Identification code	202007109	
Empirical formula	$C_{21}H_{18}N_2O_2S$	
Formula weight	362.43	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P2 ₁ /n	
a/Å	9.3338(3)	
b/Å	15.3970(4)	
c/Å	12.9510(3)	
α/°	90	
β / °	93.887(3)	
γ / °	90	
Volume/Å ³	1856.95(8)	
Z	4	
$\rho_{calc}g/cm^3$	1.296	
µ/mm⁻¹	1.685	
F(000)	760.0	
Crystal size/mm ³	$0.19 \times 0.15 \times 0.11$	
Radiation	CuKα (λ = 1.54184)	
20 range for data collection/	8.934 to 134.132	
Index ranges	$-11 \le h \le 9$, $-18 \le k \le 16$, $-15 \le l \le 15$	
Reflections collected	6984	
Independent reflections	3308 [R _{int} = 0.0310, R _{sigma} = 0.0404]	
Data/restraints/parameters	3308/0/237	
Goodness-of-fit on F ²	1.043	
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0484$, $wR_2 = 0.1238$	
Final R indexes [all data]	$R_1 = 0.0606$, $wR_2 = 0.1360$	
Largest diff. peak/hole / e Å ⁻³	0.19/-0.31	

Figure S75. X-ray structure of compound 3na (CCDC 2046841)

S66