Supporting Information

Rhodium-catalyzed enone carbonyl directed $\mathbf{C}-\mathbf{H}$ activation for synthesis of indanones containing all-carbon quaternary centers

Jiang Lou, ${ }^{\text {a,b,+ }}$ Wenjia Han, ${ }^{\text {a,b,+ }}$ Zhuqing Liu*b,c, Jiaqi Xiao*b,c

${ }^{\text {a }}$ Key Laboratory of Pulp and Paper Science \& Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China.
${ }^{\mathrm{b}}$ State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China.
${ }^{c}$ Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China.
liuzhuqing@qlu.edu.cn; jiaqixiao@qlu.edu.cn

Experimental procedures and analytical data

Contents:

1. General considerations
2. Experimental procedures
3. X-Ray crystallographic studies8
4. Analytical data 11
5. Copies of NMR spectra 20

1. General considerations

The solvents were dried and distilled prior to use by the literature methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a 400 MHz spectrometer and all chemical shift values refer to $\mathrm{CDCl}_{3}\left(\delta\left({ }^{1} \mathrm{H}\right), 7.26 \mathrm{ppm} ; \delta\left({ }^{13} \mathrm{C}\right), 77.16 \mathrm{ppm}\right)$. High resolution mass spectra were measured on a Waters GC-TOF CA156 mass spectrometer. All the melting points were measured and uncorrected. X-Ray crystallographic analysis was achieved by the Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Analytical TLC plates were viewed by UV light (254 nm). Column chromatographic purifications were performed on SDZF silica gel 160 . The starting chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. $\square \alpha$-Oxo ketene dithioacetals $\mathbf{1 a - n},{ }^{1} \mathbf{1 0},{ }^{2} \mathbf{1 p},{ }^{3}$ and diazo compounds $\mathbf{2}^{4}$ were prepared by the reported methods.

References

(1) (a) J. He, Z. Man, Y. Shi and C.-Y. Li, Synthesis of β-Amino- α, β-unsaturated Ketone Derivatives via Sequential Rhodium-Catalyzed Sulfur Ylide Formation/Rearrangement, J. Org. Chem., 2015, 80, 4816; (b) P. Wu, L. Wang, K. Wu and Z. Yu, Brønsted Acid Catalyzed PhSe Transfer versus Radical Aryl Transfer: Linear Codimerization of Styrenes and Internal Olefins, Org. Lett., 2015, 17, 868; (c) Z. Fu, M. Wang, Y. Dong, J. Liu and Q. Liu, Direct Synthesis of Highly Substituted 2-Cyclohexenones and Sterically Hindered Benzophenones Based on a [5C+1C] Annulation, J. Org. Chem., 2009, 74, 6105.
(2) X. Zhao, F. Zhang, K. Liu, X. Zhang and H. Lv, Nickel-Catalyzed Chemoselective Asymmetric Hydrogenation of α, β-Unsaturated Ketoimines: An Efficient Approach to Chiral Allylic Amines, Org. Lett., 2019, 21, 8966.
(3) S. Zhou, B.-Y. Yan, S.-X. Fan, J.-S. Tian and T.-P. Loh, Regioselective Formal [4+2] Cycloadditions of Enaminones with Diazocarbonyls through Rh ${ }^{\text {III-Catalyzed } \mathrm{C}-\mathrm{H} \text { Bond }}$ Functionalization, Org. Lett., 2018, 20, 3975.
(4) P. Li, X. Xu, J. Chen, H. Yao and A. Lin, Rh(III)-Catalyzed Synthesis of Pyrazolo[1,2a]cinnolines from Pyrazolidinones and Diazo Compounds, Org. Chem. Front., 2018, 5, 1777.

2. Experimental procedures

2.1 Optimization of the reaction conditions

A mixture of $\mathbf{1 a}(44.9 \mathrm{mg}, 0.2 \mathrm{mmol})$, diazo compound $\mathbf{2 a}(62.5 \mathrm{mg}, 0.4 \mathrm{mmol})$, catalyst, silver salt, oxidant, and additives in 2 mL solvent was vigorously stirred for 24 h under a nitrogen atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography on silica gel (eluent: petroleum ether (60-90 $\left.{ }^{\circ} \mathrm{C}\right) /$ ethyl acetate $=20: 1, \mathrm{v} / \mathrm{v}$) to afford product 3a.

Table S1. Optimization of the reaction conditions ${ }^{a}$

$25^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (4)	$\mathrm{AgSbF}_{6}(16)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	48
$26^{\text {f }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(4)$	$\mathrm{AgSbF}_{6}(16)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	35
$27^{\mathrm{e}, \mathrm{g}}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (4)	$\mathrm{AgSbF}_{6}(16)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	40
$28^{\text {e,h }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (4)	$\mathrm{AgSbF}_{6}(16)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	45
$29^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (2)	$\mathrm{AgSbF}_{6}(8)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	41
$30^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(3)$	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	64
$31^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (5)	$\mathrm{AgSbF}_{6}(20)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	46
$33^{\text {e }}$	$\left[\mathrm{Cp}^{\left(\mathrm{RhCl}_{2}\right]_{2}}\right.$ (3)	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Zn}(\mathrm{OAc})_{2}$	DCM	49
$34^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (3)	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Zn}(\mathrm{OTf})_{2}$	DCM	38
$35^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (3)	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Mg}(\mathrm{OTf})_{2}$	DCM	49
$36^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (3)	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Ni}(\mathrm{hfacac})_{2}$	DCM	62
$37^{\text {e }}$	$\left[\mathrm{Cp}^{\left(\mathrm{RhCl}_{2}\right]_{2}}\right.$ (3)	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	68
$38^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (3)	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Ni}(\mathrm{OTf})_{2}$	DCM	42
$39^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (3)	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{B}(\mathrm{OH})_{3}$	DCM	60
$40^{\text {e }}$	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(3)$	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	Trimesic acid	DCM	57
$41^{\text {e }}$	$[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})$	$\left(\mathrm{SbF}_{6}\right)_{2}(6)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	70
$42^{\text {e, },}$	$[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})$	$\left(\mathrm{SbF}_{6}\right)_{2}(6)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	74
$43^{\text {ej }}$	$[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})$	$\left(\mathrm{SbF}_{6}\right)_{2}(6)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	75
$44^{\text {e,j }}$	$[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})$	$\left(\mathrm{SbF}_{6}\right)_{2}(6)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$		DCM	66
$45^{\text {e, }}$	$\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}(6)$	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	n.d.
$46{ }^{\text {e, }}$	$\mathrm{RhCl}_{3}(6)$	$\mathrm{AgSbF}_{6}(12)$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	n.d.
$47^{\text {e, }}$			AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	n.d.
$48^{\text {e, }}$	$\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}$	$\left(\mathrm{SbF}_{6}\right)_{2}(6)$		$\mathrm{Li}_{2} \mathrm{CO}_{3}$	$\mathrm{Cu}(\mathrm{hfacac})_{2}$	DCM	n.d.

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.2 \mathrm{mmol})$, $\mathbf{2 a}(0.4 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%)$, oxidant (2 equiv), base (2 equiv), and additive ($10 \mathrm{~mol} \%$) in solvent (2 mL) at $80{ }^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. ${ }^{\mathrm{b}}$ Yields of isolated products. ${ }^{\mathrm{c}} \mathbf{2 a}$ (0.6 mmol). ${ }^{\mathrm{d}} \mathrm{Li}_{2} \mathrm{CO}_{3}$ (3 equiv). ${ }^{\mathrm{e}} \mathrm{Li}_{2} \mathrm{CO}_{3}$ (1 equiv). ${ }^{\mathrm{f}} \mathrm{Li}_{2} \mathrm{CO}_{3}$ (0.5 equiv). ${ }^{\mathrm{g}} \mathrm{AgOAc}\left(1\right.$ equiv). ${ }^{\mathrm{h}} \mathrm{AgOAc}\left(1.5\right.$ equiv). ${ }^{\mathrm{i}} 100^{\circ} \mathrm{C} .{ }^{\mathrm{j}} 120{ }^{\circ} \mathrm{C}$.

2.2 General procedure for the synthesis of indanones 3 and 4

A typical procedure for the synthesis of 3a: A mixture of 1a ($44.9 \mathrm{mg}, 0.2$ mmol), diazo compound 2a ($62.5 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10.0 \mathrm{mg}$, 0.012 mmol), $\mathrm{AgOAc}(66.8 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{Li}_{2} \mathrm{CO}_{3}$ ($14.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), and $\mathrm{Cu}(\mathrm{hfacac})_{2}(9.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in 2 mL DCM was vigorously stirred at $100^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. After cooling to ambient temperature, all the
volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether $\left(60-90{ }^{\circ} \mathrm{C}\right) /$ ethyl acetate $=20: 1, \mathrm{v} / \mathrm{v}$) to afford product 3a(52.2 mg, 74\%).

A typical procedure for the synthesis of 3 g on 1 mmol scale: A mixture of 1 g (238.4 mg, 1 mmol), diazo compound $\mathbf{2 a}$ ($312.3 \mathrm{mg}, 2 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(50.9 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{AgOAc}(333.8 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Li}_{2} \mathrm{CO}_{3}$ ($74.0 \mathrm{mg}, 1 \mathrm{mmol}$), and $\mathrm{Cu}(\mathrm{hfacac})_{2}(47.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 10 mL DCM was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether $\left(60-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=20: 1, \mathrm{v} / \mathrm{v}\right)$ to afford product $\mathbf{3 g}(255.5 \mathrm{mg}$, $70 \%)$.

A typical procedure for the synthesis of $3 \boldsymbol{p}^{\prime}$: A mixture of $\mathbf{1 p}(35.0 \mathrm{mg}, 0.2$ mmol), diazo compound 2a $(93.7 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10.0 \mathrm{mg}$, 0.012 mmol), $\mathrm{AgOAc}(66.8 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{Li}_{2} \mathrm{CO}_{3}(14.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{hfacac})_{2}(9.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in 2 mL DCM was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether $\left(60-90{ }^{\circ} \mathrm{C}\right) /$ ethyl acetate $=20: 1, \mathrm{v} / \mathrm{v}$) to afford product $\mathbf{3} \mathbf{p}^{\prime}(32.6 \mathrm{mg}, 44 \%)$.

2.3 Mechanistic studies

(a) H/D Exchange experiment

A mixture of 1a $(44.9 \mathrm{mg}, 0.2 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10.0 \mathrm{mg}, 0.012$ mmol), $\mathrm{AgOAc}(66.8 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{Li}_{2} \mathrm{CO}_{3}(14.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Cu}(\mathrm{hfacac})_{2}(9.6$ $\mathrm{mg}, 0.02 \mathrm{mmol}$), and $\mathrm{HOAc}-\mathrm{d}_{4}(25.6 \mathrm{mg}, 0.4 \mathrm{mmol})$ in 2 mL DCM was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. After cooling to ambient
temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether $\left(60-90^{\circ} \mathrm{C}\right) /$ ethyl acetate $\left.=20: 1, \mathrm{v} / \mathrm{v}\right)$ to afford product 3a, which was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy

```
H-D
d4 AcOH H/D 1H NMR in CDCl3
```



```
\(10 \%\) D
```


(b) Kinetic isotope effect (KIE) experiments

The reactions of benzoyl ketene dithioacetal $\mathbf{1 a}$ and its deuterated form $\mathbf{1 a}[D]$, were carried out in a parallel manner under the optimized conditions. A mixture of 1a or $\mathbf{1 a}$ [D] ($44.9 \mathrm{mg}, 0.2 \mathrm{mmol}$), diazo compound 2a ($62.5 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10.0 \mathrm{mg}, 0.012 \mathrm{mmol}), \mathrm{AgOAc}(66.8 \mathrm{mg}, 0.4 \mathrm{mmol})$, $\mathrm{Li}_{2} \mathrm{CO}_{3}(14.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{hfacac})_{2}(9.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in 2 mL DCM was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 15 min under a nitrogen atmosphere. After cooling to ambient temperature, the two reaction solutions were mixed together and
all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether ($60-90$ ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=20: 1, \mathrm{v} / \mathrm{v}$) to afford the mixture of $\mathbf{3 a}$ and $\mathbf{3 a}[\mathrm{D}]$. The KIE value was determined to be $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=4.9$ on the basis of ${ }^{1} \mathrm{H}$ NMR analysis.

LJ-I094-KIE
I094 1H NMR in CDCl3

(c) Intermolecular competition reaction

A mixture of $\mathbf{1 g}(47.7 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{1 k}(60.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, diazo compound 2a ($62.5 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10.0 \mathrm{mg}, 0.012 \mathrm{mmol}), \mathrm{AgOAc}$ ($66.8 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{Li}_{2} \mathrm{CO}_{3}(14.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{hfacac})_{2}(9.6 \mathrm{mg}, 0.02$ mmol) in 2 mL DCM was vigorously stirred at $100^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. After cooling to ambient temperature, all the volatiles were evaporated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether $\left(60-90{ }^{\circ} \mathrm{C}\right) /$ ethyl acetate $=$ $20: 1, \mathrm{v} / \mathrm{v}$) to afford the mixture of $\mathbf{3 g}$ and $\mathbf{3 k}$. The ratio of 3 g and 3 k was determined
to be $\mathbf{3 g}: \mathbf{3 k}=1: 0.48$ on the basis of ${ }^{1} \mathrm{H}$ NMR analysis.

Desktop
I092 1H NMR in CDC13

3. X-Ray crystallographic studies

The X-ray diffraction analysis for compound $\mathbf{3 h}$ and $\mathbf{3 p}$ ' were carried out on a SMART APEX diffractometer with graphite-monochromated Mo radiation ($\lambda=$ $0.71073 \AA$). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structures were solved by direct methods and refined by full-matrix least squares on F^{2}. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. Structure solution and refinement were performed by using the SHELXL-97 package. The Xray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition numbers CCDC 2052734 for compound $\mathbf{3 h}$ and 2052735 for $\mathbf{3} \mathbf{p}^{\prime}$. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www. ccdc.cam.ac.uk).

Figure S1. Molecular structure of compound 3h.
Table S2. Crystal Data and Structure Refinement for Compound 3h

Identification code	LZQ-94
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}_{2}$
Formula weight	380.46
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=8.6038(8) \AA \quad \alpha=94.108(9)^{\circ}$.
	$b=9.8764(10) \AA \quad \beta=103.211(8)^{\circ}$.
	$\mathrm{c}=11.2269(12) \AA \quad \gamma=95.986(8)^{\circ}$.
Volume	919.19(16) \AA^{3}
Z	2
Density (calculated)	$1.375 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.315 \mathrm{~mm}^{-1}$
F(000)	400
Crystal size	$0.170 \times 0.150 \times 0.120 \mathrm{~mm}^{3}$
Theta range for data collection	3.013 to 25.998°.
Index ranges	$-10<=\mathrm{h}<=10,-11<=\mathrm{k}<=12,-13<=\mathrm{l}<=13$
Reflections collected	7376
Independent reflections	$3608[\mathrm{R}(\mathrm{int})=0.0253]$
Completeness to theta $=25.242^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.8179
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3608 / 38 / 250
Goodness-of-fit on F^{2}	1.016
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0492, \mathrm{wR} 2=0.1162$
R indices (all data)	$\mathrm{R} 1=0.0756, \mathrm{wR} 2=0.1372$
Extinction coefficient	n / a
Largest diff. peak and hole	0.394 and -0.321 e. \AA^{-3}

Figure S2. Molecular structure of compound 3p'.
Table S3. Crystal Data and Structure Refinement for Compound 3p'

Identification code	2020611-1
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}$
Formula weight	368.37
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=7.3893(7) \AA \quad \alpha=90.188(9)^{\circ}$.
	$b=10.2769(14) \AA$ A $\quad \beta=101.277(8)^{\circ}$.
	$\mathrm{c}=12.0917(11) \AA \begin{aligned} & \text { A }\end{aligned}$
Volume	900.01(17) \AA^{3}
Z	2
Density (calculated)	$1.359 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.100 \mathrm{~mm}^{-1}$
F(000)	388
Crystal size	$0.200 \times 0.160 \times 0.130 \mathrm{~mm}^{3}$
Theta range for data collection	2.995 to 25.498°.
Index ranges	$-8<=\mathrm{h}<=8,-12<=\mathrm{k}<=12,-14<=\mathrm{l}<=14$
Reflections collected	5899
Independent reflections	$3337[\mathrm{R}(\mathrm{int})=0.0191]$
Completeness to theta $=25.242^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.815
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3337 / 0 / 249
Goodness-of-fit on F^{2}	1.026
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0496, \mathrm{wR} 2=0.1235$
R indices (all data)	$\mathrm{R} 1=0.0772, \mathrm{wR} 2=0.1481$
Extinction coefficient	0.040(5)
Largest diff. peak and hole	0.186 and -0.166 e. \AA^{-3}

4. Analytical data

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-3-oxo-2,3-dihydro-1H-indene-1-carboxylate (3a): Following the general procedure, pure 3a was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .52 .2 \mathrm{mg}, 74 \%$ yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.5$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.5$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.07$ ($\mathrm{s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 200.2,188.4,167.8,160.4$, 144.9, 139.0, 135.3, 134.4, 129.9, 125.7, 124.6, 72.5, 62.3, 26.7, 18.8, 18.3, 14.0. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 351.0719; Found: 351.0720.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-4-methyl-3-oxo-2,3-dihydro-1H-indene-1carboxylate (3b): Following the general procedure, pure 3b was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .33 .0 \mathrm{mg}$, 45% yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.12(\mathrm{~m}$, $2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.3,190.0,168.1,158.5,145.6,139.8,136.4,136.1,133.8,132.0,123.1$, 71.9, 62.3, 26.8, 18.8, 18.4, 17.9, 14.1. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 365.0876$; Found: 365.0869 .

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-4-methoxy-3-oxo-2,3-dihydro-1 H -indene-1carboxylate (3c): Following the general procedure, pure 3c was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .42 .8 \mathrm{mg}$, 56% yield, yellow solid, m.p.: $114-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}$,

3H), $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.9,186.7$, $167.8,158.6,158.1,146.9,135.9,135.5,126.9,117.4,111.8,71.7,62.2,56.1,26.6,18.7,18.1$, 14.0. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 381.0825$; Found: 381.0831 .

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-4-fluoro-3-oxo-2,3-dihydro-1H-indene-1carboxylate (3d): Following the general procedure, pure 3d was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .40 .2 \mathrm{mg}$, 54% yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl3) $\delta 199.6,185.0,167.5,161.3,159.4(\mathrm{~d}, J=263.0 \mathrm{~Hz}), 146.5(\mathrm{~d}, J=2.8$ $\mathrm{Hz}), 135.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 134.5,126.6(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 117.1(\mathrm{~d}, \mathrm{~J}=19.0$ $\mathrm{Hz}), 72.3,62.5,26.8,18.9,18.4$, 14.0. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{FS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 369.0625$; Found: 369.0628.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-5-methyl-3-oxo-2,3-dihydro-1H-indene-1-
carboxylate (3e): Following the general procedure, pure $\mathbf{3 e}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .55 .0 \mathrm{mg}$, 75% yield, yellow solid, m.p.: $67-68{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.11(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}, 6 \mathrm{H}), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.3,188.5,168.0,159.8$, $142.3,140.3,139.2,135.7,135.6,125.4,124.6,72.2,62.2,26.5,21.4,18.7,18.2,14.0$. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 365.0876 ; Found: 365.0870.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-5-methoxy-3-oxo-2,3-dihydro-1H-indene-1carboxylate (3f): Following the general procedure, pure $\mathbf{3 f}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .32 .2 \mathrm{mg}$,
42% yield, yellow solid, m.p.: 131-132 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 200.5,188.3,168.1,161.3,160.3,140.6,137.5,135.7,126.8,123.2,106.3,71.9,62.2,55.9$, 26.4, 18.8, 18.3, 14.1. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 381.0825 ; Found: 381.0826.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-7-methoxy-3-oxo-2,3-dihydro-1H-indene-1carboxylate ($\mathbf{3 f}$ '): Following the general procedure, pure $\mathbf{3 f}$ ' was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .25 .6 \mathrm{mg}$, 34% yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 4.19$ $-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.8,188.5,168.6,157.9,156.1,140.8,137.6,134.8,131.1$, $116.4,116.1,70.1,61.7,55.8,29.0,18.7,18.1,14.0$. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 381.0825; Found: 381.0830.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-6-methyl-3-oxo-2,3-dihydro-1H-indene-1carboxylate (3g): Following the general procedure, pure $\mathbf{3 g}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .57 .1 \mathrm{mg}$, 78% yield, yellow solid, m.p.: $98-99^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $200.2,188.2,167.9,159.1,145.9,145.3,136.9,135.9,131.0,125.9,124.5,72.2,62.2,26.9,22.3$, 18.7, 18.2, 14.0. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 365.0876$; Found: 365.0875.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-6-methoxy-3-oxo-2,3-dihydro-1H-indene-1carboxylate (3h): Following the general procedure, pure $\mathbf{3 h}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .61 .2 \mathrm{mg}$,
80% yield, yellow solid, m.p.: 129-130 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $200.1,187.3,167.6,165.0,158.0,147.5,135.9,132.5,126.3,117.7,109.2,72.2,62.3,56.0,26.5$, 18.6, 18.1, 14.1. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 381.0825$; Found: 381.0829.

Benzyl 5-(tert-butyl)-1-methyl-2-oxo-1a,2,7,7a-tetrahydro-1H-cyclopropa[b]naphthal-ene-1-carboxylate (3i): Following the general procedure, pure $\mathbf{3 i}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .52 .1 \mathrm{mg}$, 71% yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=$ 8.4, 2.2 Hz, 1H), $7.19(\mathrm{td}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}$, $3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.0,186.7,167.4,166.4(\mathrm{~d}, J$ $=254.9 \mathrm{~Hz}), 160.7,147.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 135.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 134.9,126.8(\mathrm{~d}, J=10.0 \mathrm{~Hz})$, $118.0(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 113.0(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 72.3,62.6,26.7,18.8,18.3,14.0$. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{FS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 369.0625$; Found: 369.0621.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-6-chloro-3-oxo-2,3-dihydro-1H-indene-1-
carboxylate ($\mathbf{3 j}$): Following the general procedure, pure $\mathbf{3 j}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .56 .0 \mathrm{mg}$, 73% yield, yellow solid, m.p.: 102-103 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, 3H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.6,186.9$, $167.4,161.4,146.1,140.6,137.5,134.8,130.5,126.1,125.7,72.2,62.6,26.8,18.8,18.3,14.0$. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 385.0330; Found: 385.0339.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-6-bromo-3-oxo-2,3-dihydro-1H-indene-1carboxylate ($\mathbf{3 k}$): Following the general procedure, pure $\mathbf{3 k}$ was obtained by column
chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .61 .2 \mathrm{mg}$, 71% yield, yellow solid, m.p.: 127-128 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$ 199.7, $187.1,167.4,161.5,146.2,137.9,134.7,133.4,129.3,129.1,125.8,72.2,62.6,26.8,18.9,18.4$, 14.1. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 428.9824$; Found: 428.9823.

Ethyl 1-acetyl-2-(bis(methylthio)methylene)-3-oxo-6-(trifluoromethyl)-2,3-dihydro-1H-indene-1-carboxylate (31): Following the general procedure, pure $\mathbf{3 1}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .57 .2 \mathrm{mg}$, 68% yield, yellow solid, m.p.: $106-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}) δ 199.7, 186.9, 167.2, 163.5, 145.1, 141.6, $135.6(\mathrm{q}, J=32.5 \mathrm{~Hz}), 134.4,127.0(\mathrm{q}, J=3.6 \mathrm{~Hz}), 125.0,123.5(\mathrm{q}, J=271.6 \mathrm{~Hz}), 123.3(\mathrm{q}, J=$ $4.0 \mathrm{~Hz}), 72.6,62.4,26.8,19.1,18.6$, 14.0. HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$419.0593; Found: 419.0596.

Ethyl 4-acetyl-5-(bis(methylthio)methylene)-6-oxo-5,6-dihydro-4H-cyclopenta[b]thio-phene-4-carboxylate ($\mathbf{3 m}$): Following the general procedure, pure $\mathbf{3 m}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .41 .2 \mathrm{mg}$, 58% yield, yellow solid, m.p.: $70-71^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.3,181.1,167.1,158.4,155.5,145.1$, $138.5,137.7,123.4,71.3,62.4,26.4,18.7,18.1,14.1$. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 357.0283; Found: 357.0281.

Ethyl 1-acetyl-5-(bis(methylthio)methylene)-4-oxo-2-phenylcyclopent-2-enecarboxylate
($\mathbf{3 n}$): Following the general procedure, pure $3 n$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1$, v/v). $31.2 \mathrm{mg}, 41 \%$ yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.4,190.7,167.1,162.7,155.7,135.4,134.6,131.9,131.1,128.9,128.3,74.0$, 62.0, 27.0, 18.5, 18.2, 13.9. HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 377.0876; Found: 377.0880.

Diethyl 2,5-dimethyl-4-oxo-4H-benzo[h]chromene-3,6-dicarboxylate (3p'): Following the general procedure, pure 3p' was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .32 .6 \mathrm{mg}, 44 \%$ yield, red solid, m.p.: $150-152{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 4.54$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}, 6 \mathrm{H}) . .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.0,169.3,165.1,163.7,154.7,132.8,131.7,130.9,130.2,126.9$, $124.6,122.5,122.4,121.0,118.2,62.0,61.9,19.7,18.9,14.4,14.3$. HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}: 369.1333$; Found: 369.1341.

Ethyl 2-(bis(methylthio)methylene)-6-methyl-3-oxo-1-propionyl-2,3-dihydro-1H-indene-1-carboxylate (4a): Following the general procedure, pure $4 \mathbf{a}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .63 .3 \mathrm{mg}$, 83% yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.27$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 7 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.3, 188.2 167.9, $159.0,145.7,145.5,136.8,135.9,130.9,125.9,124.3,72.1,62.2,31.8,22.3,18.7,18.2,14.0,8.5$. HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 379.1032; Found: 379.1028.

Ethyl 2-(bis(methylthio)methylene)-1-butyryl-6-methyl-3-oxo-2,3-dihydro-1H-indene-

1-carboxylate (4b): Following the general procedure, pure $\mathbf{4 b}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .56 .2 \mathrm{mg}$, 72% yield, yellow solid, m.p.: $88-89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.30(\mathrm{~m}, 7 \mathrm{H}), 2.15$ $(\mathrm{m}, 1 \mathrm{H}), 1.55-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.3,188.2,167.8,159.2,145.7,145.4,136.8,135.7,130.9,126.0,124.3$, $72.1,62.1,40.2,22.3,18.7,18.2,17.6,14.0,13.5$. HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 393.1189; Found: 393.1191.

Ethyl 2-(bis(methylthio)methylene)-1-(cyclopropanecarbonyl)-6-methyl-3-oxo-2,3-
dihydro-1H-indene-1-carboxylate ($\mathbf{4 c}$): Following the general procedure, pure $\mathbf{4 c}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right)$. $57.2 \mathrm{mg}, 73 \%$ yield, yellow solid, m.p.: 138-139 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 6 \mathrm{H})$, $1.71-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.57(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 202.4,188.4,167.5,159.9,145.6,145.4,136.9,135.3$, 130.9, 126.5, 124.1, 72.3, 62.1, 22.3, 19.0, 18.1, 17.9, 14.0, 12.9, 12.4. HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 391.1032; Found: 391.1034.

Ethyl 2-(bis(methylthio)methylene)-1-isobutyryl-6-methyl-3-oxo-2,3-dihydro-1H-
indene-1-carboxylate (4d): Following the general procedure, pure $\mathbf{4 d}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .55 .0 \mathrm{mg}$, 70% yield, yellow solid, m.p.: $84-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .7 .75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~d}$, $6 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.1,188.2,167.9,160.2,145.5,145.0,137.2,134.6,131.0,126.2,124.5$, $72.1,62.1,37.0,22.3,21.8,20.9,18.9,18.4,14.1$. HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 393.1189; Found: 393.1192.

Ethyl 1-benzoyl-2-(bis(methylthio)methylene)-6-methyl-3-oxo-2,3-dihydro-1H-indene-1-carboxylate (4e): Following the general procedure, pure $\mathbf{4 e}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .56 .2 \mathrm{mg}$, 66% yield, yellow solid, m.p.: $114-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.5,188.5,167.6$, $159.7,146.0,145.8,136.8,135.7,135.1,132.6,130.9,128.7,128.2,127.4,124.4,72.1,62.7,22.3$, 18.3, 17.8, 14.0. HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 427.1032; Found: 427.1028.

Methyl 1-acetyl-2-(bis(methylthio)methylene)-6-methyl-3-oxo-2,3-dihydro-1H-indene-
1-carboxylate (4f): Following the general procedure, pure $4 f$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .57 .4 \mathrm{mg}$, 82% yield, yellow solid, m.p.: $110-111{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.0,188.0,168.4,159.1,145.9,145.0,136.8$, 135.7, 131.1, 125.8, 124.4, 72.0, 53.1, 26.5, 22.3, 18.6, 18.0. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 351.0719$; Found: 351.0722.

Methyl 1-acetyl-2-(bis(methylthio)methylene)-6-chloro-3-oxo-2,3-dihydro-1H-indene-
1-carboxylate (4g): Following the general procedure, pure $\mathbf{4 g}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .55 .3 \mathrm{mg}$, 74% yield, yellow solid, m.p.: $106-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, 3H), 2.09 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.5,186.8,167.9,161.5,145.9,140.7$, $137.5,134.6,130.7,126.1,125.7,72.1,53.4,26.7,18.9,18.3$. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cl}$ $[\mathrm{M}+\mathrm{H}]^{+}: 371.0173$; Found: 371.0174 .

Benzyl 1-acetyl-2-(bis(methylthio)methylene)-6-methyl-3-oxo-2,3-dihydro-1H-indene-1-carboxylate (4h): Following the general procedure, pure 4 h was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .62 .1 \mathrm{mg}$, 73% yield, yellow solid, m.p.: $80-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (s, 3H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 200.0, 187.9, $167.6,159.3,145.8,144.9,136.8,135.5,135.2,131.0,128.4,128.3,128.1,125.9,124.4,72.1$, 67.7, 26.6, 22.2, 18.5, 18.1. HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 427.1032; Found: 427.1033.

tert-Butyl 1-acetyl-2-(bis(methylthio)methylene)-6-methyl-3-oxo-2,3-dihydro-1H-indene-1-carboxylate (4i): Following the general procedure, pure $4 \mathbf{i}$ was obtained by column chromatography on silica gel (eluent: petroleum ether $\left.\left(60-90^{\circ} \mathrm{C}\right) / \mathrm{EtOAc}=20: 1, \mathrm{v} / \mathrm{v}\right) .36 .3 \mathrm{mg}$, 46% yield, yellow solid, m.p.: $113-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 9 \mathrm{H}) . .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl3) $\delta 200.7,188.4,166.6,158.6,145.8,145.6,136.8$, $136.5,130.8,126.0,124.4,83.0,73.1,27.9,26.9,22.4,18.6,18.2$. HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 393.1189; Found: 393.1188.

5. Copies of NMR spectra

I045
IO45 1H NMR in CDCl3

NัN

3a

| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

I045
I045 13C NMR in CDC13

3a
$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

I043
I043 13C NMR in CDC13

3b

I044
I044 13C NMR in CDCl 3

3c

2020630-1-F
1H NMR 2020630-1-F in CDCl3

2020630-1-F
13C NMR 2020630-1-F in CDCl3

3d

[^0]

둔

NT

3 e

I049
IO49 13C NMR in CDCl 3

3e

[^1]I050P1
IO50P1 1H NMR in CDCl3

I050P1
I050P1 13C NMR in CDCl3

3f

I050P2
I050 P2 1H NMR in CDCl3

1050P2
I050 P2 13C NMR in CDCl3

$\mathbf{3 f}^{\prime}$

[^2]0725_NMR
IO26 1H NMR in CDCl3

0725 NMR
I026 13C NMR in CDC13

	$\stackrel{8}{\circ}$	$\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ $\stackrel{+}{\circ}$				

3g

[^3]

I023
I023 13C NMR in CDCl 3

3h

[^4]I047
IO47 1H NMR in CDCl3

I047
I047 13C NMR in CDC13

$3 i$

I041
I041 1H NMR in CDCl3

3j

I041
I041 13C NMR in CDCl 3

3j

[^5]

I039
I039 13C NMR in CDCl3

3k

I048
I048 13C NMR in CDC13

31

[^6]

I052
I052 13C NMR in CDCl 3

[^7]I085
I085 1H NMR in CDC13

$3 n$

I085
I085 13C NMR in CDCl3

$3 n$

[^8]LJ-I025
LJ-I025-P2 1H NMR

LJ-I025
LJ-i025-p2 13C NMR

$3 p^{\prime}$

220	200	180	160	140	120	100	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	60	40	20	0	-20	-40	-60

I063
I063 13C NMR in $\mathrm{CDCl3}$

[^9]I070
I070 13C NMR in CDCl 3

		$\begin{aligned} & \stackrel{\bullet}{\bar{\alpha}} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\oplus}{1} \end{aligned}$				敬	

4b

[^10]

I078
I078 13C NMR in CDC13

[^11]

I082
I082 13C NMR in CDCl 3

4d

[^12]

I067
I067 13C NMR in $\mathrm{CDCl3}$

	\circ $\stackrel{0}{1}$ $\stackrel{1}{1}$	$\begin{aligned} & \hat{N} \\ & \stackrel{n}{2} \\ & o \\ & 0 \end{aligned}$	г © ๗ゥ 		

[^13]I062
I062 13C NMR in CDCl 3

		$\begin{aligned} & \bar{\omega} \\ & 0 \\ & \stackrel{\omega}{\infty} \\ & \stackrel{\Gamma}{\infty} \end{aligned}$		®峖志		萨

[^14]I056
I056 13C NMR in CDC13

4 g

[^15]I066
I066 13C NMR in $\mathrm{CDCl3}$

4h

[^16]

I071
I071 13C NMR in CDC13

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{1}{\circ} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$				 r $V 1$		

$4 i$

[^0]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]: $\left.\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

[^4]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^5]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^6]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^7]: $\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^8]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^9]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^10]: $\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^11]: $\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \end{array}$

[^12]: $\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^13]: $\left.\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

[^14]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \end{array}$

[^15]: $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^16]: $\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

