Supporting Information

Catalytic Synthesis of Functionalized Amidines via Cobalt-Carbene

Radical Coupling with Isocyanides and Amines

Zheng-Yang Gu,^{1,2,†} Hui Han,^{2,†} Zi-Yin Li,¹ Shun-Jun Ji*,³ and Ji-Bao Xia *,²

¹College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, China

²State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China

³College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China [†]These authors contributed equally for this work.

Corresponding Author: jibaoxia@licp.cas.cn; shunjun@suda.edu.cn

Table of Contents

I.	General Information	S 1	
II.	General Procedure for the Synthesis of Amidines and Characterization D	ocedure for the Synthesis of Amidines and Characterization Data	
	of Amide Products	S 2	
III.	Synthetic Applications	S13	
V.	Copy of NMR Spectra	S56	

I. General Information

All intermolecular amidation reactions were carried out under atmospheric pressure of carbon monoxide (CO) in oven-dried Schlenk tube. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). The High Resolution MS analyses were performed on Thermo Fisher Scientific LTQ FT Ultra with DART Positive Mode or Agilent 6530 Accurate-Mass Q-TOF LC/MS with ESI mode. NMR spectra were recorded on a 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR, using tetramethylsilane as an internal reference DMSO-d₆ and CDCl₃ as solvent. Chemical shift values for protons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual proton of DMSO- d_6 (δ 2.50) and residual proton (δ 7.26) in CDCl₃. Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); p (pentet); m (multiplet); br (broad). Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 100 MHz. Chemical shifts for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of DMSO- d_6 (δ 40.00) and CDCl₃ (77.16). Materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, Adamas, or other commercial suppliers and used as received unless otherwise noted. Sulfonyl azides were purchased if commercially available or prepared from sulfonyl chlorides and sodium azide according to the well-established methods.

II. General Procedure for the Synthesis of Amidines and Characterization Data of Amidines

To an oven-dried Schlenk tube (10 mL) was added the amines **1** (0.5 mmol, 1.0 equiv), isocyanides **2** (0.6 mmol, 1.2 equiv), diazos **3** (0.6 mmol, 1.2 equiv), CoBr₂ (5.5 mg, 5.0 mol %), and dry MeCN (3 mL). The tube was backfilled with N₂. After stirring for 12 h at 80 °C, the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 15:1~10:1) to give the pure desired product **4**, **5** or **6**.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-(phenylimino)propanoate 4a and (*E*)-ethyl-3-(*tert*-butylamino)-3-(phenylamino)acrylate 4a' (4a/4a'= 6/1) Yield = 82% (107.6 mg). Yellow oil. For 4a: ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 6.97 – 6.93 (m, 1H), 6.74 – 6.72 (m, 2H), 4.89 (brs, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.10 (s, 2H), 1.44 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 151.0, 148.0, 128.9, 122.0, 121.8, 61.3, 51.6, 36.7, 28.7, 14.1. For 4a': ¹H NMR (400 MHz, CDCl₃) δ 10.41 (brs, 1H), 7.37 – 7.33 (m, 2H), 7.17-7.13 (m, 3H), 4.38 (brs, 1H), 4.33 (s, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 129.8, 125.1, 124.6, 66.4, 58.4, 51.2, 29.7, 15.0. HRMS (ESI) calculated for C₁₅H₂₃N₂O₂ (M+H)⁺ 263.1754, found 263.1757.

(E)-Ethyl-3-(tert-butylamino)-3-((4-methoxyphenyl)imino)propanoate 4b and

(*E*)-ethyl-3-(tert-butylamino)-3-((4-methoxyphenyl)amino)acrylate 4b' (4b/4b'= 2/1)

Yield = 89% (130.1 mg). Yellow oil. For **4b**: ¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, *J* = 8.8 Hz, 2H), 6.65 (d, *J* = 8.8 Hz, 2H), 4.81 (brs, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.76 (s, 3H), 3.09 (s, 2H), 1.43 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 157.9, 154.9, 148.6, 122.7, 114.3, 61.3, 55.6, 36.6, 29.8, 28.8, 14.2. For **4b'**: ¹H NMR (400 MHz, CDCl₃) δ 10.21 (brs, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 4.29 (s, 1H), 4.17 (brs, 1H), 3.79 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 157.7, 144.4, 129.9, 127.5, 114.9, 65.5, 58.2, 55.5, 51.1, 30.9, 15.0. HRMS (ESI) calculated for C₁₆H₂₅N₂O₃ (M+H)⁺ 293.1860, found 293.1866.

(E)-Ethyl-3-(*tert*-butylamino)-3-(*p*-tolylimino)propanoate4cand(E)-ethyl-3-(*tert*-butylamino)-3-(*p*-tolylamino)acrylate 4c' (4c/4c'= 3/1)

Yield = 86% (118.8 mg). Yellow oil. For **4c**: ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.0 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 4.85 (brs, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.10 (s, 2H), 2.29 (s, 3H), 1.44 (s, 9H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 148.4, 148.1, 130.9, 129.4, 121.8, 61.3, 51.5, 36.6, 28.8, 20.8, 14.2. For **4c'**: 10.32 (brs, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 4.34 (brs, 1H), 4.31 (s, 1H), 2.33 (s, 3H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 157.3, 135.2, 134.9, 130.4, 125.1, 65.9, 58.3, 51.2, 29.7, 21.0, 15.0. HRMS (ESI) calculated for C₁₆H₂₅N₂O₂ (M+H)⁺ 277.1911, found 277.1908.

(E)-Ethyl-3-(tert-butylamino)-3-((4-(trifluoromethoxy) phenyl)imino)propanoate

4d (4d/4d' > 20/1)

Yield = 74% (128.2 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.4 Hz, 2H), 6.72-6.70 (m, 2H), 4.95 (brs, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.08 (s, 2H), 1.43 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 149.8, 148.6, 144.1, 122.9, 121.8, 120.8 (q, *J*_{CF} = 254 Hz), 61.5, 51.8, 36.7, 28.7, 14.1; HRMS (ESI) calculated for C₁₆H₂₃F₃N₂O₃ (M+H)⁺ 347.1577, found 347.1587.

(*E*)-Methyl-4-((1-(*tert*-butylamino)-3-ethoxy-3-oxopropylidene)amino)benzoate 4e (4e/4e' > 20/1)

Yield = 56% (89.7 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 6.74 (d, *J* = 8.4 Hz, 2H), 5.08 (brs, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 3.06 (s, 2H), 1.42 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 167.4, 155.7, 147.9, 130.8, 123.4, 121.8, 61.5, 51.8, 36.8, 28.6, 14.1; HRMS (ESI) calculated for C₁₇H₂₅N₂O₄ (M+H)⁺ 321.1809, found 321.1820.

(*E*)-Ethyl-3-(tert-butylamino)-3-((4-(methylthio)phenyl)imino)propanoate 4f and (*E*)-ethyl-3-(*tert*-butylamino)-3-((4-(methylthio)phenyl)amino)acrylate 4f' (4f/4f' = 7/1)

Yield = 65% (100.2 mg). Yellow oil. For **4f**: ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 8.4 Hz, 2H), 4.90 (brs, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.08 (s, 2H), 2.44 (s, 3H), 1.42 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 149.2, 148.3, 130.0, 129.2, 122.6, 61.4, 51.6, 36.6, 28.7, 17.7, 14.1; For **4f**': 10.33 (brs, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 4.32 (s, 1H), 4.26 (brs, 1H), 2.47 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9,

128.2, 125.3, 66.5, 58.4, 51.3, 29.7, 16.3, 15.0. HRMS (ESI) calculated for $C_{16}H_{25}N_2O_2S (M+H)^+$ 309.1631, found 309.1646.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-fluorophenyl)imino) propanoate 4g (4g/4g' > 20/1)

Yield = 71% (99.5 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.93-6.89 (m, 2H), 6.65 (dd, *J* = 8.8, 4.8 Hz, 2H), 4.87 (s, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.06 (s, 2H), 1.42 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 158.6 (d, *J* = 237.7 Hz), 148.8, 147.1, 123.0 (d, *J* = 7.7 Hz), 115.4 (d, *J* = 25.0 Hz), 61.4, 51.6, 36.7, 28.7, 14.1; HRMS (ESI) calculated for C₁₅H₂₂FN₂O₂ (M+H)⁺ 281.1660, found 281.1667.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino) propanoate 4h (4h/4h' > 20/1)

Yield = 80% (111.5 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.4 Hz, 2H), 6.65 (d, *J* = 8.4 Hz, 2H), 4.94 (brs, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.06 (s, 2H), 1.42 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 149.6, 148.5, 128.8, 126.8, 123.3, 61.4, 51.7, 36.6, 28.7, 14.1; HRMS(ESI) calcd for C₁₅H₂₂ClN₂O₂ (M+H)⁺ 297.1364, found 297.1360.

(*E*)-Ethyl-3-((4-bromophenyl)imino)-3-(*tert*-butylamino) propanoate 4i (4i/4i' > 20/1)

Yield = 79% (134.3 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.4 Hz, 2H), 6.60 (d, *J* = 8.4 Hz, 2H), 4.95 (brs, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.06 (s, 2H), 1.42 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 150.1, 148.3, 131.8, 123.8, 114.5, 61.5, 51.7, 36.6, 28.7, 14.1; HRMS(ESI) calcd for C₁₅H₂₂BrN₂O₂ (M+H)⁺ 341.0859, found 341.0867.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-iodophenyl)imino) propanoate 4j (4j/4j' > 20/1)

Yield = 53% (102.9 mg). Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 2H), 6.49 (d, *J* = 8.4 Hz, 2H), 4.96 (brs, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.06 (s, 2H), 1.41 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 150.7, 148.3, 137.8, 124.4, 84.8, 61.5, 51.7, 36.6, 28.7, 14.2; HRMS(ESI) calcd for C₁₅H₂₂IN₂O₂ (M+H)⁺ 389.0720, found 389.0724.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-(*o*-tolylimino)propanoate 4k and (*E*)-ethyl-3-(*tert*-butylamino)-3-(*o*-tolylamino)acrylate 4k' (4k/4k' = 10/1) Yield = 96% (132.6 mg). Yellow oil. For 4k: ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 7.6 Hz, 1H), 7.09 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.89 (dd, *J* = 7.6, 7.2 Hz, 1H), 6.61 (d, *J* = 7.6 Hz, 1H), 4.94 (brs, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.04 (s, 2H), 2.12 (s, 3H), 1.48 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 149.6, 147.5, 130.1, 129.9, 126.3, 121.9, 121.2, 61.2, 51.4, 36.7, 28.8, 18.4, 14.1; For 4k': ¹H NMR (400 MHz, CDCl₃) δ 10.27 (brs, 1H), 4.35 (s, 1H), 2.31 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 131.4, 126.9, 65.6, 58.2, 30.9, 29.7, 18.0, 15.0. HRMS (ESI) calcd for C₁₆H₂₅N₂O₂ (M+H)⁺ 277.1911, found 277.1917.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-((2-iodophenyl)imino)propanoate 4l (4l/4l' > 20/1)

Yield = 87% (168.9 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.23 – 7.19 (m, 1H), 6.73 – 6.64 (m, 2H), 5.30 (s, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.01 (s, 2H), 1.50 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 152.4, 148.8, 138.8, 128.9, 123.4, 121.9, 94.2, 61.4, 51.7, 36.8, 29.0, 14.2; HRMS(ESI) calcd for C₁₅H₂₂IN₂O₂ (M+H)⁺ 389.0720, found 389.0724.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-((3-methoxyphenyl)imino)propanoate 4m and (*E*)-ethyl-3-(*tert*-butylamino)-3-((3-methoxyphenyl)amino)acrylate 4m' (4m/4m' = 8/1)

Yield = 77% (112.6 mg). Yellow oil. For **4m**: ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.10 (m, 1H), 6.53 – 6.50 (m, 1H), 6.33 – 6.29 (m, 2H), 4.89 (brs, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.77 (s, 2H), 3.12 (s, 3H), 1.43 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 160.4, 152.4, 148.1, 129.6, 114.6, 107.8, 107.5, 61.4, 55.3, 51.6, 36.7, 28.8, 14.2; For **4m**': ¹H NMR (400 MHz, CDCl₃) δ 10.41 (brs, 1H), 4.50 (brs, 1H), 4.32 (s, 1H), 3.78 (s, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 156.8, 130.5, 116.3, 110.9, 109.8, 66.6, 58.4, 55.4, 51.3, 29.8, 15.0. HRMS (ESI) calcd for C₁₆H₂₅N₂O₃ (M+H)⁺ 293.1860, found 293.1860.

(*E*)-Ethyl-3-((3-bromophenyl)imino)-3-(*tert*-butylamino)propanoate 4n (4n/4n' > 20/1)

Yield = 75% (128.0 mg). Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.10-7.05 (m, 2H), 6.90 (s, 1H), 6.66-6.64 (m, 1H), 4.99 (s, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.08 (s, 2H), 1.42 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 152.5, 148.5, 130.2, 125.1, 124.6, 122.5, 120.8, 61.5, 51.7, 36.8, 28.6, 14.2; HRMS(ESI) calcd for C₁₅H₂₁BrN₂NaO₂ (M+Na)⁺ 363.0679, found 363.0678.

(*E*)-Ethyl-3-(benzo[*d*][1,3]dioxol-5-ylimino)-3-(*tert*-butylamino)propanoate 40 and (*E*)-ethyl-3-(benzo[*d*][1,3]dioxol-5-ylamino)-3-(*tert*-butylamino)acrylate 40' (40/40' = 5/1)

Yield = 78% (119.5 mg). Yellow oil. For **40**: ¹H NMR (400 MHz, CDCl₃) δ 6.68 (d, *J* = 8.0 Hz, 1H), 6.28 (d, *J* = 2.0 Hz, 1H), 6.14 (dd, *J* = 8.0, 2.0 Hz, 1H), 5.88 (s, 2H), 4.83 (brs, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.11 (s, 2H), 1.41 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 148.9, 148.0, 145.9, 142.6, 113.8, 108.3, 103.8, 100.8, 61.4, 51.6, 36.7, 28.8, 14.2; For **40'**: ¹H NMR (400 MHz, CDCl₃) δ 10.21 (brs, 1H), 5.97 (s, 2H), 4.28 (s, 1H), 4.21 (brs, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 157.7, 148.6, 145.8, 131.3, 119.3, 108.7, 107.4, 101.7, 65.8, 58.3, 51.2, 29.8, 15.0. HRMS (ESI) calcd for C₁₆H₂₃N₂O₄ (M+H)⁺ 307.1652, found 307.1652.

(E)-Ethyl-3-(tert-butylamino)-3-(methyl(o-tolyl)amino) acrylate 4p

Yield = 90% (132.6 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (brs, 1H), 7.18 – 7.14 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.85 – 6.81 m, 1H), 4.38 (s, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 3.06 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 166.7, 148.2, 128.9, 121.0, 118.5, 82.6, 58.9, 54.0, 40.7, 30.9, 14.7; HRMS(ESI) calcd for C₁₆H₂₄N₂NaO₂ (M+Na)⁺ 299.1730, found 299.1731.

(E)-Ethyl-3-(allyl(phenyl)amino)-3-(tert-butylamino)acrylate 4q

Yield = 91% (138.0 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (brs, 1H), 7.22 (dd, *J* = 8.4, 7.6 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.90 (dd, *J* = 7.2, 7.6 Hz, 1H), 5.91-5.81 (m, 1H), 5.21-5.15 (m, 2H), 4.60 (s, 1H), 4.24 (d, *J* = 5.6 Hz, 2H), 4.12 (q, *J* = 7.2 Hz, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.17 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 165.5, 146.4, 133.9, 128.9, 121.4, 120.2, 117.9, 83.2, 58.9, 54.7, 54.4, 30.9, 14.7; HRMS(ESI) calcd for C₁₈H₂₇N₂O₂ (M+H)⁺ 303.2067, found 303.2069.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-(3,4-dihydroquinolin-1(2*H*)-yl) acrylate 4r Yield = 88% (133.3 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.11 (m, 3H), 7.07 – 7.02 (m, 1H), 6.82 (brs, 1H), 4.46 (s, 1H), 4.25 (s, 2H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.45 (t, *J* = 6.0 Hz, 2H), 2.93 (t, *J* = 6.0 Hz, 2H), 1.27 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 169.4, 134.2, 134.0, 129.0, 126.6, 126.3, 126.2, 80.0, 58.7, 54.8, 52.6, 48.0, 30.5, 28.4, 14.7; HRMS(ESI) calcd for C₁₈H₂₇N₂O₂ (M+H)⁺ 303.2067, found 303.2073.

(E)-Ethyl-3-(tert-butylamino)-3-morpholinoacrylate 4s

Yield = 92% (118.0 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.72 (brs, 1H), 4.39 (s, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.72 (t, *J* = 4.8 Hz, 4H), 3.07 (t, *J* = 4.8 Hz, 4H), 1.29 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 169.5, 80.2, 66.5, 66.4, 58.6, 54.5, 50.8, 30.3, 14.5; HRMS(ESI) calcd for C₁₃H₂₅N₂O₃ (M+H)⁺ 257.1860, found 257.1860.

(*E*)-Ethyl-3-(*tert*-butylamino)-3-(2,3-dihydro-4*H*-benzo[*b*][1,4]oxazin-4-yl)acrylat e 4t

Yield = 64% (97.4 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (brs, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 6.86 – 6.84 (m, 2H), 6.82 – 6.78 (m, 1H), 4.52 (s, 1H), 4.32-4.08 (m, 4H), 3.76-3.22 (m, 2H), 1.38 (s, 9H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 166.4, 146.3, 130.1, 122.8, 122.2, 120.8, 117.3, 85.3, 63.7, 58.9, 54.6, 48.6, 30.9, 14.6; HRMS(ESI) calcd for C₁₇H₂₅N₂O₃ (M+H)⁺ 305.1860, found 305.1870.

(E)-tert-Butyl-3-(tert-butylamino)-3-((4-chlorophenyl)imino)propanoate 5a

Yield = 90% (146.2 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 8.4 Hz, 2H), 4.84 (brs, 1H), 2.97 (s, 2H), 1.45 (s, 9H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 149.7, 149.0, 128.8, 126.9, 123.5, 82.0, 51.6, 38.2, 28.8, 28.1; HRMS(ESI) calcd for C₁₇H₂₆ClN₂O₂ (M+H)⁺ 325.1677, found 325.1684.

(E)-Isopropyl-3-(tert-butylamino)-3-((4-chlorophenyl)imino)propanoate 5b

Yield = 91% (141.4 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.4 Hz, 2H), 6.65 (d, *J* = 8.8 Hz, 2H), 5.00 (hept, *J* = 6.0 Hz, 1H), 4.89 (brs, 1H), 3.03 (s, 2H), 1.42 (s, 9H), 1.23 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 149.7, 148.6, 128.9, 126.9, 123.4, 69.1, 51.7, 37.1, 28.7, 21.8; HRMS(ESI) calcd for C₁₆H₂₄ClN₂O₂ (M+H)⁺ 311.1521, found 311.1532.

(*E*)-Benzyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)propanoate 5c (5c/5c' = 10/1)

Yield = 80% (143.5 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 5H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.56 (d, *J* = 8.0 Hz, 2H), 5.05 (s, 2H), 4.76 (brs, 1H), 3.05 (s, 2H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 149.5, 148.2, 135.3, 128.9, 128.7, 128.7, 128.5, 127.0, 123.3, 67.2, 51.7, 36.8, 28.6; HRMS(ESI) calcd for C₂₀H₂₄ClN₂O₂ (M+H)⁺ 359.1521, found 359.1541.

(*E*)-Thiophen-2-ylmethyl-3-(tert-butylamino)-3-((4-chlorophenyl)imino)propano ate 5d (5d/5d' = 10/1)

Yield = 81% (147.7 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 6.0 Hz, 1H), 7.15 (d, *J* = 8.8 Hz, 2H), 7.10 (d, *J* = 3.2 Hz, 1H), 7.00 (dd, *J* = 4.8, 3.6 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 2H), 5.28 (s, 2H), 4.76 (brs, 1H), 3.10 (s, 2H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 149.5, 148.0, 137.1, 129.9, 128.9, 128.9, 127.4,

127.0, 127.0, 123.3, 61.2, 51.8, 36.7, 28.6; HRMS(ESI) calcd for C₁₈H₂₂ClN₂O₂S (M+H)⁺ 365.1085, found 365.1102.

(*E*)-Cinnamyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)propanoate 5e (5e/5e' = 10/1)

Yield = 78% (150.1 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 6H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.65 – 6.60 (m, 3H), 6.24 – 6.16 (m, 1H), 4.90 (brs, 1H), 4.71 (d, *J* = 6.4 Hz, 2H), 3.10 (s, 2H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 149.6, 148.3, 136.0, 135.1, 128.9, 128.8, 128.4, 127.0, 126.7, 123.3, 122.3, 65.9, 51.8, 36.7, 28.7; HRMS(ESI) calcd for C₂₂H₂₆ClN₂O₂ (M+H)⁺ 385.1677, found 385.1698.

(E)-Ethyl-3-(tert-butylamino)-3-((4-chlorophenyl)imino)-2-methylpropanoate 5f

Yield = 84% (130.5 mg). Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.8 Hz, 2H), 6.67 (d, *J* = 8.4 Hz, 2H), 4.68 (brs, 1H), 4.23 – 4.08 (m, 2H), 3.54 (q, *J* = 7.2 Hz, 1H), 1.39 (s, 9H), 1.28 – 1.25 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 153.2, 149.6, 129.0, 126.7, 123.3, 61.4, 51.3, 40.2, 28.6, 16.8, 14.2; HRMS(ESI) calcd for C₁₆H₂₄ClN₂O₂ (M+H)⁺ 311.1521, found 311.1542.

(*E*)-3-(*tert*-Butylamino)-3-((4-chlorophenyl)amino)-1-phenylprop-2-en-1-one 5g and (*E*)-*N*-(*tert*-butyl)-*N*'-(4-chlorophenyl)-3-hydroxy-3-phenylacrylimidamide

5g' and (*E*)-*N*-(*tert*-butyl)-*N*'-(4-chlorophenyl)-3-oxo-3-phenylpropanimidamide 5g"

Yield = 88% (130.5 mg). Yellow solid. For **5g**: ¹H NMR (400 MHz, CDCl₃) δ 13.26 (s, 1H), 7.76 – 7.74 (m, 2H), 7.31 – 7.30 (m, 3H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 5.48 (s, 1H), 4.57 (brs, 1H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 158.4, 141.6, 135.5, 131.5, 130.1, 130.0, 128.2, 126.6, 126.4, 79.0, 51.8, 30.0; HRMS(ESI) calcd for C₁₉H₂₂ClN₂O (M+H)⁺ 329.1415, found 329.1421.

(*E*)-Ethyl-3-(phenylimino)-3-((2,4,4-trimethylpentan-2-yl)amino)propanoate 6a (6a/6a' = 12/1)

Yield = 78% (124.2 mg). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.75 – 6.73 (m, 2H), 4.94 (brs, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.09 (s, 2H), 1.92 (s, 2H), 1.49 (s, 6H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 151.0, 147.4, 128.9, 122.0, 121.7, 61.3, 55.4, 50.3, 36.8, 31.9, 31.6, 29.5, 14.2; HRMS(ESI) calcd for C₁₉H₃₁N₂O₂ (M+H)⁺ 319.2380, found 319.2382.

(E)-Ethyl-3-((2,6-dimethylphenyl)imino)-3-(methyl(phenyl)amino)propanoate 6b

Yield = 87% (141.1 mg). Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.26 – 7.21 (m, 3H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.80 (t, *J* = 7.6 Hz, 1H), 3.74 (q, *J* = 7.2 Hz, 2H), 3.44 (s, 3H), 3.03 (s, 2H), 2.12 (s, 6H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 152.2, 148.0, 145.6, 129.5, 128.7, 128.2, 128.0, 127.0, 122.2, 60.8, 39.9, 35.4, 18.4, 13.9; HRMS(ESI) calcd for C₂₀H₂₅N₂O₂ (M+H)⁺ 325.1911, found 325.1927.

(E)-Ethyl-3-(mesitylimino)-3-(methyl(phenyl)amino)propanoate 6c

Yield = 84% (142.1 mg). Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.29 – 7.23 (m, 3H), 6.83 (s, 2H), 3.77 (q, *J* = 7.2 Hz, 2H), 3.47 (s, 3H), 3.07 (s, 2H), 2.24 (s, 3H), 2.12 (s, 6H), 1.00 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 152.4, 145.7, 145.4, 131.2, 129.5, 128.6, 128.5, 128.2, 126.9, 60.8, 39.8, 35.3, 20.8, 18.3, 13.9; HRMS(ESI) calcd for C₂₁H₂₇N₂O₂ (M+H)⁺ 339.2067, found 339.2085.

(*E*)-Ethyl-3-((4-chlorophenyl)imino)-3-(methyl(phenyl)amino)propanoate 6d (6d/6d' = 16/1)

Yield = 80% (132.3 mg). Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.30 – 7.23 (m, 3H), 7.19 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 3.88 (q, *J* = 7.2 Hz, 2H), 3.38 (s, 3H), 3.16 (s, 2H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 152.9, 149.7, 145.2, 129.6, 128.9, 128.2, 127.4, 127.4, 123.4, 61.1, 39.5, 35.2, 14.0; HRMS(ESI) calcd for C₁₈H₂₀ClN₂O₂ (M+H)⁺ 331.1208, found 331.1224.

(*E*)-Ethyl-3-((4-bromophenyl)imino)-3-(methyl(phenyl)amino)propanoate 6e (6e/6e' = 16/1)

Yield = 75% (140.7 mg). Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 7H), 6.72 (d, *J* = 8.4 Hz, 2H), 3.88 (q, *J* = 7.2 Hz, 2H), 3.38 (s, 3H), 3.16 (s, 2H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 152.8, 150.2, 145.1, 131.9, 129.6, 128.2, 127.5, 123.9, 115.1, 61.2, 39.6, 35.2, 14.0; HRMS(ESI) calcd for C₁₈H₁₉BrN₂O₂ (M+H)⁺ 375.0703, found 375.0720.

III. Synthetic Applications and Mechanistic Studies

To an oven-dried Schlenk tube (50 mL) was added the amines **11** (5 mmol, 1.1 g), isocyanides **2a** (6 mmol, 1.2 equiv), diazos **3a** (6 mmol, 1.2 equiv), CoBr₂ (55 mg, 5.0 mol %), and anhydrous MeCN (15 mL). The tube was backfilled with N₂. The mixture was concentrated under reduced pressure after stirring at 80 °C for 12 h. The residue was purified by column chromatography (petroleum ether/EtOAc 10:1) to give the desired product **4l** in 81% yield (1.57 g).

Derivatization of Amidine 41

Scale-up reaction

To an oven-dried Schlenk tube (10 mL) was added the amidine **4l** (194.1 mg, 0.5 mmol), NaOH (40.0 mg, 1.0 mmol), and EtOH (3.0 mL). After stirring at 60 °C for 6 h. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 10:1) to give the desired product **7** in 91% yield (143.9 mg) as a white oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.21 (m, 1H), 6.72 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.65 (m, 1H), 4.20 (brs, 1H), 1.65 (s, 3H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 153.9, 138.8, 128.8, 123.0, 121.9, 94.3, 51.6, 29.3, 19.2. HRMS (ESI) m/z calculated for C₁₂H₁₈IN₂, [M+H]⁺ 317.0509; found 317.0527.

To an oven-dried Schlenk tube (10 mL) was added the amidine **4l** (194.1 mg, 0.5 mmol), CuCl₂ (6.7 mg, 10 mol%), L-Proline (5.8 mg, 10 mol%), K₂CO₃ (138.2 mg,

1.0 mmol), and DMSO (3.0 mL). After stirring at 100 °C for 12 h. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 10:1) to give the desired product **8** in 75% yield (97.6 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (brs, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.51 (brs, 1H), 7.16 – 7.11 (m, 2H), 7.01 (t, *J* = 7.6 Hz, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 1.48 (s, 9H), 1.44 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 152.9, 132.5, 126.5, 121.9, 120.1, 119.2, 109.6, 85.8, 59.1, 51.7, 30.4, 14.9. HRMS (ESI) m/z calculated for C₁₅H₂₁N₂O₂, [M+H]⁺ 261.1598; found 261.1604.

To an oven-dried Schlenk tube (10 mL) was added the amidine **41** (194.1 mg, 0.5 mmol), isocyanide **2a** (50.0 mg, 0.6 mmol), Pd(OAc)₂ (5.6 mg, 5 mol%), Cs₂CO₃ (488.7 mg, 1.5 mmol), and 1,4-dioxane (3.0 mL). After stirring at 110 °C for 12 h. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 10:1) to give the desired product **9** in 84% yield (144.3 mg) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.55 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.49 (ddd, *J* = 8.4, 6.8, 1.2 Hz, 1H), 7.07 (ddd, *J* = 8.4, 6.8, 1.2 Hz, 1H), 6.89 (brs, 1H), 5.71 (brs, 1H), 4.43 (q, *J* = 7.2 Hz, 2H), 1.57 (s, 9H), 1.46 (t, *J* = 7.2 Hz, 3H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 156.8, 154.3, 149.6, 131.2, 127.7, 126.4, 122.1, 120.2, 107.7, 61.5, 56.7, 51.7, 31.2, 29.5, 14.3. HRMS (ESI) m/z calculated for C₂₀H₃₀N₃O₂, [M+H]⁺ 344.2333; found 344.2354.

V. Copy of NMR Spectra

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(phenylimino)propanoate 4a and (*E*)-ethyl-3-(*tert*-butylamino)-3-(phenylamino)acrylate 4a' (4a/4a'= 6/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(phenylimino)propanoate 4a and (*E*)-ethyl-3-(*tert*-butylamino)-3-(phenylamino)acrylate 4a' (4a/4a'= 6.0/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-methoxyphenyl)imino)propanoate 4b and (*E*)-ethyl-3-(*tert*-butylamino)-3-((4-methoxyphenyl)amino)acrylate 4b' (4b/4b'= 2/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-methoxyphenyl)imino)propanoate 4b and (*E*)-ethyl-3-(*tert*-butylamino)-3-((4-methoxyphenyl)amino)acrylate 4b' (4b/4b'= 2/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(*p*-tolylimino)propanoate 4c and (*E*)-ethyl-3-(*tert*-butylamino)-3-(*p*-tolylamino)acrylate 4c' (4c/4c'= 3/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(*p*-tolylimino)propanoate 4c and (*E*)-ethyl-3-(*tert*-butylamino)-3-(*p*-tolylamino)acrylate 4c' (4c/4c'= 3/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-(trifluoromethoxy) phenyl)imino)propanoate 4d (4d/4d' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-(trifluoromethoxy) phenyl)imino)propanoate 4d (4d/4d' > 20/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Methyl-4-((1-(*tert*-butylamino)-3-ethoxy-3-oxopropylidene)amino)benzoate 4e (4e/4e' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Methyl-4-((1-(*tert*-butylamino)-3-ethoxy-3-oxopropylidene)amino)benzoate 4e (4e/4e' > 20/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(tert-butylamino)-3-((4-(methylthio)phenyl)imino)propanoate 4f and (*E*)-ethyl-3-(*tert*-butylamino)-3-((4-(methylthio)phenyl)amino)acrylate 4f' (4f/4f' = 7/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(tert-butylamino)-3-((4-(methylthio)phenyl)imino)propanoate 4f and (*E*)-ethyl-3-(*tert*-butylamino)-3-((4-(methylthio)phenyl)amino)acrylate 4f' (4f/4f' = 7/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-fluorophenyl)imino) propanoate 4g (4g/4g' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-fluorophenyl)imino) propanoate 4g (4g/4g' > 20/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of Ethyl (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino) propanoate 4h (4h/4h' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino) propanoate 4h (4h/4h' > 20/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((4-bromophenyl)imino)-3-(*tert*-butylamino) propanoate 4i (4i/4i' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((4-bromophenyl)imino)-3-(*tert*-butylamino) propanoate 4i (4i/4i' > 20/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-iodophenyl)imino) propanoate 4j (4j/4j' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-iodophenyl)imino) propanoate 4j (4j/4j' > 20/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(*o*-tolylimino)propanoate 4k and (*E*)-ethyl-3-(*tert*-butylamino)-3-(*o*-tolylamino)acrylate 4k' (4k/4k' = 10/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(*o*-tolylimino)propanoate 4k and (*E*)-ethyl-3-(*tert*-butylamino)-3-(*o*-tolylamino)acrylate 4k' (4k/4k' = 10/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((2-iodophenyl)imino)propanoate 4l (4l/4l' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((2-iodophenyl)imino)propanoate 4l (4l/4l' > 20/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((3-methoxyphenyl)imino)propanoate 4m and (*E*)-ethyl-3-(*tert*-butylamino)-3-((3-methoxyphenyl)amino)acrylate 4m' (4m/4m' = 8/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((3-methoxyphenyl)imino)propanoate 4m and (*E*)-ethyl-3-(*tert*-butylamino)-3-((3-methoxyphenyl)amino)acrylate 4m' (4m/4m' = 8/1)

fl (ppm)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((3-bromophenyl)imino)-3-(*tert*-butylamino)propanoate 4n (4n/4n' > 20/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((3-bromophenyl)imino)-3-(*tert*-butylamino)propanoate 4n (4n/4n' > 20/1)

fl (ppm)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(benzo[*d*][1,3]dioxol-5-ylimino)-3-(*tert*-butylamino)propanoate 40 and (*E*)-ethyl-3-(benzo[*d*][1,3]dioxol-5-ylamino)-3-(*tert*-butylamino)acrylate 40' (40/40' = 6/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(benzo[*d*][1,3]dioxol-5-ylimino)-3-(*tert*-butylamino)propanoate 40 and (*E*)-ethyl-3-(benzo[*d*][1,3]dioxol-5-ylamino)-3-(*tert*-butylamino)acrylate 40' (40/40' = 6/1)

fl (ppm)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(methyl(*o*-tolyl)amino) acrylate 4p

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(methyl(*o*-tolyl)amino) acrylate 4p

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(allyl(phenyl)amino)-3-(*tert*-butylamino)acrylate 4q

¹³C NMR (100 MHz, CDCl₃) Spectrum of (E)-Ethyl-3-(allyl(phenyl)amino)-3-(tert-butylamino)acrylate 4q

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(3,4-dihydroquinolin-1(2*H*)-yl) acrylate 4r

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(3,4-dihydroquinolin-1(2*H*)-yl) acrylate 4r

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-morpholinoacrylate 4s

CDCI3 4.094 4.076 4.059 3.752 3.358 .378 .239 .221 .203 4.524 41 COOEt `N^{_t}Bu H 0.91∄ 0.95 1.86⊈ 0.89∰ 0.94_{\pm} 9.00₋₁ 3.00-1 4.00 2.00-7.0 5.0 f1 (ppm) 10.5 10.0 7.5 4.5 Т 1.5 1.0 0.5 0.0 -0.5 6.5 4.0 9.5 9.0 8.5 8.0 6.0 5.5 3.5 3.0 2.5 2.0

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(2,3-dihydro-4*H*-benzo[*b*][1,4]oxazin-4-yl)acrylate 4t

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-(2,3-dihydro-4*H*-benzo[*b*][1,4]oxazin-4-yl)acrylate 4t

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-tert-Butyl-3-(tert-butylamino)-3-((4-chlorophenyl)imino)propanoate 5a

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-tert-Butyl-3-(tert-butylamino)-3-((4-chlorophenyl)imino)propanoate 5a

fl (ppm)

NOE Spectrum of (E)-tert-Butyl-3-(tert-butylamino)-3-((4-chlorophenyl)imino)propanoate 5a

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Isopropyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)propanoate 5b

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Benzyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)propanoate 5c (5c/5c' = 10/1)

fl (ppm)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Thiophen-2-ylmethyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)propanoate 5d (5d/5d' = 10/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Thiophen-2-ylmethyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)propanoate 5d (5d/5d' = 10/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Cinnamyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)propanoate 5e (5e/5e' = 10/1)

7.260 CDCl3
7.207
7.185
6.682
6.661 НDО 3.570 3.552 3.535 3.535 3.517 1.701 | 1.389 1.280 1.263 1.245 684 234 9 98 89 20 6 084 ò Ċ ö 4 4 4 4 4 4 4 C Me `OEt **,**^tBu 9.13_≚ 6.12∡ 2.00₋T 1.99₁ P96.0 2.04 1.00<u>-</u>1 3.5 1.5 10.5 10.0 8.0 7.5 7.0 4.5 4.00.5 -0.5 9.5 9.0 8.5 6.5 6. O 5.5 5.0 3.0 2.5 2.01.0 0.0 fl (ppm)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)-2-methylpropanoate 5f

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(*tert*-butylamino)-3-((4-chlorophenyl)imino)-2-methylpropanoate 5f

-10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-3-(*tert*-Butylamino)-3-((4-chlorophenyl)amino)-1-phenylprop-2-en-1-one 5g and (*E*)-*N*-(*tert*-butyl)-*N*'-(4-chlorophenyl)-3-hydroxy-3-phenylacrylimidamide 5g" and (*E*)-*N*-(*tert*-butyl)-*N*'-(4-chlorophenyl)-3-oxo-3-phenylpropanimidamide 5g"

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-3-(*tert*-Butylamino)-3-((4-chlorophenyl)amino)-1-phenylprop-2-en-1-one 5g and (*E*)-*N*-(*tert*-butyl)-*N*'-(4-chlorophenyl)-3-hydroxy-3-phenylacrylimidamide 5g"
 and (*E*)-*N*-(*tert*-butyl)-*N*'-(4-chlorophenyl)-3-oxo-3-phenylpropanimidamide 5g"

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(phenylimino)-3-((2,4,4-trimethylpentan-2-yl)amino)propanoate 6a (6a/6a' = 12/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(phenylimino)-3-((2,4,4-trimethylpentan-2-yl)amino)propanoate 6a (6a/6a' = 12/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((2,6-dimethylphenyl)imino)-3-(methyl(phenyl)amino)propanoate 6b

77.478 CDCl3 77.160 CDCl3 76.843 CDCl3 - 152.190 - 147.987 - 145.580 129.513 128.744 128.210 127.957 127.009 122.220 - 167.903 39.852 35.439 60.824 EtOOC Me Me Ph Me

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((2,6-dimethylphenyl)imino)-3-(methyl(phenyl)amino)propanoate 6b

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(mesitylimino)-3-(methyl(phenyl)amino)propanoate 6c

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-(mesitylimino)-3-(methyl(phenyl)amino)propanoate 6c

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((4-chlorophenyl)imino)-3-(methyl(phenyl)amino)propanoate 6d (6d/6d' = 16/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((4-bromophenyl)imino)-3-(methyl(phenyl)amino)propanoate 6e (6e/6e' = 16/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((4-bromophenyl)imino)-3-(methyl(phenyl)amino)propanoate 6e (6e/6e' = 16/1)

¹³C NMR (100 MHz, CDCl₃) Spectrum of (*E*)-Ethyl-3-((4-chlorophenyl)imino)-3-(methyl(phenyl)amino)propanoate 6e (6e/6e' = 16/1)

¹H NMR (400 MHz, CDCl₃) Spectrum of (*E*)-*N*-(*tert*-Butyl)-*N*'-(2-iodophenyl)acetimidamide 7

¹³C NMR (100 MHz, CDCl₃) Spectrum of (E)-N-(tert-Butyl)-N'-(2-iodophenyl)acetimidamide 7

¹H NMR (400 MHz, CDCl₃) Spectrum of Ethyl 2-(*tert*-butylamino)-1*H*-indole-3-carboxylate 8

¹³C NMR (100 MHz, CDCl₃) Spectrum of Ethyl 2-(*tert*-butylamino)-1*H*-indole-3-carboxylate 8

¹H NMR (400 MHz, CDCl₃) Spectrum of Ethyl 2,4-bis(*tert*-butylamino)quinoline-3-carboxylate 9

¹³C NMR (100 MHz, CDCl₃) Spectrum of Ethyl 2,4-bis(*tert*-butylamino)quinoline-3-carboxylate 9

