Supporting Information

Photocatalytic Transition-Metal-Free Direct 3-Alkylation of 2-Aryl-

2H-Indazoles in Dimethyl Carbonate[†]

Chunhua Ma,^a Zhi-Wen Feng,^a Jing Li,^a Dandan Zhang,^a Wei Li,^a Yu-Qin Jiang,^{a*} and Bing Yu^{b*}

^a Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Jianshedong Road No. 46, Xinxiang 453007, P. R. China. E-mail: jiangyuqin@htu.cn

^b Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, P. R. China. E-mail: bingyu@zzu.edu.cn

† Dedicated to the 100th anniversary of Chemistry at Nankai University

Table of Contents

1. General information	
2. Experimental procedures	S3
3. Procedure and Results of Sensitivity Assessment	S6
4. Characterization of compounds	S7
5. NMR copies of products	S19
6. References	

1. General information

N, N-Dimethylethanolamine (DABCO) was purchased from Tansoole, Shanghai, China. Other reagents were purchased from Bidepharm.com. Unless otherwise stated, all commercially available reagents were directly used without further purification. All solvents were purified by standard methods prior to use. All reactions were monitored by thin layer chromatography (TLC), and column chromatography was carried out on 100-200 mesh of silica gel purchased from Tansoole, Shanghai, China. All nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 600 MHz in CDCl₃ at room temperature (20 ± 3 °C), using tetramethylsilane as internal standard. High resolution mass spectra (HRMS) were conducted on a 3000-mass spectrometer, using Bruker compact Qq TOF MS/MS system with the ESI technique.

Photochemical reaction was carried out under visible light irradiation by a blue LED at 35 °C. RLH-18 8-position Photo Reaction System manufactured by Beijing Roger Tech Ltd. was used in this system (See Figure A). Eight 10W blue LEDs were equipped in this Photo reactor. The blue LED's energy peak wavelength is 455 nm, peak width at half-height is 22.9 nm, lirradiance@10 W is 172.29 mW/cm². The reaction vessel is borosilicate glass test tube and no filters were applied.

Figure A. The reaction apparatus and spectrum of blue LED The UV-Vis spectra of 2-phenyl-2*H*-indazole **1a** and alkyl NHPI ester **2a** were

showed in Figure B. It is obvious that the reactants **1a** and **2a** do not absorb light around 455 nm, suggesting that photocatalyst play a crucial role in this reaction.

Figure B. The UV-Vis spectra of the substrates 1a and 2a

2. Experimental procedures

2.1 General experimental procedures for 3-alkylated 2H-indazoles

In a 10 mL reaction vial with a stirring bar, 2-phenyl-2*H*-indazole **1** (0.2 mmol), alkyl NHPI esters **2** (2.0 equiv.), and 4CzIPN (5 mol%) were added. The vial was then evacuated and backfilled three times with N₂, followed by adding dimethyl carbonate (2 mL) and DABCO (1.0 equiv.). The mixture was stirred at 35 °C with 10 W blue LED irradiation for 12 h under nitrogen atmosphere. After the reaction was completed, the solvent was evaporated under vacuum. Then, the residue was quenched with water (5 mL), and then the ethyl acetate (15 mL) was added three times for extraction. The combined organic layers were dried over anhydrous Na₂SO₄. The residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 20/1) to afford the desired product **3**.

2.2 Control experiments

Control experiments with TEMPO: In a 10 mL reaction vial with a stirring bar, 2phenyl-2*H*-indazole **1** (0.2 mmol), alkyl NHPI esters **2** (2.0 equiv.), 4CzIPN (5 mol%) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 3.0 equiv.) were added. The vial was then evacuated and backfilled three times with N₂, followed by adding dimethyl carbonate (2 mL) and DABCO (1.0 equiv.). The mixture was stirred at 35 °C with 10 W blue LED irradiation for 12 h under nitrogen atmosphere. After the reaction was completed, the solvent was evaporated under vacuum. Then, the residue was quenched with water (5 mL), and then the ethyl acetate (15 mL) was added three times for extraction. No target product **3a** was generated, while the formation of TEMPO trapped cyclohexyl adduct **5a** was found by HRMS. It indicated that a radical pathway should be involved in this photocatalytic reaction and an alkyl radical was formed.

Control experiments with BHT: In a 10 mL reaction vial with a stirring bar, 2-phenyl-2*H*-indazole **1** (0.2 mmol), alkyl NHPI esters **2** (2.0 equiv.), 4CzIPN (5 mol%) and 2,6di-*tert*-butyl-4-methyl phenol (BHT, 3.0 equiv) were added. The vial was then evacuated and backfilled three times with N_2 , followed by adding dimethyl carbonate (2 mL) and DABCO (1.0 equiv.). The mixture was stirred at 35 °C with 10 W blue LED irradiation for 12 h under nitrogen atmosphere. After the reaction was completed, the solvent was evaporated under vacuum. Then, the residue was quenched with water (5 mL), and then the ethyl acetate (15 mL) was added three times for extraction. The combined organic layers were dried over anhydrous Na_2SO_4 . The residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 20/1) to afford the desired product **3a** in 28% yield.

2.3 Procedure for emission quenching experiment

Stern-Volmer fluorescence quenching experiments were conducted via adding the appropriate amount of DABCO to a freshly prepared solution of 4CzIPN (1×10^{-4} M) in dry MeCN in a screw-top quartz cuvette at room temperature. After degassing with a stream of N₂ for 10 minutes, the sample was irradiated at 380 nm and the fluorescence was measured from 400 nm to 800 nm.

Figure S1. (A) The emission spectra of 1×10^{-4} M solution of 4CzIPN with various concentrations of **1a**. (B) The linear relationship between I_0/I (I_0 and I are the

fluorescence intensities before and after adding the various concentration of DABCO, respectively) and the concentration of DABCO.

2.4 Procedure for cyclic voltammetry experiment

Cyclic voltammetry analysis of 2H-indazole **1a**, NHPI ester **2a** and DABCO were conducted by a potentiostat (CH instrument, 660E) with a three-electrode system (Reference electrode: SCE, working electrode: Glassy carbon, counter electrode: Pt wire). 0.1 M Bu₄NPF₆ in CH₃CN was used as a supporting electrolyte. The Pt disk was polished by using an alumina suspension (d = 50 nm) before each CV experiment.

Figure S2. CV of DABCO (5 mM in CH_3CN), **1a** (5 mM in CH_3CN) and blank (only 0.1 M Bu_4NPF_6) under nitrogen atmosphere at room temperature. The scan rate was 0.10 V/s.

Figure S3. CV of **2a** (5 mM in CH₃CN) and blank (only 0.1 M Bu₄NPF₆) under nitrogen

atmosphere at room temperature. The scan rate was 0.10 V/s.

3. Procedure and Results of Sensitivity Assessment

General Procedure:

The influence of parameter variations as shown in Table S1 on the reaction was investigated. Only one parameter, such as concentration, water level, oxygen level, light intensity, base dosage and catalyst dosage, was deliberately changed per experiment while maintaining the others at the standard level. Each experiment was carried out twice at the same time in order to reduce the error.

#	Experiment Preparation		
1	High c	1.6 mL DMC	
2	Low c 2.4 mL DMC		
3	High H_2O 2.0 mL DMC + 20 μ L H_2O		
4	High O ₂ Under air		
5	Low I	9W Blue LED	
6	High base	2 eq DABCO	
7	Low base	0.5 eq DABCO	
8	High catalyst 10% 4CzIPN		
9	Low catalyst	talyst 1% 4CzIPN	
10	Control	Standard procedure	

Table S1. Preparation of sensitivity assessment.

Results:

Deviation% = (Average Y. - Standard Y.) / Standard Y. **Table S2**. Results of sensitivity assessment.

#	Experiment	Yield 1 / %	Yield 2 / %	Average Y. / %	Deviation / %
1	High c	50	59	55	-37.5%
2	Low c	87	85	86	-2.3%
3	High H ₂ O	26	28	27	69.3%
4	High O ₂	0	0	0	-100%
5	Low I	82	88	85	-3.4%
6	High base	83	86	85	-3.4%
7	Low base	63	71	67	-23.9%
8	High catalyst	83	82	83	-5.7%
9	Low catalyst	89	92	91	3.4%
10	Control	87	89	88	-

4. Characterization of compounds

3-cyclohexyl-2-phenyl-2H-indazole (3a)¹

48.6 mg, 88%; White solid, m.p. 110-111 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 1H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.56-7.47 (m, 5H), 7.31-7.28 (m, 1H), 7.06-7.03 (m, 1H), 3.00-2.95 (m, 1H), 2.03-1.75 (m, 7H), 1.37-1.25 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.0, 141.3, 140.3, 129.3, 129.1, 126.6, 126.4, 121.4, 120.6, 119.6, 118.0, 37.4, 32.7, 26.7, 26.0. HRMS Calcd for C₁₉H₂₁N₂ [M + H]⁺: m/z 277.1699, Found: 277.1710.

3-cyclohexyl-2-(p-tolyl)-2H-indazole (3b)

38.9 mg, 67%; White solid, m.p. 121-122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.37-7.26 (m, 5H), 7.06-7.01 (m, 1H), 3.01-2.92 (m, 1H), 2.47 (s, 3H), 2.03-1.74 (m, 7H), 1.38-1.20 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 141.2, 139.1, 137.8, 129.8, 126.3, 121.3, 120.5, 119.6, 117.9, 37.4, 32.7, 26.7, 26.0, 21.4. HRMS Calcd for C₂₀H₂₃N₂ [M + H]⁺: m/z 291.1856, Found: 291.1851,.

3-cyclohexyl-2-(4-methoxyphenyl)-2H-indazole (3c)

52.0 mg, 85%; White solid, m.p. 115-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 5.6 Hz, 1H), 7.70 (d, *J* = 6.0 Hz, 1H), 7.39 (d, *J* = 5.6 Hz, 2H), 7.29 (t, *J* = 4.4 Hz, 1H), 7.05-7.02 (m, 3H), 3.90 (s, 3H), 2.97-2.91 (m, 1H), 2.01-1.75 (m, 7H), 1.39-1.23 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.0, 148.8, 141.4, 133.3, 127.7, 126.3, 121.3, 120.5, 119.5, 117.9, 114.4, 55.7, 37.4, 32.7, 26.7, 26.0. HRMS Calcd for C₂₀H₂₃N₂O [M + H]⁺: m/z 307.1805, Found: 307.1811.

3-cyclohexyl-2-(m-tolyl)-2H-indazole (3d)

30.8 mg, 53%; White solid, m.p. 125-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.33-7.26 (m, 3H), 7.25-7.22 (m, 1H), 7.06-7.02 (m, 1H), 3.03-2.94 (m, 1H), 2.46 (s, 3H), 2.04-1.75 (m, 7H), 1.38-1.21 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 141.2, 140.2, 139.5, 129.9, 128.9, 127.3, 126.4, 123.4, 121.4, 120.6, 119.6, 118.0, 37.4, 32.7, 26.7, 26.0, 21.5. HRMS Calcd for C₂₀H₂₃N₂ [M + H]⁺: m/z 291.1856, Found: 291.1886.

3-cyclohexyl-2-(4-fluorophenyl)-2H-indazole (3e)

48.2 mg, 82%; White solid, m.p. 71-72 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.47-7.44 (m, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.23 (t, J = 3.6 Hz, 2H), 7.05 (t, J = 7.2 Hz, 1H), 2.94-2.88 (m, 1H), 2.01-1.76 (m, 7H), 1.37-1.25 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.8 (d, J = 247.5 Hz), 149.0, 141.5, 136.4 (d, J = 3.0 Hz), 128.4 (d, J = 9.0 Hz), 126.6, 121.3, 120.8, 119.6, 117.9, 116.3 (d, J = 22.5 Hz), 37.5, 32.7, 26.7, 26.0. ¹⁹F NMR (564 MHz, CDCl₃) δ -111.8. HRMS Calcd for C₁₉H₂₀FN₂ [M + H]⁺: m/z 295.1605, Found: 295.1612.

2-(4-chlorophenyl)-3-cyclohexyl-2H-indazole (3f)

55.2 mg, 89%; White solid, m.p. 146-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.54-7.50 (m, 2H), 7.44-7.40 (m, 2H), 7.32-7.27 (m, 1H), 7.07-7.02 (m, 1H), 2.97-2.89 (m, 1H), 2.05-1.76 (m, 7H), 1.38-1.21 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 147.3, 141.2, 140.0, 129.39, 129.37, 127.8, 126.5, 126.2, 120.03, 119.98, 119.5, 37.3, 32.7, 26.6, 25.9. HRMS Calcd for C₁₉H₂₀ClN₂ [M + H]⁺: m/z 311.1310, Found: 311.1342.

2-(4-bromophenyl)-3-cyclohexyl-2H-indazole (3g)

48.3 mg, 68%; White solid, m.p. 92-93 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.8 Hz, 1H), 7.70-7.65 (m, 3H), 7.38-7.34 (m, 2H), 7.32-7.27 (m, 1H), 7.07-7.02 (m, 1H), 2.98-2.89 (m, 1H), 2.04-1.76 (m, 7H), 1.38-1.20 (m, 3H) ¹³C NMR (150 MHz, CDCl₃) δ 149.2, 141.3, 139.3, 132.5, 128.1, 126.7, 123.1, 121.4, 120.9, 119.7, 117.9, 37.5, 32.7, 26.7, 26.0. HRMS Calcd for C₁₉H₂₀BrN₂ [M + H]⁺: m/z 355.0804, Found: 355.0808.

2-(3-chlorophenyl)-3-cyclohexyl-2H-indazole (3h)

56.4 mg, 91%; White solid, m.p. 69-70 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.54-7.45 (m, 3H), 7.38-7.35 (m, 1H), 7.32-7.28 (m, 1H), 7.07-7.03 (m, 1H), 3.00-2.92 (m, 1H), 2.05-1.76 (m, 7H), 1.43-1.23 (m, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 149.2, 141.4, 141.3, 135.1, 130.2, 129.4, 127.0, 126.8, 124.7, 121.4, 121.0, 119.7, 118.0, 37.5, 32.7, 26.9, 26.0. HRMS Calcd for C₁₉H₂₀ClN₂ [M + H]⁺: m/z 311.1310, Found: 311.1317.

2-(3-bromophenyl)-3-cyclohexyl-2H-indazole (3i)

51.0 mg, 72%; White solid, m.p. 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 1H), 7.70-7.62 (m, 3H), 7.44-7.39 (m, 2H), 7.32-7.28 (m, 1H), 7.07-7.03 (m, 1H), 3.00-2.91 (m, 1H), 2.04-1.76 (m, 7H), 1.42-1.24 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.2, 141.4, 141.3, 135.1, 130.2, 129.4, 127.0, 126.8, 124.7, 121.4, 121.0, 119.7, 118.0, 37.5, 32.7, 26.7, 26.0. HRMS Calcd for C₁₉H₂₀BrN₂ [M + H]⁺: m/z 355.0804, Found: 355.0819.

3-cyclohexyl-2-(4-(trifluoromethyl)phenyl)-2H-indazole (3j)

60.5 mg, 88%; White solid, m.p. 98-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.81 (m, 3H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.33-7.29 (m, 1H), 7.08-7.04 (m, 1H), 3.01-2.92 (m, 1H), 2.07-1.77 (m, 7H), 1.43-1.23 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.4, 143.2, 141.4, 131.1 (q, *J* = 33.0 Hz), 127.0, 126.9, 126.6 (q, *J* = 3.0 Hz), 123.9 (q, *J* = 270 Hz), 121.4, 121.1, 119.9, 118.0, 37.5, 32.8, 26.7, 25.9. ¹⁹F NMR (564 MHz, CDCl₃) δ -62.5. HRMS Calcd for C₂₀H₂₀F₃N₂ [M + H]⁺: m/z 345.1573, Found: 345.1564.

3-cyclohexyl-6-methoxy-2-phenyl-2H-indazole (3m)

42.2 mg, 69%; White solid, m.p. 136-137 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.60 (m, 1H), 7.56-7.49 (m, 3H), 7.47-7.44 (m, 2H), 7.04-7.00 (m, 2H), 3.89 (s, 3H), 2.98-2.89 (m, 1H), 1.97-1.83 (m, 7H), 1.34-1.25 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 154.1, 145.9, 140.5, 139.9, 129.2, 128.9, 126.5, 121.2, 119.4, 119.2, 97.9, 55.7, 37.2, 32.4, 26.7, 26.0. HRMS Calcd for C₂₀H₂₃N₂O [M + H]⁺: m/z 307.1805, Found: 307.1823.

3-cyclohexyl-6-fluoro-2-phenyl-2H-indazole (3n)

35.3 mg, 60%; Oily liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.67 (q, J = 4.8 Hz, 1H), 7.56-7.52 (m, 3H), 7.46 (d, J = 7.2 Hz, 2H), 7.42 (dd, J = 1.8, 9.6 Hz, 1H), 7.12-7.08 (m, 1H), 2.96-2.91 (m, 1H), 1.92-1.74 (m, 7H), 1.35-1.24 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 157.4 (d, J = 237.0 Hz), 146.4, 141.4 (d, J = 9.0 Hz), 140.2, 129.4, 129.3, 126.5, 119.9 (d, J = 10.5 Hz), 118.6 (d, J = 10.5 Hz), 118.0 (d, J = 28.5 Hz), 103.8 (d, J = 24.0 Hz), 37.2, 32.5, 26.7, 25.9. ¹⁹F NMR (564 MHz, CDCl₃) δ -121.0. HRMS Calcd for C₁₉H₂₀FN₂ [M + H]⁺: m/z 295.1605, Found: 295.1615.

6-chloro-3-cyclohexyl-2-phenyl-2H-indazole (30)

32.2 mg, 52%; White solid, m.p. 134-135°C; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.82 (m, 1H), 7.65-7.62 (m, 1H), 7.58-7.52 (m, 3H), 7.47-7.44 (m, 2H), 7.22 (dd, J = 2.0,

9.2 Hz, 1H), 2.98-2.89 (m, 1H), 1.94-1.83 (m, 7H), 1.41-1.25 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.1, 141.4, 138.8, 135.1, 129.5, 127.8, 126.7, 121.3, 120.9, 119.7, 117.9, 37.5, 32.7, 26.7, 25.9. HRMS Calcd for C₁₉H₂₀ClN₂ [M + H]⁺: m/z 311.1310, Found: 311.1324.

3-cyclobutyl-2-phenyl-2H-indazole (3p)

28.3 mg, 57%; White solid, m.p. 62-63 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.54-7.47 (m, 5H), 7.32-7.29 (m, 1H), 7.09-7.06 (m, 1H), 3.98-3.91 (m, 1H), 2.63-2.55 (m, 2H), 2.36-2.30 (m, 2H), 2.08-1.95 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 149.0, 140.4, 139.4, 129.2, 128.9, 126.5, 126.3, 121.0, 120.6, 118.0, 33.1, 29.3, 19.1. HRMS Calcd for C₁₇H₁₇N₂ [M + H]⁺: m/z 249.1386, Found: 249.1234.

3-cyclopropyl-2-phenyl-2H-indazole (3q)

35.1 mg, 75%; White solid, m.p. 72-73 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72-7.68 (m, 4H), 7.55-7.52 (m, 2H), 7.48-7.45 (m, 1H), 7.30-7.27 (m, 1H), 7.06-7.03 (m, 1H), 2.18-2.13 (m, 1H), 1.04-1.01 (m, 2H), 0.94-0.91 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 148.7, 140.6, 136.8, 129.1, 128.6, 126.6, 125.9, 121.2, 121.0, 120.4, 118.0, 7.71, 7.22. HRMS Calcd for C₁₆H₁₅N₂ [M + H]⁺: m/z 235.1230, Found: 235.1242.

2-phenyl-3-(tetrahydro-2H-pyran-4-yl)-2H-indazole $(3r)^2$

36.1 mg, 65%; White solid, m.p. 134-135 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.58-7.52 (m, 3H), 7.48-7.46 (m, 2H), 7.32 (t, *J* = 6.6 Hz, 1H), 7.10-7.07 (m, 1H), 4.08 (dd, *J* = 4.2, 12.0 Hz, 2H), 3.43-3.38 (m, 2H), 3.26-3.21 (m, 1H), 2.42-2.34 (m, 2H), 1.78 (dd, *J* = 1.8, 13.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 149.0, 140.1, 139.0, 129.44, 129.38, 126.6, 126.5, 121.2, 120.9, 119.7, 118.1, 68.2, 34.7, 32.2. HRMS Calcd for C₁₈H₁₉N₂O [M + H]⁺: m/z 279.1492, Found: 279.1496.

tert-butyl 4-(2-phenyl-2H-indazol-3-yl)piperidine-1-carboxylate (3s)

49.0 mg, 65%; White solid, m.p. 150-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.56-7.55 (m, 3H), 7.48-7.46 (m, 2H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 4.32-4.13 (m, 2H), 3.11 (t, *J* = 12.4 Hz, 1H), 2.67 (t, *J* = 10.8 Hz, 2H), 2.21-2.13 (m, 2H), 1.86 (d, *J* = 12.4 Hz, 2H), 1.50 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 154.9, 149.0, 140.1, 139.0, 129.5, 129.4, 126.6, 126.5, 121.2, 120.8, 119.7, 118.1, 79.9, 35.7, 31.5, 28.6. HRMS Calcd for C₂₃H₂₈N₃O₂ [M + H]⁺: m/z 378.2176, Found:378.2174.

3-(tert-butyl)-2-phenyl-2H-indazole (3t)²

28.0 mg, 56%; White solid, m.p. 143-144 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J

= 9.0 Hz, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.51-7.46 (m, 3H), 7.44-7.42 (m, 2H), 7.30-7.27 (m, 1H), 7.06-7.03 (m, 1H), 1.43 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 148.6, 144.6, 143.1, 129.5, 128.6, 128.2, 126.1, 122.8, 120.9, 119.8, 118.0, 34.9, 32.0. HRMS Calcd for C₁₇H₁₉N₂ [M + H]⁺: m/z 251.1543, Found: 251.1553.

3-(1-methylcyclohexyl)-2-phenyl-2H-indazole (3u)

34.2 mg, 59%; White solid, m.p. 115-116 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.52-7.44 (m, 5H), 7.29-7.26 (m, 1H), 7.06-7.03 (m, 1H), 2.23-2.22 (m, 2H), 1.50-1.33 (m, 11H). ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 143.5, 143.2, 129.5, 128.7, 127.6, 126.0, 122.9, 121.1, 120.0, 118.1, 39.4, 38.6, 29.8, 26.0, 23.0. HRMS Calcd for C₂₀H₂₃N₂ [M + H]⁺: m/z 291.1856, Found: 291.1868.

3-((3r, 5r, 7r)-adamantan-1-yl)-2-phenyl-2H-indazole (3v)

48.5 mg, 74%; White solid, m.p. 188-189°C; ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.51-7.45 (m, 3H), 7.43-7.41 (m, 2H), 7.28-7.27 (m, 1H), 7.04-7.02 (m, 1H), 2.14-2.13 (m, 6H), 1.99 (s, 3H), 1.69 (q, *J* = 12 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 148.7, 144.8, 143.5, 129.5, 128.5, 128.3, 126.0, 123.1, 120.6, 119.6, 118.0, 42.7, 37.9, 36.6, 28.7. HRMS Calcd for C₂₃H₂₅N₂ [M + H]⁺: m/z 329.2012, Found: 329.2008.

2-phenyl-3-(1-phenylcyclopropyl)-2H-indazole (3w)

46.0 mg, 74%; White solid, m.p. 110-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.81 (m, 2H), 7.49-7.47 (m, 2H), 7.42-7.37 (m, 4H), 7.30-7.28 (m, 2H), 7.23-7.19 (m, 1H), 7.18-7.14 (m, 1H), 7.02-6.99 (m, 2H), 1.46-1.43 (m, 2H), 1.31-1.28 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 148.7, 144.3, 140.6, 137.5, 128.9, 128.8, 128.5, 126.9, 126.0, 125.7, 125.2, 123.1, 122.0, 120.6, 118.2, 20.1, 19.1. HRMS Calcd for C₂₂H₁₉N₂ [M + H]⁺: m/z 311.1543, Found: 311.1571.

3-pentyl-2-phenyl-2H-indazole(3x)³

44.9 mg, 85%; White solid, m.p. 152-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.66 (m, 2H), 7.56-7.47 (m, 5H), 7.34-7.29 (m, 1H), 7.10-7.05 (m, 1H), 3.03 (t, *J* = 7.6 Hz, 2H), 1.67-1.61 (m, 2H), 1.27-1.23 (m, 4H), 0.84-0.80 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.8, 140.3, 137.1, 129.3, 129.0, 126.8, 126.3, 121.2, 121.0, 120.4, 117.7, 31.6, 29.2, 25.4, 22.3, 14.0. HRMS Calcd for C₁₈H₂₁N₂ [M + H]⁺: m/z 265.1699, Found: 265.1714.

2-phenyl-3-(3-phenylpropyl)-2H-indazole (3y)

35.6 mg, 57%; White solid, m.p. 166-167 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 9.0 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.52-7.47 (m, 5H), 7.34-7.31 (m, 1H), 7.25 (t, J = 5.4 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.09-7.06 (m, 3H), 3.07 (t, J = 7.8 Hz, 2H),

2.60 (t, J = 7.8 Hz, 2H), 2.02-1.96 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 148.8, 141.2, 140.1, 136.4, 129.3, 129.0, 128.5, 128.4, 126.8, 126.2, 126.1, 121.3, 121.2, 120.2, 117.8, 35.5, 30.8, 24.9. HRMS Calcd for C₂₂H₂₁N₂ [M + H]⁺: m/z 313.1699, Found: 313.1702.

3-(9-bromononyl)-2-phenyl-2H-indazole (3z)

48.5 mg, 61%; Oily liquid; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 9.0 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.56-7.49 (m, 5H), 7.33-7.31 (m, 1H), 7.09-7.07 (m, 1H), 3.39 (t, *J* = 6.6 Hz, 2H), 3.04 (t, *J* = 7.8 Hz, 2H), 1.84-1.79 (m, 2H), 1.66-1.61 (m, 2H), 1.39-1.35 (m, 2H), 1.26-1.21 (m, 8H). ¹³C NMR (150 MHz, CDCl₃) δ 148.8, 140.3, 137.0, 129.3, 129.0, 126.8, 126.3, 121.2, 121.0, 120.3, 117.8, 34.1, 32.9, 29.5, 29.32, 29.27, 29.1, 28.8, 28.2, 25.4. HRMS Calcd for C₂₂H₂₈BrN₂ [M + H]⁺: m/z 399.1430, Found: 399.1434.

50.7 mg, 59%; oily liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.56-7.48 (m, 5H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 5.39-5.28 (m, 2H), 3.03 (t, *J* = 8.0 Hz, 2H), 2.03-1.96 (m, 4H), 1.69-1.61 (m, 2H), 1.27-1.23 (m, 20H), 0.88 (t, *J* = 6.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.7, 140.2, 137.0, 130.1, 129.8, 129.3, 129.0, 126.7, 126.3, 121.2, 121.0, 120.3, 117.7, 32.0, 29.9, 29.8, 29.6, 29.5, 29.43, 29.36, 29.13, 29.11, 27.3, 27.2, 25.4, 22.8, 14.2. HRMS Calcd for C₃₀H₄₃N₂ [M + H]⁺: m/z 431.3421, Found:431.3419.

4-(2-phenyl-2H-indazol-3-yl)butan-2-one (4b)

23.7 mg, 45%; White solid, m.p. 109-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.8 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.57-7.49 (m, 5H), 7.34-7.30 (m, 1H), 7.11-7.07 (m, 1H), 3.36-3.32 (m, 2H), 2.74 (t, *J* = 8.0 Hz, 2H), 2.07 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 206.5, 148.8, 140.0, 135.0, 129.5, 129.3, 126.9, 126.2, 121.5, 121.0, 120.0, 117.9, 42.6, 30.0, 19.4. HRMS Calcd for C₁₇H₁₇N₂O [M + H]⁺: m/z 265.1335, Found: 265.1329.

(5S,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-5-(2-phenyl-2H-indazol-3yl)pentan-2-yl)dodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (**4c**)

47.4 mg, 43%; White solid, m.p. 240-241 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 9.0 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.56-7.49 (m, 5H), 7.32 (t, *J* = 6.6 Hz, 1H), 7.09-7.06 (m, 1H), 3.15-3.10 (m, 1H), 2.99-2.94 (m, 1H), 2.92-2.87 (m, 1H), 2.86-2.79 (m, 2H), 2.34-2.19 (m, 6H), 2.13-2.08 (m, 2H), 2.03-1.93 (m, 3H), 1.83-1.77 (m, 3H), 1.62-1.57 (m, 1H), 1.50-1.44 (m, 1H), 1.38 (s, 3H), 1.24-1.16 (m, 2H), 1.12-1.06 (m, 1H), 0.99 (s, 3H), 0.83 (d, *J* = 6.60 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 212.0, 209.1, 208.8, 148.8, 140.1, 137.1, 129.3, 129.1, 126.8, 126.3, 121.09, 121.05, 120.2, 117.8, 56.9, 51.8, 49.1, 46.9, 45.7, 45.3, 45.1, 42.9, 38.7, 36.6, 36.1, 35.9, 35.4, 35.3, 27.7, 25.2, 22.4, 22.0, 18.8, 11.9. HRMS Calcd for C₃₆H₄₃N₂O₃ [M + H]⁺: m/z

551.3268, Found: 551.3263.

3-(5-(2,5-dimethylphenoxy)-2-methylpentan-2-yl)-2-phenyl-2H-indazole (4d)

32.6 mg, 41%; White solid, m.p. 240-241 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.52-7.43 (m, 5H), 7.32-7.27 (m, 1H), 7.08-7.04 (m, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 7.6 Hz, 1H), 6.53 (s, 1H), 3.82 (t, *J* = 6.0 Hz, 2H), 2.28 (s, 3H), 2.14 (s, 3H), 1.98-1.94 (m, 2H), 1.67-1.60 (m, 2H), 1.43 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 157.0, 148.7, 143.1, 142.9, 136.6, 130.5, 129.6, 128.7, 128.0, 126.2, 123.6, 122.5, 121.2, 120.9, 120.5, 118.1, 112.0, 40.8, 38.2, 30.3, 25.5, 21.5, 16.0. HRMS Calcd for C₂₇H₃₁N₂O [M + H]⁺: m/z 399.2431, Found: 399.2464.

(S)-2-((tert-butoxycarbonyl)amino)-4-(2-phenyl-2H-indazol-3-yl)butanoate (4e)

36.8 mg, 45%; White solid, m.p. 238-239°C; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 9.0 Hz, 1H), 7.63 (d, *J* = 9.0 Hz, 1H), 7.56-7.51 (m, 5H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.2 Hz, 1H), 5.00-4.99 (m, 1H), 4.31-4.30 (m, 1H), 3.58 (s, 3H), 3.18-3.03 (m, 2H), 2.26-2.22 (m, 1H), 2.01-1.95 (m, 1H), 1.42 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 172.4, 155.3, 148.8, 139.9, 134.8, 129.4, 129.2, 126.9, 126.3, 121.5, 121.2, 119.9, 117.9, 80.2, 53.1, 52.5, 32.2, 28.4, 21.4. HRMS Calcd for C₂₃H₂₈N₃O₄ [M + H]⁺: m/z 410.2074, Found: 410.2069.

5. NMR copies of products

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1(ppm)

7.363 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.531 7.5143 7.5150 7.5150 7.5150 7.5150 7.5150 7.5150 7.5143 7.5143 7.51443 7.51443 7.5131 7.5131 7.5280 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.734

$\begin{array}{c} 7.865\\ 7.5444\\ 7.5444\\ 7.5433\\ 7.5434\\ 7.5494\\ 7.5333\\ 7.5333\\ 7.5333\\ 7.5333\\ 7.5333\\ 7.5333\\ 7.5333\\ 7.73363\\ 7$

7.877 7.817 7.81356 7.646 7.646 7.646 7.646 7.641 7.641 7.641 7.646 7.646 7.646 7.646 7.646 7.646 7.646 7.646 7.656 7.665 7.705 7.665 7.705 7.665 7.705 7.665 7.705 7.665 7.705 7.665 7.705 7.665 7.705 7.665 7.705 7.705 7.665 7.705 7.705 7.665 7.705 7.705 7.20

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 11.5
 11.0
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5 1.0 0.5 0.0 -0.

7.395 7.395 7.352 7.352 7.454 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.455 7.7505 7.7514 7.7514 7.7525 7.7525 7.7525 7.7525 7.7525 7.7525 7.7525 7.7526 7.7527 7.7527 7.7528 7.7528 </

6. References

- 1. J. R. Hummel and J. A. Ellman, Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades, *J. Am. Chem. Soc.*, 2015, **137**, 490-498.
- L. Liu, P. Jiang, Y. Liu, H. Du and J. Tan, Direct radical alkylation and acylation of 2H-indazoles using substituted Hantzsch esters as radical reservoirs, *Organic Chemistry Frontiers*, 2020, 7, 2278-2283.
- 3. Z. Long, Y. Yang and J. You, Rh(III)-Catalyzed [4 + 1]-Annulation of Azoxy Compounds with Alkynes: A Regioselective Approach to 2H-Indazoles, *Org. Lett.*, 2017, **19**, 2781-2784.