Electronic Supplementary Information (ESI)

π -Extended Dibenzo[*g*,*p*]chrysenes

Mohammad Mosharraf Hossain,*¹ M. Saeed Mirzaei,² Sergey V. Lindeman,¹ Saber Mirzaei*³ and Rajendra Rathore^{1‡}

¹Department of Chemistry, Marquette University, Milwaukee, WI 53201-1414, United States ²Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran ³Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States

[‡]Deceased February 16, 2018.

*E-mail: hossaimm@miamioh.edu; saber.mirzaei@pitt.edu.

Table of Contents

S1. General Experimental Methods and Materials.	2
S2. Synthesis of compounds.	3
S3. Crystal data and structure refinement.	13
4. NMR spectroscopy	18
S5. Computational details.	41
S6. Reference.	52
S7. Cartesian coordinates of optimized molecules at MN15/6-31+G(d,p)+PCM(CH ₂ Cl ₂)	54

S1. General Experimental Methods and Materials.

All reactions were performed under an argon atmosphere unless otherwise noted. All solvents and starting materials were used without further purification unless otherwise noted. Anhydrous and nonoxygenated solvents were purchased from Sigma Aldrich (sure-seal bottle) otherwise noted. NMR spectra were recorded on Varian 400 MHz NMR spectrometers. All chemical shifts are referenced to residual protium in the NMR solvent (CHCl₃: δ 7.26 for protons and 77.16 for carbons).¹ For some compounds, due to the presence of several aromatic and aliphatic protons/carbons with the same environment, several ¹H NMR and ¹³C NMR signals overlapped with each other and do not follow standard splitting patterns. Mass spectra were recorded on a Bruker Daltonics MALDI-TOF mass spectrometer with dithranol (DIT) used as the matrix. High-resolution mass spectrometry (HRMS) was performed on a Thermo Scientific Q-Exactive Oribtrap instrument equipped with a Dionex Ultimate 3000 (RSLC) inlet system, and electrospray (ESI) and atmospheric pressure chemical (APCI) ionization sources.

Absorption spectra (UV-vis-NIR) were obtained on a Cary 5000 spectrophotometer and emission spectra were recorded in a PTI QuantaMaster spectrofluorometer. Electronic absorption spectra of *meta*^{+•} and *para*^{+•} isomers in CH₂Cl₂ at 0 °C were obtained by quantitative redox titrations using robust aromatic oxidants (THEO^{•+}SbCl₆⁻ ($E_{red} = 0.67$ V vs Fc/Fc⁺ and $\lambda_{max} = 518$ nm, 163 μ M for *m*-H, 261 μ M for *m*-OMe, 71 μ M for *p*-OMe, 137 μ M for *m*-Me) and NAP^{•+}SbCl₆⁻ ($E_{red} = 0.94$ V vs Fc/Fc⁺ and $\lambda_{max} = 672$ nm, 54 μ M for *p*-H, 123 μ M for *p*-Me)). The redox titration experiment was carried out by incremental addition of *meta* or *para* species (Stock solution concentration: 0.116 mM of *p*-H, 0.675 mM of m-H, 0.66 mM of *m*-OMe, 0.08 mM of *p*-OMe, 0.95 mM of *m*-Me, 0.85 mM of *p*-Me) to the solution of proper oxidant.

The electrochemical cell for cyclic voltammetry (CV) was of an air-tight design with high vacuum Teflon valves and Viton O-ring seals to allow an inert atmosphere to be maintained without contamination by grease. The working electrode consisted of an adjustable platinum disk embedded in a glass seal to allow periodic polishing (with a fine emery cloth) without changing the surface area (~1 mm²) significantly. The reference SCE electrode (saturated calomel electrode) and its salt bridge were separated from the catholyte by a sintered glass frit. The counter electrode consisted of platinum gauze that was separated from the working electrode by ~3 mm. The CV measurements were carried out in a solution of 0.1 M supporting electrolyte (tetra-*n*-butyl ammonium hexafluorophosphate, TBAPF₆) and 0.5×10^{-3} M for (*p*-OMe) and 1×10^{-3} M for (*p*-H, *p*-Me, *m*-H, *m*-Me and *m*-OMe) substrate in dry dichloromethane under an argon atmosphere. All cyclic voltammograms were recorded at a sweep rate of 200 mV s⁻¹ unless otherwise specified and were IR-compensated. The oxidation potentials (*E*_{1/2}) were calibrated with added (equimolar) ferrocene (*E*_{1/2} = 0.450 V vs. SCE).

Suitable crystals were selected, and data collected on an Oxford SuperNova diffractometer. The crystals were kept at 100 K during data collection. Using Olex2,² the structure was solved with the XS structure solution program using Direct Methods and refined with the XL³ refinement package using least-squares minimization.

S2. Synthesis of compounds.

Scheme S1. The general synthetic approach.

(a) Zn powder, ZnCl₂, 50% aqueous THF, rt; (b) AcOH, H₂SO₄ (cat), 85 °C; (c) NaBH₄, THF, MeOH, 60 °C; (d) AcOH, H₂SO₄ (cat) 85 °C; (e) Br₂, I₂, anhydrous CH₂Cl₂, rt; (f) A, Pd(dppf)Cl₂, Na₂CO₃, 2:1 DME/H₂O, 100 °C; (g) CH₃SO₃H, CH₂Cl₂, rt.

Synthesis of compound 1a:

A mixture of 2,7-dibromo-9H-fluoren-9-one (S1, 3.00 g, 8.87 mmol), Zn powder (15.00 g, 230 mM), ZnCl₂ (3.00 g, 22.01 mmol), and 50% aqueous THF (30 mL) was stirred at room temperature for 40 min. The reaction mixture was combined with 3N HCl (15 mL) and filtered to remove Zn powder. The filtrate was extracted with toluene and the Zn powder on the filter paper was washed with toluene. The combined toluene solutions were washed with water and dried over anhydrous MgSO₄. The solvent was evaporated to give a crude product. Then the compound was purified by recrystallization from hexane to afford pure **1a** as a white solid (2.86 g, 95%,); mp 156-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.21 (s, 2H from OH), 7.23 (bs, 8 H), 7.41 (bs, 4H); ¹³C NMR (400 MHz, CD₃OD) δ 87.1, 121.9, 122.7, 129.3, 133.1, 139.4, 140.0. MALDI-TOF ([M/z]⁺ calculated): 678.01, (exp.): 678.12.

Synthesis of compound **2a**:

A mixture of **1a** (1.30 g, 1.91 mmol), AcOH (30 mL), and H₂SO₄ (1.50 mL) was stirred at 85 °C for 4 h. The reaction mixture was cooled to room temperature and combined with cold water (100 mL). The mixture was extracted with dichloromethane (3×100 mL) and was washed with water. The combined dichloromethane extracts were dried over anhydrous MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude product was recrystallized from acetonitrile to afford pure **2a** (1.07 g, 85%); mp 395-397 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.66 (d, *J* = 2 Hz, 1 H), 7.08 (dd, *J* = 1.76 Hz, 0.46 Hz, 2H), 7.55 (m, 3H), 7.64 (dd, *J* = 8.2 Hz, 0.46 Hz, 2H), 7.92 (m, 2H), 8.02 (d, *J* = 8.63 Hz, 1H), 8.10 (d, *J* = 2.16 Hz, 1H); ¹³C NMR (400 MHz, CDCl₃) δ 67.8, 122.3, 122.4, 123.5, 124.2, 125.4, 126.0, 127.9, 128.7, 130.5, 131.2, 131.8, 132.2, 132.4, 135.8, 138.6, 139.7, 139.8, 148.2, 193.8. MALDI-TOF ([M/z]⁺ calculated): 660.00 (exp.): 660.11.

Synthesis of compound **3a**:

Compound **2a** (1.01 g, 1.53 mmol) was dissolved in THF (15 mL) and methanol (15 mL) in a Schlenk flask under an argon atmosphere and outfitted with an air condenser. The reaction mixture was heated to 60 °C and NaBH₄ (58.00 mg, 1.53 mmol) was added in four portions (14.50 mg each time) over 4 hours with heating. Heating at 60 °C was continued for 20 hours. The reaction mixture was cooled to 0 °C and quenched with the slow addition of 1 M HCl (30 mL). The product was then extracted with dichloromethane (3×40 mL). The combined organic extracts were washed with H₂O (2×40 mL) and saturated brine (2×30 mL). The organic phase was then dried over anhydrous MgSO₄, filtered, and the solvent was removed under reduced pressure. The product **3a** was isolated as a white solid which was purified by recrystallization from hexane to afford pure compound (1.00 g, quant.); mp > 450 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.66 (d, *J* = 6.4 Hz, 1H), 5.23 (d, *J* = 6.4 Hz, 1H) 6.75 (d, *J* = 2.05 Hz, 1 H), 6.84 (d, *J* = 1.26 Hz, 1H), 7.34 (d, *J* = 1.26 Hz, 1H), 7.47 (dd, *J* = 8.16 Hz, 1.78 Hz, 1H), 7.50 (dd, *J* = 8.43 Hz, 2.09 Hz, 1H), 7.58 (m, 2H), 7.65 (m, 3H), 7.76 (m, 2H); ¹³C NMR (400 MHz, CDCl₃) δ 61.2, 74.1, 121.8, 121.9, 121.9, 122.5, 123.0, 123.4, 125.5, 126.2, 127.9, 129.0, 123.0, 130.3, 131.4, 131.8, 132.1, 132.2, 132.3, 132.4, 138.1, 139.0, 139.3, 140.3, 146.5, 149.0. MALDI-TOF ([M/z]⁺ calculated): 662.01, (exp.): 662.09.

Synthesis of compound **4a**:

A mixture of **3a** (1.22 g, 1.84 mmol), AcOH (30 mL), and H₂SO₄ (1.50 mL) was stirred at 85 °C for 4 h. The reaction mixture was cooled to room temperature and combined with cold water (100 mL). A white precipitate was isolated by filtration and washed with water (3×100 mL) and EtOH (100 mL), then dried under vacuum to obtain compound **4a** (1.10 g, 92%). The white solid was insoluble in all common organic solvents therefore no NMR analysis was possible; mp > 450 °C. MALDI-TOF ([M/z]⁺ calculated): 644.00, (exp.): 644.10.

Synthesis of compound **1b**:

A mixture of fluorenone (6.00 g, 33.3 mmol), Zn powder (30.00 g, 461.53 mmol), ZnCl₂ (6.00 g, 44.02 mmol), and 50% aqueous THF (120 mL) was stirred at room temperature for 40 min. The reaction mixture was combined with 3N HCl (30 mL) and filtered to remove Zn powder. The filtrate was extracted with toluene and the Zn powder on the filter paper was washed with toluene. The combined toluene solutions were washed with water and dried over anhydrous MgSO₄. The solvent was evaporated to give crude **1b** (6.02 g, quant.). The crude product was used in the next reaction without purification. MALDI-TOF ($[M/z]^+$ calculated): 362.43, (exp.): 362.49.

Synthesis of compound **2b**:

A mixture of **1b** (6.00 g, 16.55 mmol), AcOH (70 mL), and H₂SO₄ (6 mL) was stirred at 85 °C for 4 h. The reaction mixture was cooled to room temperature and combined with cold water (100 mL). The mixture was extracted with dichloromethane (3×100mL) and washed with water. The combined dichloromethane extracts were dried over anhydrous MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude product was purified by washing with a mixture of acetonitrile and CH₂Cl₂ (95:5) to afford pure **2b** (4.70 g, 83%); mp 248-250 °C. ¹H NMR (400 MHz, CDCl₃) δ = 6.62 (dd, *J* = 7.9 Hz, 1.36 Hz, 1H), 7.07 (m, 3H), 7.18 (dt, *J* = 7.46 Hz, 1.18 Hz, 2H), 7.38 (m, 3H), 7.46 (dt, *J* = 7.61 Hz, 1.08 Hz, 1H), 7.79 (m, 3H), 8.00 (dd, *J* = 7.72 Hz, 1.5Hz, 1H), 8.10 (dd, *J* = 8.27 Hz, 1.0Hz, 1H), 8.20 (dd, *J* = 8.1 Hz, 0.3 Hz, 1H); ¹³C NMR (400 MHz, CDCl₃) δ 68.9, 120.7, 123.4, 124.3, 124.9, 128.1, 128.2, 128.3, 128.5, 128.5, 128.7, 129.4, 130.3, 130.7, 135.1, 138.3, 139.5, 141.8, 147.2, 197.4. MALDI-TOF ([M/z]⁺ calculated): 344.41, (exp.): 344.48.

Synthesis of compound **3b**:

Compound 2b (4.70 g, 13.80 mmol) was dissolved in THF (60 mL) and methanol (60 mL) in a Schlenk flask under an argon atmosphere and outfitted with an air condenser. The reaction mixture was heated to 60 °C and NaBH₄ (520 mg, 13.80 mmol) was added in four portions (130 mg each time) over 4 hours with heating. Heating at 60 °C was continued for 20 hours. The reaction was cooled to 0 °C and quenched with the slow addition of 1 M HCl (100 mL). The product was then extracted with dichloromethane (3×100 mL). The combined organic phases were washed with H₂O $(2 \times 100 \text{ mL})$ and saturated brine solution $(2 \times 50 \text{ mL})$. The organic extracts were then dried over anhydrous MgSO₄, filtered, and the solvent was removed under reduced pressure. The product **3b** was isolated as white solid (4.66 g, quant.); mp 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.6 (d, J = 6.8 Hz, 1H), 5.31 (d, J = 6.8 Hz, 1H) 6.68 (dd, J = 7.90 Hz, 1.38 Hz, 1 H), 6.80 (d, J = 7.70Hz, 1H), 7.01 (dt, J = 7.72 Hz, 1.1 Hz, 1H), 7.07 (dt, J = 7.5 Hz, 1.28 Hz, 1H), 7.21 (d, J = 7.68 Hz, 1H), 7.34 (m, 5H), 7.51 (m, 2H), 7.75 (d, J = 7.76 Hz, 1H), 7.80 (d, J = 7.61 Hz, 1H), 7.95 (dt, J = 8.08 Hz, 1.20 Hz, 2H); ¹³C NMR (400 MHz, CDCl₃) δ 61.6, 75.0, 120.2, 120.3, 123.8, 124.3, 124.8, 125.9, 126.7, 127.5, 127.6, 128.0, 128.3, 128.3, 128.4, 128.5, 128.6, 128.8, 133.8, 133.8, 137.2, 138.8, 141.2, 142.3, 145.7, 148.1. MALDI-TOF ([M/z]⁺ calculated): 346.43, (exp.): 346.51.

Synthesis of compound **4b**:

A mixture of compound **3b** (4.70 g, 13.56 mmol), AcOH (60 mL), and H₂SO₄ (6 mL) was stirred at 85 °C for 4 h. The reaction mixture was carefully neutralized with aqueous NaHCO₃ solution and extracted with CH₂Cl₂ (3×50 mL). The combined organic extracts were washed with water, dried over anhydrous MgSO₄, and filtered, and the solvent was removed under reduced pressure. The crude solid was recrystallized from ethanol to afford dibenzo[*g*,*p*]chrysene **4b** (4.40 g, quant.); mp 202-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (m, 8H), 8.71 (dt, *J* = 8.57 Hz, 1.65 Hz, 8H); ¹³C NMR (400 MHz, CDCl₃) δ 123.8, 126.7, 127.6, 129.1, 129.4, 131.0. MALDI-TOF ([M/z]⁺ calculated): 328.41, (exp.): 328.48. Synthesis of compound 5:

In a 1000 mL round bottom flask was dissolved **4b** (1.00 g, 3.00 mmol) in anhydrous dichloromethane (140 mL). Iodine (75 mg, 0.29 mmol) was added and the mixture stirred for 30 min at room temperature. Bromine (2.43 g, 0.78 mL, 15.20 mmol) was added slowly through the rubber septum and stirring continued for an additional 75 hours at room temperature. After every 24 hours, additional dichloromethane (100 mL) and bromine (0.30 mL, 5.83 mmol) were added until 75 hours had elapsed. After the completion of the reaction, the solvent was evaporated under reduced pressure and the reddish-colored crude solid was obtained washed with ethanol. The resulting white-colored solid was dissolved in tetrahydrofuran and crystallized to afford colorless crystals of **5** (1.90 g, 98%); mp 423-425 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 8.8 Hz, 2.0 Hz, 4H), 8.42 (d, *J* = 8.8 Hz, 4H), 8.73 (d, *J* = 2.0 Hz, 4H). MALDI-TOF ([M/z]⁺ calculated): 644.00, (exp.): 644.11.

General procedure to prepare compound 6s and 7s:

To a mixture of corresponding benzoxaborole (A, 6 equivalents), tetrabromo dibenzochrysene (4a or 5) (1 equivalent), sodium carbonate (10 equivalents), and Pd(dppf)Cl₂ (0.4 equivalents) in a 250 mL Schlenk flask equipped with air condenser was added 1,2-dimethoxyethane (DME) and water (2:1). The mixture was evacuated and filled with argon three times. The mixture was heated to 100 °C for 48 h. The mixture was then cooled to room temperature and 50 mL of water was added. The blackish solution was transferred to a 1 L separatory funnel and extracted with diethyl ether (3×50 mL), CH₂Cl₂ (3×50 mL), CHCl₃ (3×50 mL) and ethyl acetate (3×50 mL). The combined ether extracts and ethyl acetate extracts were washed with brine and the combined dichloromethane extracts and chloroform extracts were washed with brine and both organic extracts were dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. The blackish-brown crude solid was purified by washing with a mixture of hexane and CH₂Cl₂ (9:1) to afford the desired product that was used without further purification.

Compound **6-H**:

This compound was synthesized by using the general coupling procedure with **A-H** (0.81 g, 5.04 mmol, 6 equivalents), **5** (0.50 g, 0.77 mmol, 1 equivalent), sodium carbonate (0.82 g, 7.76 mmol, 10 equivalents), and Pd(dppf)Cl₂ (0.22 g, 0.31 mmol, 0.40 equivalents) in 1,2-dimethoxyethane (DME) (40 mL) and water (20 mL). The crude solid was washed with a mixture of hexane and chloroform (95:5) to afford **6-H** (0.30 g, 44%); mp 270-272 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.53 (s, 24H), 1.88 (s, 4H), 7.21 (dd, 4H, *J* = 7.68 Hz, 1.65 Hz), 7.30 (td, 4H, *J* = 7.48 Hz, 1.60 Hz), 7.40 (td, 4H, *J* = 8.21 Hz, 1.56 Hz), 7.68 (t, 8H, *J* = 8.63 Hz, 1.61 Hz), 8.61 (d, 4H, *J* = 1.68 Hz), 8.79 (d, 4H, *J* = 8.52 Hz). C₆₂H₅₆O₄, HRMS(ESI) calc.: 864.4173; exp.: 864.4185.

Compound **6-Me**:

This compound was synthesized by using the general coupling procedure with **A-Me** (0.85 g, 4.84 mmol, 6 equivalents), **5** (0.52 g, 0.80 mmol, 1 equivalent), sodium carbonate (0.85 g, 8.07 mmol, 10 equivalents), and Pd(dppf)Cl₂ (0.23 g, 0.32 mmol, 0.40 equivalents) in 1,2-dimethoxyethane (DME) (40 mL) and water (20 mL). The crude solid was washed with a mixture of hexane and CH₂Cl₂ (85:15) to afford **6 Me** (0.67 g, 90%); mp 238-240 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.52 (s, 24H), 1.81 (s, 4H), 2.44 (s, 12H), 7.10 (s, 8H), 7.52 (s, 4H), 7.64 (d, 4H, *J* = 8.54 Hz), 8.57 (d, 4H, *J* = 1.37 Hz), 8.77 (d, 4H, *J* = 8.53 Hz). C₆₆H₆₄O₄Na, HRMS(ESI) calc.: 943.4697; exp.: 943.4719.

Compound 6-OMe:

This compound was synthesized by using the general coupling procedure with **A-OMe** (1.78 g, 9.30 mmol, 6 equivalents), **5** (1.0 g, 1.55 mmol, 1 equivalent), sodium carbonate (1.64 g, 15.52 mmol, 10 equivalents), and Pd(dppf)Cl₂ (0.45 g, 0.62 mmol, 0.40 equivalents) in 1,2-dimethoxyethane (DME) (60 mL) and water (30 mL). The crude solid was washed with a mixture of acetonitrile and CH₂Cl₂ (95:5) to afford **6-OMe** (0.42 g, 77%); mp 246-248 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.51 (s, 24H), 1.86 (bs, 4H), 3.88 (s, 12H), 6.83 (dd, 4H, J = 8.40 Hz, 2.70 Hz), 7.13 (d, 4H, J = 8.31 Hz), 7.28 (d, 4H, J = 2.68 Hz), 8.57 (d, 4H, J = 1.75 Hz), 8.76 (d, 4H, J = 8.44 Hz). C₆₆H₆₄O₈, HRMS(ESI) calc.: 984.4596; exp.: 984.4588.

Compound **7-H**:

This compound was synthesized by using the general coupling procedure with **A-H** (0.88 g, 5.43 mmol, 6 equivalents), **4a** (0.50 g, 0.77 mmol, 1 equivalent), sodium carbonate (0.82 g, 7.76 mmol, 10 equivalents), and Pd(dppf)Cl₂ (0.45 g, 0.62 mmol, 0.40 equivalents) in in 1,2-dimethoxyethane (DME) (40 mL) and water (20 mL). The crude solid was washed with a mixture of acetonitrile and chloroform (95:5) to afford compound **7-H** (0.28 g, , 42 %); mp 336-338 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 24H), 1.70(bs, 4H), 7.04(bs, 4H), 7.19 (td, 4H, J = 7.47 Hz, 1.1 Hz), 7.34 (td, 4H, J = 7.5 Hz, 1.6 Hz), 7.60 (m, 8H), 8.67 (d, 8H, J = 8.73 Hz). C₆₂H₅₆O₄Na, HRMS(ESI) calc.: 887.4071; exp.: 887.4071.

Compound **7-Me**:

This compound was synthesized by using the general coupling procedure with **A-H** (1.05 g, 6.00 mmol, 6 equivalents), **4a** (0.64 g, 1.00 mmol, 1 equivalent), sodium carbonate (1.05 g, 10.0 mmol, 10 equivalents), and Pd(dppf)Cl₂ (0.29 g, 0.40 mmol, 0.4 equivalents) in in 1,2-dimethoxyethane (DME) (40 mL) and water (20 mL). The crude solid was washed with a mixture of hexane and

CH₂Cl₂ (90:10) to afford compound **7-Me** (0.90 g, 98%); mp above 410 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 24H), 1.66 (bs, 4H), 2.42 (s, 12H), 6.93 (d, 4H, *J* = 7.04 Hz), 7.01 (d, 4H, *J* = 7.80 Hz), 7.41 (s, 4H), 7.58 (dd, 4H, *J* = 8.30 Hz, 1.36 Hz), 8.65 (m, 8H). C₆₆H₆₄O₄Na, HRMS(ESI) calc.: 943.4697; exp.: 943.4688.

Compound 7-OMe:

This compound was synthesized by using the general coupling procedure with **A-H** (1.78 g, 9.30 mmol, 6 equivalents), **4a** (1.00 g, 1.55 mmol, 1 equivalent), sodium carbonate (1.64 g, 15.52 mmol, 10 equivalents), and Pd(dppf)Cl₂ (0.45 g, 0.62 mmol, 0.40 equivalents) in 1,2-dimethoxyethane (DME) (60 mL) and water (300 mL). The solid crude was washed with acetonitrile to afford **7-OMe** (0.50 g, 33 %); mp above 410 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 24H), 1.72 (bs, 4H), 3.87 (s, 12 H), 6.74 (dd, 4H, J = 8.29 Hz, 2.76 Hz), 6.96 (bs, 4H), 7.18 (d, 4H, J = 2.54 Hz), 7.58 (d, 4H, J = 8.40 Hz), 8.65 (d, 8H, J = 8.86 Hz). C₆₆H₆₄O₈Na, HRMS(ESI) calc.: 1007.4493; exp.: 1007.4493.

General procedure to prepare the final compounds (*ms* and *ps*):

To a solution of the corresponding tetrahydroxy compounds (**6s** and **7s**) in 100 to 200 mL of anhydrous CH_2Cl_2 (depending on solubility) was added 10-15 mL of CH_3SO_3H at room temperature and the reaction mixture stirred for 2 h. The reaction was neutralized carefully with 5% NaHCO₃ solution and extracted with CHCl₃ (4×50 mL). The combined organic extracts were dried over anhydrous MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude solid was purified by silica gel column chromatography using hexane and ethyl acetate (98:2) as eluent or recrystallization from different solvent systems to afford compounds *m*-H, *m*-Me, *m*-OMe, *p*-H, *p*-Me and *p*-OMe.

Compound *p*-H:

This compound was synthesized by using the general procedure with **7-H** (0.75 g, 0.86 mmol, 1 equivalent) in the mixture of CH₃SO₃H (15.0 mL, 231 mmol) and anhydrous CH₂Cl₂ (200 mL). The crude product was purified through recrystallization from acetonitrile to afford *p*-H (0.63 g, 92%); mp above 420 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.79 (s, 24H), 7.39 (m, 8H), 7.56 (m, 4H), 7.87 (m, 4H), 8.81 (s, 4H), 9.14 (s, 4H); ¹³C NMR (400 MHz, CDCl₃) δ 28.1, 47.3, 117.6, 120.1, 120.6, 123.1, 127.5, 128.0, 129.4, 131.1, 138.5, 139.4, 152.3, 154.4. C₆₂H₄₈, HRMS(ESI) calc.:

792.3751; exp.: 792.3743. Slow evaporation of a 1,2-dichloroethane solution of p-H at room temperature affords high quality colorless crystals.

Compound *p*-Me:

This compound was synthesized by using the general procedure with **7-Me** (0.50 g, 0.54 mmol, 1 equivalent) in the mixture of CH₃SO₃H (10.0 mL, 154 mmol) and anhydrous CH₂Cl₂ (80 mL). The crude was passed through short silica pad with hexane as an eluent to afford a yellow colored *p*-**Me** (0.34 g, 74%); mp above 420 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.76 (s, 24H), 2.48 (s, 12 H), 7.18 (d, 4H, *J* = 8.07 Hz), 7.36 (s, 4H), 7.74 (d, 4H, *J* = 7.65 Hz), 8.76 (s, 4H), 9.08 (s, 4H); ¹³C NMR (400 MHz, CDCl₃) δ 22.0, 28.1, 47.2, 117.4, 119.6, 120.3, 123.7, 128.3, 129.3, 130.8, 136.8, 137.9, 138.4, 152.2, 154.7. C₆₆H₅₆, HRMS(ESI) calc.: 848.4382; exp.: 848.4362.

Compound *p*-OMe:

This compound was synthesized by using the general procedure with **7-OMe** (0.50 g, 0.50 mmol, 1 equivalent) in the mixture of CH₃SO₃H (15.0 mL, 231 mmol) and anhydrous CH₂Cl₂ (100 mL). The crude was heated in the mixture of CH₂Cl₂ and acetonitrile (30:70) and cooled to room temperature. The solid suspension was filtered to afford an off-white-colored *p*-OMe (0.25 g, 54%); mp above 420 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.75 (s, 24H), 3.91 (s, 12H), 6.90 (dd, 4H, J = 8.48 Hz, 2.30 Hz), 7.07 (d, 4H, J = 2.30 Hz), 7.75 (d, 4H, J = 8.37 Hz), 8.72 (s, 4H), 9.01 (s, 4H). Due to the poor solubility, no ¹³C NMR is provided. C₆₆H₅₆O₄, HRMS(ESI) calc.: 912.4173; exp.: 912.4196.

Compound *m*-H:

This compound was synthesized by using the general procedure with **6-H** (0.27 g, 0.31 mmol, 1 equivalent) in the mixture of CH₃SO₃H (6.0 mL, 92.40 mmol) and anhydrous CH₂Cl₂ (70 mL). The crude solid was purified through silica gel column chromatography using hexane and ethyl acetate (98:2) as eluent to afford *m*-H (0.15 g, 63%); mp above 420 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.64 (s, 24H), 7.43 (td, 4H, *J* = 7.33 Hz, 1.12 Hz), 7.50 (td, 4H, *J* = 7.40 Hz, 1.15 Hz), 7.55 (d, 4H, *J* = 7.27 Hz), 8.15 (d, 4H, *J* = 7.4 Hz), 8.78 (s, 4H), 9.15 (s, 4H); ¹³C NMR (300 MHz, CDCl₃) δ 27.8, 47.1, 114.9, 120.8, 123.0, 123.1, 127.5, 128.1, 128.5, 129.3, 131.1, 138.5, 139.3, 152.2, 154.4. C₆₂H₄₈, HRMS(ESI) calc.: 792.3751; exp.: 792.3745. Slow evaporation of a dichloromethane/acetonitrile solution of *m*-H at room temperature affords high-quality pale-yellow crystals.

Compound *m*-Me:

This compound was synthesized by using the general procedure with **6-Me** (0.50 g, 0.54 mmol, 1 equivalent) in the mixture of CH₃SO₃H (8.0 mL, 123.20 mmol) and anhydrous CH₂Cl₂ (70 mL). The crude solid was purified through silica gel column chromatography using hexane and ethyl acetate (98:2) as eluent to afford *m*-Me (0.442 g, 96%); mp above 420 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.61 (s, 24H), 2.51 (s, 12H), 7.31 (d, 4H, *J* = 7.70 Hz), 7.34 (s, 4H), 8.01 (d, 4H, *J* = 7.70 Hz), 8.75 (s, 4H), 9.08 (s, 4H); ¹³C NMR (400 MHz, CDCl₃) δ 22.1, 28.0, 47.0, 114.4, 120.6, 122.9, 123.8, 128.4, 128.9, 131.1, 136.7, 138.0, 138.5, 152.2, 154.6. C₆₆H₅₇, HRMS(ESI) calc.: 849.4455; exp.: 849.4452. Slow evaporation of a dichloromethane/acetonitrile solution of *m*-Me at room temperature affords high-quality pale-yellow crystals.

Compound *m*-OMe:

This compound was synthesized by using the general procedure with **6-OMe** (0.40 g, 0.40 mmol, 1 equivalent) in the mixture of CH₃SO₃H (10.0 mL, 154 mmol) and anhydrous CH₂Cl₂ (75 mL). The crude solid was purified through silica gel column chromatography using hexane and ethyl acetate (94:6) as eluent to afford *m*-OMe (0.23 g, 61%); mp above 420 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.60 (s, 24H), 3.94 (s, 12H), 7.04 (dd, 4H, *J* = 8.30 Hz, 2.30 Hz), 7.06 (d, 4H, *J* = 2.30 Hz), 8.03 (d, 4H, *J* = 8.30 Hz), 8.72 (s, 4H), 9.01 (s, 4H); ¹³C NMR (400 MHz, CDCl₃) δ 27.9, 47.1, 55.8, 109.1, 113.1, 113.8, 121.6, 122.9, 128.5, 131.1, 132.2, 138.3, 151.8, 156.4, 160.4. C₆₆H₅₆O₄, HRMS(ESI) calc.: 912.4173; exp.: 912.4156. Slow evaporation of a dichloromethane/acetonitrile solution of *m*-OMe at room temperature affords high-quality pale-yellow crystals.

S3. Crystal data and structure refinement.

Figure S1. Crystal structures (obtained at 100 K) of *m*-Me (top left) and *m*-OMe (top right) and crystal packing arrangement of *m*-Me (bottom left) and *m*-OMe (bottom right).; hydrogen atoms and solvent molecules are deleted for clarity; thermal ellipsoids are set at the 50% probability level; the C and O atoms are colored grey and red, respectively.

		:25	:2 (:0.61
Identification code	raj25u (<i>p</i> -H)	raj25w (<i>m</i> -H)	raj26r (<i>m</i> -Me)	raj26b (<i>m</i> -OMe)
CCDC number	2039941	2039942	2039943	2039944
Empirical formula	C ₆₂ H ₄₈	C _{62.7} H _{49.39} Cl _{1.39}	C ₆₆ H ₅₆	C ₆₆ H ₅₆ O ₄
Formula weight	793.00	851.94	849.11	913.11
Temperature/K	99.8(4)	100.00(10)	99.9(3)	99.95(10)
Crystal system	tetragonal	monoclinic	triclinic	orthorhombic
Space group	P-42 ₁ c	$P2_1/c$	P-1	P212121
a/Å	15.21984(10)	13.76405(18)	14.4517(6)	18.64163(18)
b/Å	15.21984(10)	26.5563(2)	15.0266(6)	22.60353(19)
c/Å	23.2343(3)	13.26570(13)	26.3973(10)	27.5670(2)
α/°	90.00	90.00	81.001(3)	90.00
β/°	90.00	104.2936(11)	81.996(3)	90.00
γ/°	90.00	90.00	80.366(3)	90.00
Volume/Å ³	5382.07(8)	4698.81(9)	5544.2(4)	11615.82(17)
Z	4	4	4	8
$\rho_{calc}g/cm^3$	0.979	1.204	1.017	1.044
μ/mm ⁻¹	0.417	1.220	0.431	0.495
F(000)	1680.0	1797.0	1808.0	3872.0
	0.4635 ×	0.3 ×	0.28 ×	0.6965 ×
Crystal size/mm ³	0.2418 ×	$0.28 \times$	$0.05 \times$	0.0779 ×
	0.1/55	0.04	0.03	0.04/8
2Θ range for data collection/°	6.94 to 148.48	6.62 to 148.32	0.02 10 148.02	0.42 to 148.54
Index ranges	$-18 \le n \le 18$, $-16 \le k \le 18$	$-1/ \le n \le 1/,$ $-32 \le k \le 32$	$-10 \le n \le 18$, $-18 \le k \le 17$	$-22 \le n \le 23$, $-27 \le k \le 20$
index ranges	$-19 \le 1 \le 28$	$-14 \le 1 \le 16$	$-32 \le 1 \le 32$	$-33 \le 1 \le 33$
Reflections collected	26252	45255	78503	65960
Independent reflections	$5219 [R_{int} = 0.0314, R_{sigma} = 0.0199]$	9442 [R_{int} =0.0246, R_{sigma} = 0.0155]	$\begin{array}{l} 22037 \; [R_{int} = \\ 0.0706, \; R_{sigma} = \\ 0.0587] \end{array}$	$\begin{array}{l} 22347 \; [R_{int} = \\ 0.0392, \; R_{sigma} = \\ 0.0415] \end{array}$
Data/restraints/parameters	5219/0/285	9442/0/595	22037/0/1213	22347/0/1285
Goodness-of-fit on F ²	1.106	1.059	1.005	1.105
Final R indexes [I>= 2σ (I)]	$\begin{array}{c} R_1 = 0.0526, \\ wR_2 = 0.1539 \end{array}$	$R_1 = 0.0622, \\ wR_2 = 0.1938$	$\begin{array}{l} R_1 = 0.0742, \\ wR_2 = 0.2106 \end{array}$	$R_1 = 0.0600, \\ wR_2 = 0.1727$
Final R indexes [all data]		$R_1 = 0.0661,$ w $R_2 = 0.1988$	$\overline{R_1 = 0.1061}, \\ wR_2 = 0.2312$	$\begin{array}{c} R_1 = 0.0692, \\ wR_2 = 0.1799 \end{array}$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.27	1.45/-0.27	0.40/-0.28	0.29/-0.30

Table S1. Summary of X-ray crystallographic data collection and structure refine.

Figure S2. Center-to-center distances (in Å) in *m*-Me (top) and *m*-OMe (bottom). Thermal ellipsoids are set at the 50% probability level.

Figure S3. Top and side views of the π - π stacking in the *m*-Me. The least-squares-fit planes defined by the orange fluorene moieties in each molecule are shown. Thermal ellipsoids are set at 50% probability.

Figure S4. Top and side views of the π - π stacking in the *m*-OMe. The least-squares-fit planes defined by the orange fluorene moieties in each molecule are shown. Thermal ellipsoids are set at 50% probability.

4. NMR spectroscopy.

 ^1H and ^{13}C NMR spectra of A-H (CDCl_3, 20 °C)^4

^1H and ^{13}C NMR spectra of A-Me (CDCl_3, 20 °C)^5

 ^1H and ^{13}C NMR spectra of A-OMe (CDCl₃, 20 °C)^6

¹H and ¹³C NMR spectra of **S1** (X = Br, CDCl₃, 20 °C)

21 | E S |

 ^1H (CDCl_3) and ^{13}C (CD_3OD) NMR spectra of 1a at 20 $^\circ\text{C}$

 1 H and 13 C NMR spectra of **2a** (CDCl₃, 20 °C)

 1 H and 13 C NMR spectra of **3a** (CDCl₃, 20 °C)

 1 H and 13 C NMR spectra of **2b** (CDCl₃, 20 °C)

 1 H and 13 C NMR spectra of **3b** (CDCl₃, 20 °C)

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **4b** (CDCl₃, 20 °C)

¹H NMR spectrum of **5** (CDCl₃, 20 °C)

¹H NMR spectrum of **6-H** (CDCl₃, 20 °C)

¹H NMR spectrum of **6-Me** (CDCl₃, 20 °C)

¹H NMR spectrum of **6-OMe** (CDCl₃, 20 °C)

¹H NMR spectrum of **7-H** (CDCl₃, 20 °C)

¹H NMR spectrum of **7-OMe** (CDCl₃, 20 °C)

¹H and ¹³C NMR spectra of *p*-H (CDCl₃, 20 °C)

¹H and ¹³C NMR spectra of *m*-H (CDCl₃, 20 °C)

¹H and ¹³C NMR spectra of *m*-H (CDCl₃, 20 °C)

¹H and ¹³C NMR spectra of *m*-OMe (CDCl₃, 20 °C)

S5. Computational details.

All density functional theory (DFT) calculations were performed using the Gaussian 16 software package.⁷ The analysis of TD-DFT studies have been carried out using the GaussSum 3.0 software package.⁸ The orbital contribution analysis carried out using Hirshfeld⁹ method as implemented in MultiWFN.¹⁰ This method showed the lowest basis set dependency for orbital contribution analysis.¹¹

Since modification of the exact Hartree-Fock (HF) exchange term improves the accuracy of hybrid DFT methods for delocalized mixed-valence systems via healing the self-interaction error (SIE) problem,¹² we selected the MN15¹³ functional which has 45% HF. In addition to the MN15 functional, we also assessed the performance of the PBE0-D3BJ,^{14, 15} B3LYP-D3BJ¹⁶, CAM-B3LYP-D3BJ¹⁷ and ω B97XD¹⁸ functionals. All of the calculations were carried out using the 6-31+G(d,p) basis set. In order to include bulk solvation effects, the integral equation formalism variant of the polarizable continuum model (IEF-PCM) with standard parameters for dichloromethane (CH₂Cl₂) was used.¹⁹

The optical gaps (E_g) were obtained by using the absorption edge wavelength ($\lambda_{a.e}$) of each spectrum according to Eq. 1.^{20, 21}

$$E_{g}(eV) = h \times f = h \times \frac{C}{\lambda_{a.e}} \approx \frac{1240}{\lambda_{a.e}(nm)}$$
 (Eq. 1)

For the calculation of coupling energy through the series, we employed Hückel molecular orbital (MO) theory²² using the tight-binding Hamiltonian as described in detail in the previous work.²³ Accordingly, the coupling energy is provided by DFT calculations of the HOMO and HOMO-1 according to Eq. 2.

$$V_{12} = \frac{1}{2} [\varepsilon_{\text{HOMO}} - \varepsilon_{\text{HOMO}-1}]$$
(Eq. 2)

The internal reorganization energy (λ_{reorg}) of radical cations for DBC compounds were calculated using the neutral in cation geometry (NICG) method^{24, 25} with the MN15 functional by Eq. 3.

$$\lambda_{\text{reorg}} = (n^+ + c^0) - (n^0 + c^+)$$
 (Eq. 3)

where n^+ is the energy of the radical cation in the optimized neutral geometry, c^0 is the neutral energy in the optimized oxidized geometry etc.

<i>Table S2.</i> The relative Gibbs free energies (ΔG , kcal	mol ⁻¹) for neutral and cation radical meta and para
DBC isomers calculated at the DFT/6-31+G**+PCM	$I(CH_2Cl_2)$ level.

Neutral	MN15	CAM-BLYP-D3BJ	B3LYP-D3BJ	PBE0-D3BJ	ωB97XD
<i>m</i> -H	0.0	0.0	0.0	0.0	0.0
(<i>p</i> -H)	(0.8)	(0.9)	(1.2)	(0.8)	(0.8)
<i>m</i> -Me	0.0	0.0	0.0	0.0	0.0
(<i>p</i> -Me)	(0.3)	(1.4)	(0.2)	(1.4)	(1.4)
<i>m</i> -OMe	0.0	0.0	0.0	0.0	0.0
(<i>p</i> -OMe)	(1.1)	(1.1)	(1.3)	(1.1)	(1.4)
Cation	MN1	5 CAM-BLYP-	B3LYP-	PBE0-	ωB97XD
Dadiaal					
Kaulcal		D3BJ	D3BJ	D3BJ	
<i>m</i> -H+•	0.0	D3BJ 0.0	D3BJ 0.0	D3BJ 0.0	0.0
<i>m</i> -H+• (<i>p</i> -H)+•	0.0 (5.5)	D3BJ 0.0 (4.2)	D3BJ 0.0 (5.0)	D3BJ 0.0 (4.9)	0.0 (4.0)
<i>m</i> -H+• (<i>p</i> -H)+• <i>m</i> -Me+•	0.0 (5.5) 0.0	D3BJ 0.0 (4.2) 0.0	D3BJ 0.0 (5.0) 0.0	D3BJ 0.0 (4.9) 0.0	0.0 (4.0) 0.0
<i>m</i> -H+• (<i>p</i> -H)+• <i>m</i> -Me+• (<i>p</i> -Me)+•	0.0 (5.5) 0.0 (7.3)	D3BJ 0.0 (4.2) 0.0 (6.7)	D3BJ 0.0 (5.0) 0.0 (5.0)	D3BJ 0.0 (4.9) 0.0 (5.0)	0.0 (4.0) 0.0 (5.6)
m-H+• (p-H)+• m-Me+• (p-Me)+• m-OMe+•	0.0 (5.5) 0.0 (7.3) 0.0	D3BJ 0.0 (4.2) 0.0 (6.7) 0.0	D3BJ 0.0 (5.0) 0.0 (5.0) 0.0	D3BJ 0.0 (4.9) 0.0 (5.0) 0.0	$0.0 \\ (4.0) \\ 0.0 \\ (5.6) \\ 0.0$

Table S3. Calculated E_g ($E_g = E_{LUMO} - E_{HOMO}$, eV) of *meta* and *para* DBC compounds at the DFT/6-31+G(d,p)+PCM(CH₂Cl₂) level of theory and corresponding R-squared (R²) values from the correlation diagram between the calculated and experimental data.

	MN15	CAM-BLYP-D3BJ	B3LYP-D3BJ	PBE0-D3BJ	ωB97XD	Exp.
<i>m</i> -H	4.43	5.43	3.21	3.50	6.51	2.84
<i>m</i> -Me	4.41	5.40	3.18	3.47	6.49	2.83
<i>m</i> -OMe	4.37	5.36	3.15	3.43	6.44	2.79
<i>р-</i> Н	5.00	6.01	3.71	4.03	7.11	3.30
<i>p</i> -Me	5.00	6.01	3.71	4.03	7.12	3.25
<i>p</i> -OMe	4.88	5.91	3.58	3.89	7.01	3.16
\mathbb{R}^2	0.996	0.990	0.995	0.995	0.990	

	MN15	CAM-BLYP-D3BJ	B3LYP-D3BJ	PBE0-D3BJ	ωB97XD	Exp.
<i>m</i> -H	-5.98	-6.42	-5.27	-5.50	-6.99	-5.33
<i>m</i> -Me	-5.88	-6.32	-5.17	-5.40	-6.89	-5.26
<i>m</i> -OMe	-5.77	-6.21	-5.05	-5.27	-6.78	-5.17
<i>р-</i> Н	-6.25	-6.71	-5.52	-5.76	-7.28	-5.50
<i>p</i> -Me	-6.18	-6.64	-5.43	-5.67	-7.21	-5.47
<i>p</i> -OMe	-6.04	-6.49	-5.28	-5.51	-7.06	-5.39
\mathbf{R}^2	0.970	0.988	0.967	0.967	0.990	

Table S4. Calculated HOMO (eV) of *meta* and *para* DBC compounds at the DFT/6- $31+G(d,p)+PCM(CH_2Cl_2)$ level of theory and corresponding R-squared (R²) values from the correlation diagram between the calculated and experimental data.

Table S5. NICS values for substituted *meta* and *para* DBC isomers calculated at the MN15/6-31+G**+PCM(CH₂Cl₂) level; values in parentheses are for cation radical species.

F		- BI CICI TICI TICI	R R			
	<i>m-</i> H	<i>m</i> -Met	<i>m</i> -OMet	<i>р-</i> Н	<i>p</i> -Met	<i>p</i> -OMet
Α	-6.8	-6.8	-7.8	-7.0	-6.8	-7.9
	(-6.7)	(-6.5)	(-7.2)	(-7.4)	(-5.2)	(-5.6)
В	-6.8	-6.8	-6.8	-6.8	-6.8	-6.8
	(-1.7)	(-2.0)	(-2.3)	(-1.9)	(11.8)	(-5.4)
С	-1.3	-1.4	-1.4	-1.3	-1.4	-1.4
	(6.2)	(5.9)	(5.3)	(10.8)	(18.8)	(11.0)
a	-6.8	-6.8	-7.8	-7.0	-6.8	-7.9
	(-6.7)	(-6.5)	(-7.2)	(-7.4)	(-6.9)	(-7.8)
b	-6.8	-6.8	-6.8	-6.8	-6.8	-6.8
	(-1.7)	(-2.0)	(-2.3)	(-1.9)	(-3.5)	(-5.3)
c	-1.3	-1.4	-1.4	-1.3	-1.4	-1.4
	(6.2)	(5.9)	(5.3)	(10.8)	(1.7)	(0.1)

Figure S5. Comparison of reorganization energy $(1/2\lambda_{reog})$ versus coupling energy (V_{12}) of *meta* and *para* DBC compounds at the MN15/6-31+G(d,p)+PCM(CH₂Cl₂) level of theory; all values are in eV.

Compound	$1/2 \lambda_{reorg}$	<i>V</i> ₁₂
<i>m</i> -H	0.102	0.288
<i>m</i> -Me	0.103	0.281
<i>m</i> -OMe	0.105	0.262
<i>р-</i> Н	0.125	0.027
<i>p</i> -Me	0.128	0.045
<i>p</i> -OMe	0.135	0.081
0.30		
0.25 —		Reorganization
0.20	$\sim 10^{-1}$	1 0

I

p-H

p-Me

p-OMe

Energy (eV)

0.15 0.10

0.05

m-H

m-Me

m-OMe

Figure S6. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *p*-H. The calculated highest transition is 327 nm with an oscillator strength of 3.16 for which the major contribution (56%) is from H-1 \rightarrow LUMO.

Figure S7. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *p*-Me. The calculated highest transition is 331 nm with an oscillator strength of 3.43 for which the major contribution (51%) is from HOMO \rightarrow LUMO (51%).

Figure S8. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *p*-OMe. The calculated highest transition is 335 nm with an oscillator strength of 3.50 for which the major contributions are from H-1 \rightarrow LUMO (37%) and HOMO \rightarrow L+1 (42%).

Figure S9. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *m*-H. The calculated highest transition is 396 nm with an oscillator strength of 0.92 for which the major contribution (94%) is from HOMO \rightarrow LUMO.

Figure S10. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *m*-Me. The calculated highest transition is 399 nm with an oscillator strength of 1.00 for which the major contribution (94%) is from HOMO \rightarrow LUMO.

Figure S11. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *m*-OMe. The calculated highest transition is 402 nm with an oscillator strength of 1.04 for which the major contribution (93%) is from HOMO \rightarrow LUMO.

Figure S12. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *p*-H cation radical. The calculated highest transition is 618 nm with an oscillator strength of 0.23 for which the major contribution (77%) is from. H-9(β) \rightarrow LUMO(β).

Figure S13. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *p*-Me cation radical. The calculated highest transition is 1192 nm with an oscillator strength of 0.68 for which the major contribution (94%) is from H-2(β)→LUMO(β).

Figure S14. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *p*-OMe cation radical. The calculated highest transition is 1388 nm with an oscillator strength of 0.77 for which the major contribution (87%) is from H-2(β)→LUMO(β).

Figure S15. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *m*-H cation radical. The calculated highest transition is 893 nm with an oscillator strength of 0.48 for which the major contribution (95%) is from H-1(β)→LUMO(β).

Figure S16. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *m*-Me cation radical. The calculated highest transition is 958 nm with an oscillator strength of 0.522 for which the major contribution (95%) is from H-1(β)→LUMO(β).

Figure S17. Experimental and simulated [MN15/6-31+G(d,p)+PCM(CH₂Cl₂)] UV-Vis spectrum of *m*-OMe cation radical. The calculated highest transition is 1075 nm with an oscillator strength of 0.56 for which the major contribution (96%) is from H-1(β)→LUMO(β).

Figure S18. Key bond length values (in angstrom) of one-electron-oxidized *meta/para* H and OMe obtained at the MN15/6-31+G(d,p)+PCM(CH₂Cl₂) level. Despite symmetric bond alteration in *m*-OMe, the *para* isomer shows an asymmetric bond length alteration.

S6. Reference.

- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, *Organometallics.*, 2010, 29, 2176–2179.
- 2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 3. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst., 2015, C71, 3-8.
- W. H. Parsons, R. R. Calvo, W. Cheung, Y.-K. Lee, S. Patel, J. Liu, M. A. Youngman, S. L. Dax, D. Stone, N. Qin, T. Hutchinson, M. L. Lubin, S.-P. Zhang, M. Finley, Y. Liu, M. R. Brandt, C. M. Flores and M. R. Player, Benzo[d]imidazole Transient Receptor Potential Vanilloid 1 Antagonists for the Treatment of Pain: Discovery of trans-2-(2-{2-[2-(4-Trifluoromethyl-phenyl)-vinyl]-1Hbenzimidazol-5-yl}-phenyl)-propan-2-ol (Mavatrep), *J. Med. Chem.*, 2015, **58**, 3859–3874.
- T. Akama, Y. R. Freund, P. W. Berry, D. S. Carter, E. E. Easom, K. Jarnagin, C. S. Lunde, J. J. Plattner, F. Rock, R. Stefanakis, C. Fischer, C. A. Bulman, K. C. Lim, B. M. Suzuki, N. Tricoche, A. Mansour, U. DiCosty, S. McCall, B. Carson, J. W. McCall, J. McKerrow, M. P. Hübner, S. Specht, A. Hoerauf, S. Lustigman, J. A. Sakanari and R. T. Jacobs, Macrofilaricidal Benzimidazole–Benzoxaborole Hybrids as an Approach to the Treatment of River Blindness: Part 1. Amide Linked Analogs, ACS Infect. Dis., 2020, 6, 173–179.
- 6. S. Kusano, S. Miyamoto, A. Matsuoka, Y. Yamada, R. Ishikawa and O. Hayashida, Benzoxaborole Catalyst for Site-Selective Modification of Polyols, *Eur. J. Org. Chem.*, 2020, 1598-1602.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 16. Revision B.01. Gaussian, Inc., 2016, Wallingford CT.
- 8. N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, cclib: A library for package-independent computational chemistry algorithms, *J. Comp. Chem.*, 2008, **29**, 839–845.
- 9. F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, *Theor. Chim. Acta.*, 1977, **44**, 129–138.
- 10. T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer, *J. Comput. Chem.*, 2012, **33**, 580-592.
- 11. S. Mirzaei and H. Khosravi, Predicting the regioselectivity of nucleophilic addition to arynes using frontier molecular orbital contribution analysis, *Tetrahedron Lett.*, 2017, **58**, 3362-3365.
- 12. Y. Zhang and W. Yang, A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons, *J. Chem. Phys.*, 1998, **109**, 2604–2608.
- 13. H. S. Yu, X. He, S. L. Li and D. G. Truhlar, MN15: A Kohn–Sham global-hybrid exchange– correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions, *Chem. Sci.*, 2016, 7, 5032–5051.
- 14. C. Adamo and V. Barone, Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model., *J. Chem. Phys.*, 1999, **110**, 6158–6170.
- 15. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, *J. Comput. Chem.*, 2006, **27**, 1787-1799.

- 16. A. D. Becke, Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, *Phys. Rev. A*, 1988, **38**, 3098–3100.
- 17. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange-correlation functional using theCoulomb-attenuating method (CAM-B3LYP), *Chem. Phys. Lett.*, 2004, **393**, 51–57.
- 18. J.-D. Chai and M. Head-Gordon, Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.
- 19. E. Cancès, B. Mennucci and J. Tomasi, A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics, J. Chem. Phys., 1997, **107**, 3032–3041.
- 20. N. Ghobadi, Band gap determination using absorption spectrum fitting procedure, *Int. Nano. Lett.*, 2013, **3**, 2-4.
- 21. J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes and L. M. N. B. F. Santos, Optical Band Gaps of Organic Semiconductor Materials, *Opt. Matt.*, 2016, **58**, 51-60.
- 22. W. Kutzelnigg, What I Like About Hückel Theory, J. Comput. Chem., 2007, 28, 25-34.
- 23. M. M. Hossain, M. V. Ivanov, D. Wang, S. A. Reid and R. Rathore, Spreading Electron Density Thin: Increasing the Chromophore Size in Polyaromatic Wires Decreases Interchromophoric Electronic Coupling, *J. Phys. Chem. C.*, 2018, **122**, 17668-17675.
- 24. S. F. Nelsen, A. E. Konradsson and J. P. Telo, Pseudo-para-dinitro[2.2]paracyclophane Radical Anion, a Mixed-Valence System Poised on the Class II/Class III Borderline, *J. Am. Chem. Soc.*, 2005, **127**, 920–925.
- 25. A. Heckmann and C. Lambert, Organic Mixed-Valence Compounds: A Playground for Electrons and Holes, *Angew. Chem. Int. Ed.*, 2012, **51**, 326-392.

S7. Cartesian coordinates of optimized molecules at MN15/6-31+G(d,p)+PCM(CH₂Cl₂).

<i>т</i> -Н (пец	utral)			C	-2.63904900	-1.36500300	0.84823800
Zero-point	correction=	0	.907239	Н	-3.19242900	-0.44378900	1.01434800
(Hartree/Pa	article)			С	-3.18920900	-2.56767300	1.23158400
Thermal co	orrection to Er	nergy=	0.957150	С	-2.44807200	-3.76381600	1.11050300
Thermal co	orrection to Er	nthalpy=	0.958095	С	-1.14817600	-3.73520800	0.63707200
Thermal co	orrection to Gi	bbs Free Ener	gv= 0.82511	8 Н	-0.56452500	-4.65147800	0.61442400
Sum of ele	ctronic and ze	ro-point Energ	gies= -	C	-3.27941400	-4.86964500	1.60590300
2387.9663	50		5	C	-3.02123200	-6.23947900	1.69911500
Sum of ele	ectronic and th	ermal Energie	s= -	Н	-2.06825400	-6.65118700	1.37362200
2387.9164	38		-	C	-4.01456100	-7.07393600	2.21880300
Sum of ele	ectronic and th	ermal Enthalp	ies= -	Н	-3.83345800	-8.14263500	2.29909000
2387.9154	94			C	-5.24352000	-6.54664500	2.63763100
Sum of ele	ectronic and th	ermal Free Fn	ergies= -	Н	-6.00430900	-7.21107700	3.03907100
2388 0484	70		erBies	С	-5.49893900	-5.17282200	2.54387100
C	1 32871900	1 31250400	0 30180200	Н	-6.45489800	-4.76715700	2.87192200
C	0 56703500	2 51287/100	0.23327900	С	-4.51203600	-4.33844500	2.02710900
C	-0.81310800	2.31267400	-0 2/193000	С	2.75900200	-1.10003100	-0.86753300
C C	-1 45115700	1 17586400	-0 31823100	н	3.21621600	-0.12879200	-1.04129000
C C	1 22872700	1,17,580400	0.20165200	С	3.42686400	-2.24411400	-1.24298300
C C	-1.32873700	2 51287000	0.30103800	C	2.81058400	-3.50809100	-1.11063700
C	-0.30701000	-2.31287000	0.23332000	C	1.51405400	-3.60656100	-0.63707400
C	0.81314600	-2.44567000	-0.24185000	С Н	1 02523500	-4 57653600	-0.60691200
C C	1.45122800	-1.1/588/00	-0.31804800	C C	3 75083700	-4 52858800	-1 59489700
C	0.69538300	0.03434700	-0.00929500	C C	3 63545700	-5 91880800	-1 67208700
C	-0.69535900	-0.03435500	-0.00941300	с н	2 72998/00	-6 42326500	-1 3/155800
C	2.63898300	1.36498800	0.84852700	C I	4 71034800	-6 65237800	-2 18170700
H	3.19226900	0.44375000	1.01480500	с ц	4.71034800	-0.03237800	-2.18170700
C	3.18918200	2.56/6/000	1.23174900	C C	5 87010000	-6.00638300	-2.24922300
C	2.44811800	3.76384100	1.11038600	с ц	6 70507800	6 50265100	2.00031300
С	1.14826700	3.73524500	0.63686600	П	5 0016000	-0.59505100	-2.99955700
Н	0.564/1800	4.6515/100	0.61400600	L L	6 001 / 1 2 00	4.01239300	2.32832300
С	3.27948900	4.86971000	1.60565700		4 02210900	2 97960000	2.0014700
С	3.02140400	6.23958000	1.69857900	C	4.92310800	-3.87800000	1 02725000
Н	2.06849400	6.65130500	1.37290700	C		2.83004700	1.83735900
С	4.01474500	7.07406500	2.21819600	C U	5.08249700	2.41544900	0.87470200
Н	3.83370800	8.14279200	2.29826800	п	5.05519000	1.33102800	0.70628000
С	5.24363300	6.54677100	2.63722600	н	6.66181600	2.66982800	1.29832500
Н	6.00443200	7.21122800	3.03860500	H	5.57847200	2.92066200	-0.09192100
С	5.49896600	5.17291400	2.54373200	C	4.72633000	2.10233900	3.18112800
Н	6.45488500	4.76724400	2.87189900	н	3.93349200	2.38543600	3.88214400
С	4.51204100	4.33850700	2.02706400	н	5.6951/100	2.35263900	3.63035700
С	-2.75890700	1.09997700	-0.86779700	Н	4.68919700	1.01612/00	3.03289600
Н	-3.21600200	0.12870100	-1.04165700	С	-4.81414900	2.3/139500	-1.849/5600
С	-3.42682500	2.24403400	-1.24318200	C	-4.90309600	1.64766000	-3.20332500
С	-2.81061100	3.50803700	-1.11065200	Н	-4.13899700	2.01693900	-3.89613300
С	-1.51410900	3.60654400	-0.63705300	Н	-5.88983700	1.80731100	-3.65493200
Н	-1.02540300	4.57656800	-0.60674500	Н	-4.75940700	0.56861200	-3.06822100
С	-3.75095900	4.52855200	-1.59469300	C	-5.89207700	1.83060600	-0.89690800
С	-3.63569400	5.91879600	-1.67162100	Н	-5.75154800	0.75321400	-0.74039400
Н	-2.73024700	6.42326700	-1.34103800	Н	-6.89116700	1.98548700	-1.32234400
С	-4.71067000	6.65238000	-2.18103800	Н	-5.84497100	2.33292400	0.07565400
Н	-4.64086300	7.73495100	-2.24834700	C	-4.55813500	-2.83002700	1.83712600
С	-5.87949600	6.00638000	-2.60570500	C	-4.72643000	-2.10216000	3.18081800
Н	-6.70544800	6.59366300	-2.99856600	Н	-3.93360000	-2.38518000	3.88187700
С	-5.99178900	4.61256400	-2.52819100	Н	-5.69528000	-2.35242000	3.63005600
Н	-6.90157200	4.11404600	-2.85984500	Н	-4.68929400	-1.01596300	3.03246500
С	-4.92319100	3.87855800	-2.02179600	C	-5.68255600	-2.41557500	0.87442000

Н	-5.65531300	-1.33116500	0.70592800
Н	-6.66187000	-2.66997500	1.29804000
Н	-5.57849000	-2.92084700	-0.09216400
С	4.81423500	-2.37147200	-1.84945200
С	4.90355600	-1.64725200	-3.20271100
Н	4.13952800	-2.01612800	-3.89581000
Н	5.89035300	-1.80689400	-3.65419700
Н	4.76003400	-0.56822800	-3.06723400
С	5.89208900	-1.83124000	-0.89617100
Н	5.75169800	-0.75389200	-0.73922400
Н	6.89123400	-1.98610800	-1.32148600
Н	5.84471300	-2.33397000	0.07616500
<i>m</i> -Me (I	neutral)		
Zero-poin	t correction=	1	.015596
(Hartree/	Particle)		
Thermal	correction to Er	nergy=	1.073403
Thermal	correction to Er	nthalpv=	1.074347
Thermal	correction to G	ibbs Free Ener	gv= 0.921231
Sum of e	lectronic and ze	pro-point Energ	zies= -
2544.925	225		5100
Sum of e	lectronic and th	ermal Energie	- =>
2544 867	418		5-
Sum of e	lectronic and th	ermal Enthaln	ies= -
2544 866	474		103-
2044.000	+/+ loctronic and th	ormal Eroo En	orgios-
			ergies
2545.019	1 50280200	1 07262200	0 27205000
C C	1.59280300	-1.07262200	0.27285800
C	2.61075700	-0.07970100	0.21634800
C	2.25920600	1.26426500	-0.23682100
C	0.88504300	1.62886500	-0.30056300
C	-1.52426100	0.98496400	0.30895900
C	-2.54228800	-0.00550600	0.21981900
С	-2.19113300	-1.33327000	-0.27911200
С	-0.81701700	-1.69548700	-0.35629900
С	0.21112800	-0.71193600	-0.03022800
С	-0.14284600	0.63477300	-0.00727900
С	1.91541500	-2.35183800	0.80073800
Н	1.12780700	-3.08487100	0.95884600
С	3.20611600	-2.64809800	1.17697700
С	4.22531300	-1.67582600	1.06621600
С	3.92802800	-0.40301400	0.61164600
Н	4.70425600	0.35735100	0.59785700
С	5.47818700	-2.27122500	1.54914300
С	6.76908500	-1.74841800	1.65477400
Н	6.98546600	-0.72646800	1.35030300
С	7.78307800	-2.56183900	2.16462700
н	8 79313100	-2 16636800	2 25630700
C	7 53435000	-3 88512900	2 56847800
C C	6 22975600	-4 39317700	2 46115700
с н	6 02169000	-5 /1512000	2.70113700
п С	0.02108000	-2.41212900	2.70007400 1 05270000
	5.21298400	-3.39104900	1.923/9000
C II	0.54058100	2.90345000	-0.82581200
Н	-0.50461300	3.15536700	-0.98916100
С	1.52129200	3.79734100	-1.19227300
С	2.88607300	3.45074500	-1.07536600
С	3.24990100	2.19433200	-0.62346600
Н	4.29948700	1.91340700	-0.60486200

С	3.68743600	4.58680900	-1.54946800
С	5.06929500	4.76622800	-1.64714600
Н	5,75820800	3,98133800	-1.34177700
C	5 55532500	5 97475800	-2 14988300
н	6 62985300	6 12697200	-2 23528400
C C	4 69045000	7 00681/00	-2 55/10600
C C	4.03043000	6 90905700	2.33410000
	3.30423800	0.80805700	-2.45445700
H	2.62242700	7.59730900	-2.77382600
C	2.81024100	5.60769300	-1.95435300
С	-1.84645000	2.24559500	0.88004100
Н	-1.05881700	2.97303700	1.06215500
С	-3.13682300	2.52885200	1.26718500
С	-4.15614000	1.56081400	1.12475400
С	-3.85918200	0.30407200	0.62725300
Н	-4.63532800	-0.45553100	0.58854300
С	-5.40849500	2.13959300	1.62888700
С	-6.69940400	1.61356300	1.71862700
Н	-6.91622700	0.60245100	1.38019600
С	-7.71260300	2.40934700	2.25679000
Н	-8.72257700	2.01104400	2.33645700
C	-7 46330200	3 71853600	2 70440400
C	-6 15898800	4 22983900	2 61236000
н	-5 95033600	5 24052100	2 96552800
C C	-5 1/282800	3 44501700	2.00002000
C C	-3.14282800	2 951/1600	0.02501600
L L	0.47300400	2.93141000	1 00706600
	0.37200300	-3.19704500	-1.09790000
C	-1.45400000	-3.83231500	-1.32091800
C	-2.81867800	-3.48992800	-1.19120300
C	-3.18213000	-2.24958700	-0.69664100
Н	-4.23165500	-1.96924900	-0.66825200
С	-3.62037200	-4.60896600	-1.70364000
С	-5.00242500	-4.78516000	-1.80589200
Н	-5.69108400	-4.01170000	-1.47207600
С	-5.48881900	-5.97533900	-2.35004900
С	-4.62416700	-6.99239600	-2.79146400
С	-3.23798700	-6.79719100	-2.68608100
Н	-2.55640000	-7.57465500	-3.03353300
С	-2.74355100	-5.61494300	-2.14466100
С	3.74480800	-3.94189200	1.76525900
С	3.56366200	-5.11566200	0.78962700
н	2.49560600	-5.30798900	0.62414200
н	4.01455100	-6.02763000	1.19979000
Н	4 03218600	-4 89897100	-0 17682700
C	3 07218100	-4 27040300	3 10800500
н	3 19011700	-3 44418100	3 81772700
н	3 51758800	-5 17236900	3 54546400
и Ц	2 00067400	4 45441600	2 06204500
с С	1 25820800	5 10211600	1 77262100
C C	1.55820800	5.19211000 E 1E749000	2 1195 4200
	0.01401900	3.13746900	-3.11654500
п 	1.12448000	4.50038800	-3.83162900
H	0.56125400	6.16510400	-3.54880600
Н	-0.409/9100	4./913/300	-2.9///5100
C	0.62215200	6.12098800	-0.79485000
Н	-0.40397400	5.76499200	-0.63520700
Н	0.57084100	7.13918200	-1.19964800
Н	1.13338000	6.15573600	0.17362300
С	-3.67488200	3.80202100	1.89926500
С	-3.00123800	4.08486000	3.25186200

Н	-3.11872100	3.23508300	3.93327600
Н	-3.44645400	4.97145200	3.71985200
Н	-1.92984700	4.27375900	3.11149900
С	-3.49452100	5.00822200	0.96389900
Н	-2.42660500	5.20531200	0.80317300
Н	-3.94403900	5.90595500	1.40581300
Н	-3.96484500	4.82495700	-0.00857700
С	-1.29135900	-5.20618300	-1.95018500
С	-0.54802000	-5.12507700	-3.29324400
Н	-1.05728200	-4.44258300	-3.98251100
Н	-0.49602200	-6.11687700	-3.75897400
Н	0.47689000	-4.76539400	-3.13991200
С	-0.55538800	-6.16852700	-1.00416900
Н	0.47070800	-5.81827300	-0.83214600
Н	-0.50402100	-7.17215300	-1.44386500
Н	-1.06675200	-6.23678300	-0.03754600
С	8.65678800	-4.75121200	3.08454900
Н	8.28237500	-5.51955000	3.76821400
Н	9.16643400	-5.26459900	2.25987300
Н	9.40776800	-4.15521800	3.61271000
С	5.24575400	8.31427100	-3.06252800
Н	4.53314700	8.81687100	-3.72388700
Н	5.46277800	8.99721300	-2.23195400
Н	6.17966000	8.16218200	-3.61294000
С	-8.58539000	4.56617300	3.25094600
Н	-8.20718000	5.32791400	3.93980700
Н	-9.11329600	5.08627000	2.44213000
Н	-9.32220400	3.95535800	3.78223000
Н	-6.56341400	-6.12478600	-2.43937100
С	-5.18055100	-8.28059600	-3.34580700
Н	-4.45916000	-8.77190300	-4.00604300
Н	-5.42088000	-8.98328800	-2.53848500
Н	-6.10169500	-8.10509200	-3.91067800
<i>m</i> -0	Me (neutral)		
Zero-I	point correction-	1	027528
(Hartr	oo/Particle)	1.	.037328
Thorr	nal correction to Er	orav-	1 008157
Thorr	nal correction to Er	icigy-	1 000101
Thorr	nal correction to El	hhs Eree Energ	1.033101
Sum	of electronic and ze	ro-point Energ	sy- 0.942004
28/15	/77100		5105-
204J.	477133 of alactronic and th	ormal Enorgio	c—
2015	116570	ermai Litergie:	5
2045.	410370 of oloctropic and th	ormal Enthaln	ioc-
2011	11 EIECTIONIC AND TH		162
2045.	415020 of oloctropic and th	ormal Eroo En	orgios-
2010		ennai Free En	ergies
2045.	6 00070100	6 50525100	2 21604400
0	6.90970100	-0.39353100 6 60510200	3.21094400
0	0.90010000	0.00310300	-3.21/34000
0	-7.20142400	0.38218900	2.98421000
C	-7.19201900	1 29652200	-2.98440500
	1.10014100	-1.30032300	0.32343700
c	2.4103/100		0.24510000
L C	2.41559200	0.09004400	-0.24510000
C C	1.1/81/500	1.38816/00	-0.3253/500
L C	-1.31395900	1.3939//00	0.2906/200
L	-2.55048500	0.092/1300	0.22097000

6	2 5 4 0 4 0 0 0 0	0 0007200	0 2271 4 400
C	-2.54949800	-0.69627300	-0.22714400
C	-1.31199400	-1.39585500	-0.29061400
С	-0.06645700	-0.69642100	0.00833100
С	-0.06743100	0.69630100	-0.00824100
С	1.17090800	-2.69094300	0.88959100
Н	0.22394800	-3.19533900	1.06694200
С	2.34574900	-3.29529500	1.27576300
С	3.57866800	-2.61783700	1.14038800
С	3.61079900	-1.32355900	0.65119500
Н	4.55433100	-0.78550400	0.61770900
C	2.53872300	-4.66737900	1.90156000
C C	2.05892000	-5 78409800	0.96118700
н	0 97659100	-5 70091000	0 79830300
 Ц	2 26206800	6 76929100	1 40040000
11	2.20300800	-0.70828100	1.40049900
	2.50265600	-5.72577900	-0.00982000
C	1.81374400	-4.//44/200	3.25286800
н	2.1436/300	-3.98592100	3.93809600
Н	2.01617500	-5.74743700	3.71707200
Н	0.73004600	-4.68193500	3.11089300
С	1.16708600	2.69261600	-0.88940000
Н	0.21942300	3.19571000	-1.06668500
С	2.34105500	3.29863500	-1.27560400
С	3.57492600	2.62288500	-1.14041600
С	3.60889400	1.32860900	-0.65131900
Н	4.55316900	0.79185100	-0.61795200
С	2.53204100	4.67106000	-1.90125400
C	2.05100000	5,78694400	-0.96050800
н	0.96881800	5 70229600	-0 79739400
н	2 25377000	6 771/19900	-1 39962400
 Ц	2.25577000	5 72704000	0.01026600
п С	1 90659900	3.72704000	2 25225100
	1.00050000	4.77746000	-3.23233100
н	2.13728500	3.98943000	-3.93778400
н	2.00772200	5./50/5500	-3./164/200
Н	0.72303600	4.68362700	-3.11011300
С	-1.30469100	2.71286600	0.82088900
Н	-0.35765500	3.22118000	0.98640800
С	-2.47975500	3.32731600	1.18861100
С	-3.71318000	2.64759100	1.06830600
С	-3.74548400	1.34093400	0.61376600
Н	-4.68941100	0.80308000	0.59198100
С	-2.67630200	4.71478600	1.77697700
С	-2.18785700	5.80673600	0.81239500
н	-1.10472700	5.71718100	0.65879900
Н	-2.39167900	6.80240900	1.22539700
Н	-2.68559700	5.72336800	-0.16007800
C	-1 96165200	4 85494200	3 13101400
н	-2 29529100	4 08163000	3 83165800
Ц	-2 16030500	5 83785800	3 57160300
	-2.10939300	1 76169000	2 00041000
	-0.87672700	4.70108000	2.99941000
	-1.3008/800	-2./14/9400	-0.8206/000
	-0.35315200	-3.22188300	-0.98597700
L	-2.4/506900	-3.3308/100	-1.1884/500
C	-3.70942600	-2.65278600	-1.06847700
C	-3.74355100	-1.34612100	-0.61409200
Н	-4.68819300	-0.80951500	-0.59252800
С	-2.66965800	-4.71874600	-1.77655700
С	-1.95442400	-4.85848900	-3.13031800
Н	-2.28892000	-4.08593900	-3.83139400

Н	-2.16067100	-5.84188200	-3.57054800
Н	-0.86966400	-4.76368400	-2.99844600
С	-2.18014200	-5.80976100	-0.81145900
н	-1.09718600	-5.71872600	-0.65750500
н	-2.38251800	-6.80583100	-1.22421500
н	-2 67834100	-5 72672900	0 16080900
C C	1 01880000	-1 69912500	2 08227800
C	4.04883300	E 72271400	2.00227800
C II	4.82075000	-5.72571400	2.00550500
П	4.38499100	-0.05913000	2.95235000
C	6.212/3/00	-5.54909300	2.69275900
С	6.81118000	-4.35668500	2.25671000
Н	7.88540300	-4.22006000	2.32278900
С	6.02077000	-3.32919500	1.72899500
Н	6.49335200	-2.40908800	1.39201700
С	4.64091900	-3.49902000	1.64059100
С	8.31739300	-6.47716100	3.33461300
Н	8.59036100	-5.64088100	3.98995600
Н	8.78600100	-6.33784800	2.35258300
н	8,66983300	-7.41053900	3,77395000
C C	4 04213900	4 70517600	-2 08225400
C C	4.81245900	5 73055000	-2 60562800
L L	4.81245500	5.75055000	2.00302800
	4.57550500	0.00550900	-2.95254600
C	6.20469400	5.55786600	-2.69304500
C	6.80487000	4.36630400	-2.25/06800
Н	7.87927300	4.23118600	-2.32329700
С	6.01597300	3.33770500	-1.72924700
Н	6.48990200	2.41826400	-1.39234000
С	4.63589300	3.50558200	-1.64067600
С	8.30794000	6.48887800	-3.33528700
Н	8.65898400	7.42275500	-3.77468100
Н	8.58195000	5.65299100	-3.99069600
н	8.77692800	6.35021100	-2.35334700
С	-4.18761700	4.75142000	1.94671500
C	-4 95610900	5 80511300	2 43947000
ч	-4 48116100	6 73315100	2 7/79/200
C C	6 24471900	5 62094000	2.74734200
C	-0.34471800	3.02984000	2.32232300
	-0.93943100	4.42003700	2.11/83300
н	-8.01900800	4.32837900	2.19974000
C	-6.1623/200	3.37700500	1.62/15900
Н	-6.63458500	2.44779800	1.31594900
С	-4.77484000	3.54477700	1.53987200
С	-6.66096100	7.82284900	3.40560900
Н	-7.50369800	8.43269500	3.73146500
Н	-6.14314500	8.32844200	2.58111400
Н	-5.96518800	7.68671200	4.24283100
С	-4.18088200	-4.75737500	-1.94665600
С	-4.94787300	-5.81216700	-2.43937200
н	-4.47162700	-6.73962500	-2.74758800
C	-6.33669200	-5.63874100	-2.52257800
C C	-6 93309800	-4 42966200	-2 118/2100
с ц	-8 01277700	-/ 330/5000	-2 20057300
C C	-6 15752000	-2 29552100	-1 62772500
	-0.13/32800	-3.36323100	1 21 07 5500
H	-0.03104/00	-2.45690800	-1.316/5500
C	-4./69/9300	-3.55144800	-1.54012700
C	-6.64972800	-/.83216900	-3.40588000
Н	-5.95395100	-7.69496500	-4.24292300
Н	-7.49154400	-8.44314700	-3.73199600
Н	-6.13140500	-8.33713800	-2.58132100

p-H (neutral)

Zero-poin	Zero-point correction= 0.907320						
(Hartree/I	Particle)						
Thermal	correction to Er	nergy=	0.957297				
Thermal	correction to Er	nthalpy=	0.958241				
Thermal	correction to Gi	ibbs Free Ener	gy= 0.824543				
Sum of el	ectronic and ze	ro-point Energ	gies= -				
2387.964383							
Sum of el	ectronic and th	ermal Energie	s= -				
2387.914	406	U					
Sum of el	ectronic and th	ermal Enthalp	ies= -				
2387.9134	462						
Sum of el	ectronic and th	ermal Free En	ergies= -				
2388.047	160		0				
С	0.69517700	0.00000000	0.00000100				
С	-0.69519000	0.00000000	0.00000100				
C	-1.39197500	-1.24736500	0.31058200				
C	-0.68887900	-2.48270100	0.23797000				
C.	0.68886600	-2.48269800	-0.23800000				
C	1.39196200	-1.24736000	-0.31059500				
C	1.33097500	-3.67790600	-0.64448600				
н	0 79096000	-4 62180200	-0 61810200				
C	2 62260000	-3 64809100	-1 12293900				
C	3 30377700	-2 41664300	-1 24556900				
C C	2 69895300	-1 23/80900	-0.85833400				
н	3 20558300	-0.28927000	-1 02728100				
C C	-1 33099000	-3 67791300	0.64444000				
ц	-0 79097800	-4 62181000	0.61803000				
C C	2 62261000	-4.02181000	1 1 2 2 0 2 0 0				
C C	2 20270400	-3.04810000	1.12290300				
C C	2 60907000	1 22/91900	0.85822000				
L L	2 205507000	0.20027000	1 02726500				
C C	-3.20339700	4 06272100	2.06572500				
C C	5 90524700	4.00273100	2.00373300				
L L	5.89524700	-4.39323700 E 66207100	2.02212/00				
п С	5.98962900	-5.0039/100	-2.79762400				
L L	7 9557200	-3.72065500	-2.95010000				
п С	6 92911200	-4.12599800	-3.39220000				
L L	7 65167200	1 60022700	2.75556500				
п С	7.05107200	-1.09032700	-2.99892500				
	5.00527700	-1.811/8400	-2.1/308200				
	5.57809000	-0.74106400	-2.00122200				
C C	4.62115300	-2.67881500	-1.84225900				
	-4.73484400	-4.06275300	2.00570800				
	-5.89525300	-4.59326400	2.02209400				
H C	-5.98963500	-5.66399900	2.79758800				
	-0.94308900	-3.72080000	2.95010700				
H C	-7.85580200	-4.12604100	3.39219300				
C	-6.82813700	-2.34815800	2.73354300				
H C	-7.65170300	-1.69036200	2.99887300				
L 	-5.66529500	-1.81181100	2.17364800				
H C	-5.5/810/00	-0.74109000	2.00119100				
C	-4.62116800	-2.6/883/00	1.84223300				
C	3.4/689600	-4.79856400	-1.62957800				
L C	-3.4/688600	-4./985/500	1.6295/300				
L	3.77684800	-5.80812900	-0.50941800				
н	2.84863700	-6.28223000	-0.16/39400				
н	4.25201700	-5.31555200	0.3460/800				
п	4.44799300	-0.59460200	-0.8/5/2000				

С	2.80869700	-5.51577100	-2.81364700
н	2.58539800	-4.81201700	-3.62301200
Н	1.87171600	-5.98781700	-2.49363600
Н	3.46883800	-6.29949900	-3.20488300
С	-2.80866400	-5.51569400	2.81368900
н	-2.58536000	-4.81187700	3.62299800
н	-1.87168000	-5.98775500	2.49370300
н	-3.46879500	-6.29939700	3.20498900
С	-3.77680600	-5.80821400	0.50947700
н	-2.84859600	-6.28236600	0.16752300
н	-4.25193400	-5.31569700	-0.34607500
н	-4 44798100	-6 59464500	0.87581800
C C	-1 39197400	1 24736700	-0.31058000
C C	-0 68887600	2 /8270100	-0 23797000
C C	0.68886800	2.48270100	0.23797000
C	1 20106200	1 24725900	0.23800000
C	1.39190300	2.67700500	0.51059000
C II	1.33097800	3.67790500	0.04448000
H	0.79096400	4.62180100	0.61810100
C	2.62260400	3.64808900	1.12293900
C	3.303/8000	2.41664000	1.2455/000
С	2.69895500	1.23480700	0.85833500
Н	3.20558400	0.28926700	1.02728300
С	-1.33098600	3.67791400	-0.64444100
Н	-0.79097200	4.62181000	-0.61804000
С	-2.62260500	3.64810200	-1.12290400
С	-3.30379100	2.41665800	-1.24554300
С	-2.69896900	1.23482100	-0.85831700
Н	-3.20559800	0.28928100	-1.02726100
С	4.73484400	4.06272600	2.06573600
С	5.89525200	4.59323100	2.62212800
н	5.98963400	5.66396600	2.79762500
С	6.94367500	3.72682800	2.95616200
н	7.85578700	4.12599100	3.39226300
С	6.82811400	2.34812100	2.73358800
H	7.65167300	1.69031900	2.99892800
C	5,66527800	1.81177900	2,17368400
е Н	5 57809000	0 74105900	2 00122400
C C	4 62115600	2 67881100	1 84226000
C C	-/ 73/83900	4 06275700	-2 06570900
C C	-5 8952/700	4.00275700	-2.62209500
L L	5 09062900	5 66400400	2 70750100
	-3.38302800	2 72697200	2.79739100
	-0.94508500	5.72087200	-2.95010000
H C	-7.85579700	4.12604800	-3.39219400
C	-6.82813500	2.34816500	-2.73354000
Н	-7.65170200	1.69036900	-2.99886900
C	-5.66529400	1.81181600	-2.1/364500
н	-5.57810800	0.74109600	-2.00118600
С	-4.62116500	2.67884100	-1.84223100
С	3.47690100	4.79856100	1.62957700
С	-3.47688000	4.79857800	-1.62957500
С	3.77685700	5.80812200	0.50941300
Н	2.84864700	6.28222200	0.16738400
Н	4.25202900	5.31554300	-0.34607900
Н	4.44800100	6.59459700	0.87571500
С	2.80870300	5.51577400	2.81364200
н	2.58540500	4.81202300	3.62301100
н	1.87172100	5.98781700	2.49363000
Н	3.46884400	6.29950300	3.20487400

С	-2.80865600	5.51569400	-2.81369300
Н	-2.58535400	4.81187400	-3.62300100
Н	-1.87167100	5.98775300	-2.49370800
Н	-3.46878700	6.29939700	-3.20499400
С	-3.77679800	5.80822000	-0.50948200
Н	-2.84858700	6.28237100	-0.16752900
Н	-4.25192600	5.31570500	0.34607200
Н	-4.44797100	6.59465200	-0.87582400

p-Me (neutral)

Zero-point	correction=	1	.015576				
(Hartree/Pa	article)						
Thermal correction to Energy= 1.073536							
Thermal correction to Enthalpy= 1.074480							
Thermal correction to Gibbs Free Energy= 0.919489							
Sum of electronic and zero-point Energies= -							
2544.923167							
Sum of ele	ctronic and th	nermal Energie	s= -				
2544.86520	07						
Sum of ele	ctronic and th	nermal Enthalp	ies= -				
2544.8642	53						
Sum of ele	ctronic and th	nermal Free En	ergies= -				
2545.0192	53						
C	-0.69535500	-0.00002000	0.00003800				
С	0.69533800	-0.00004800	0.00002300				
С	1.39217700	1.24733000	0.31068900				
С	0.68880400	2.48237000	0.23796800				
С	-0.68870000	2.48239400	-0.23796600				
С	-1.39214200	1.24738700	-0.31063300				
С	-1.33127100	3.67771000	-0.64465200				
Н	-0.79117500	4.62165300	-0.61836400				
С	-2.62272800	3.64809500	-1.12291500				
С	-3.30505900	2.41667600	-1.24518500				
С	-2.69964300	1.23509700	-0.85794300				
Н	-3.20651500	0.28956400	-1.02622200				
С	1.33144600	3.67766900	0.64459700				
Н	0.79140700	4.62164200	0.61825600				
С	2.62289700	3.64799600	1.12287500				
С	3.30513600	2.41653400	1.24525600				
С	2.69965900	1.23497800	0.85804400				
Н	3.20645700	0.28941500	1.02637900				
С	-4.73634000	4.06369700	-2.06378400				
С	-5.89396200	4.59619800	-2.62144300				
Н	-5.98086000	5.66886500	-2.79960800				
С	-6.96015700	3.74859900	-2.96323100				
С	-6.82859500	2.36738800	-2.73867400				
Н	-7.65232500	1.71040400	-3.01215700				
С	-5.67096900	1.82308100	-2.17817700				
Н	-5.59139800	0.75013600	-2.01518300				
С	-4.62209800	2.68081600	-1.83989600				
С	4.73646000	4.06349900	2.06390800				
С	5.89403500	4.59593200	2.62170700				
Н	5.98099200	5.66860000	2.79983900				
С	6.96011900	3.74825900	2.96369600				
С	6.82849000	2.36705800	2.73916700				
Н	7.65213200	1.71002400	3.01279000				
С	5.67089500	1.82281200	2.17852500				
Н	5.59126500	0.74986700	2.01556600				

С	4.62213800	2.68060800	1.84007700
С	-3.47657000	4.79888000	-1.63073300
С	3.47685300	4.79877100	1.63052700
С	-3.77313600	5.81165100	-0.51277100
Н	-2.84369100	6.28498600	-0.17292200
н	-4.24803200	5.32185800	0.34451800
н	-4.44356400	6.59833800	-0.88006500
C	-2 80903200	5 51209300	-2 81749700
н	-2 58795500	4 80572400	-3 62524100
н	-1 87081/00	5 98362700	-2 50025700
и Ц	2 46990600	6 20556200	2 21000000
п С	-3.4000000	0.29550200	-5.21000900
L 	2.80929600	5.51261300	2.8168/100
н	2.58/89800	4.80663900	3.62487200
Н	1.8/125300	5.98425900	2.49928100
Н	3.46918600	6.29608700	3.20917800
С	3.77385100	5.81103400	0.51218800
Н	2.84457800	6.28445000	0.17198400
Н	4.24877800	5.32076500	-0.34481200
н	4.44441500	6.59769900	0.87928400
С	1.39213800	-1.24743700	-0.31067000
С	0.68868600	-2.48243100	-0.23801000
С	-0.68878900	-2.48241300	0.23799600
С	-1.39219700	-1.24739100	0.31070800
C	-1.33136600	-3.67772000	0.64471700
н	-0.79128600	-4.62167100	0.61842700
C	-2 62280400	-3 64807200	1 12301300
c c	-3 30512900	-2 41664300	1 24527700
C C	-2 69970000	-1 23507300	0.85803200
L L	2.09970000	-1.23307300	1.02621000
	-5.20055000	-0.28955100	1.02031000
C	1.33122400	-3.6///4800	-0.64477500
н	0.79110700	-4.6216/900	-0.61853000
C	2.62266400	-3.64812500	-1.12305600
С	3.30503800	-2.41671100	-1.24527300
С	2.69965000	-1.23513900	-0.85798600
Н	3.20653000	-0.28960300	-1.02622100
С	-4.73640800	-4.06357300	2.06385200
С	-5.89419700	-4.59611300	2.62145700
Н	-5.98114400	-5.66876400	2.79959300
С	-6.96032700	-3.74860500	2.96309000
С	-6.82876000	-2.36725800	2.73849500
Н	-7.65255400	-1.71027000	3.01184900
С	-5.67118600	-1.82302200	2.17816400
Н	-5.59157900	-0.75008800	2.01510700
С	-4.62217300	-2.68082500	1.83996700
С	4.73622400	-4.06361800	-2.06397600
C	5.89402000	-4.59618100	-2.62168000
н	5 98092000	-5 66882700	-2 79984900
C	6 96012000	-3 74872000	-2 96328700
C	6 82863100	-2 36733200	-2 73853100
ц	7 65247100	-1 71037000	-3 01183100
 C	5 67112000	-1 82211700	-2 17815000
L L	2.0112300	-1.02311/00	2.17013000
	5.59150300	-0.75020000	-2.01496300
	4.62205300	-2.68093400	-1.84000500
L C	-3.4/66/000	-4./9881400	1.63086700
L	3.4/652700	-4./988/200	-1.63091100
С	-3.77325800	-5.81162600	0.51294300
Н	-2.84382900	-6.28502200	0.17314000
Н	-4.24811100	-5.32184700	-0.34437700

Н	-4.44373400	-6.59826400	0.88025700
С	-2.80916700	-5.51199300	2.81767200
н	-2.58805200	-4.80558800	3.62537500
н	-1.87097300	-5.98359200	2.50045700
н	-3.46898000	-6.29540500	3.21023200
С	2.80899000	-5.51222600	-2.81757600
н	2.58775300	-4.80593500	-3.62534500
н	1.87085900	-5.98386700	-2.50023600
н	3.46882500	-6.29563700	-3.21010100
С	3.77326400	-5.81153900	-0.51288000
н	2.84389100	-6.28494500	-0.17294000
н	4.24816300	-5.32162200	0.34433600
Н	4.44375900	-6.59818000	-0.88015600
С	-8.23632300	-4.31212200	3.53817900
Н	-8.95772400	-4.53891900	2.74347100
Н	-8.04809500	-5.24113200	4.08542900
н	-8.71316300	-3.60049300	4.21957800
С	-8.23585600	4.31277800	-3.53833200
н	-8.94599600	4.56706500	-2.74179500
н	-8.04325600	5.22636300	-4.10961900
Н	-8.72772600	3.59057400	-4.19745600
С	8.23575200	4.31240700	3.53897500
н	8.94536200	4.56823200	2.74245700
н	8.04288200	5.22509700	4.11160500
н	8.72835000	3.58959100	4.19687900
С	8.23612200	-4.31196600	-3.53863200
н	8.96128800	-4.52982900	-2.74486100
Н	8.04933100	-5.24582100	-4.07803800
Н	8.70787200	-3.60387500	-4.22725700

p-OMe (neutral)

, ,					
Zero-point	t correction=	1	1.037759		
(Hartree/F	Particle)				
Thermal of	correction to Er	nergy=	1.098422		
Thermal of	correction to Er	nthalpy=	1.099366		
Thermal of	correction to Gi	ibbs Free Ener	gy= 0.941520		
Sum of el	ectronic and ze	ero-point Ener	gies= -		
2845.4746	596				
Sum of el	ectronic and th	ermal Energie	s= -		
2845.4140)33				
Sum of el	ectronic and th	ermal Enthalp	ies= -		
2845.4130)89				
Sum of el	ectronic and th	ermal Free En	ergies= -		
2845.5709	935				
С	-0.69543600	-0.00000600	-0.00003500		
С	0.69542100	0.00000600	-0.00003800		
С	1.39219200	-1.24732600	-0.31095300		
С	0.68872100	-2.48212900	-0.23776700		
С	-0.68869100	-2.48214200	0.23773100		
С	-1.39218800	-1.24734900	0.31089700		
С	-1.33241200	-3.67727100	0.64388200		
Н	-0.79312300	-4.62169300	0.61665400		
С	-2.62350600	-3.64726200	1.12262900		
С	-3.30583400	-2.41564400	1.24680000		
С	-2.69956700	-1.23463300	0.85881300		
Н	-3.20537600	-0.28855000	1.02732200		
С	1.33247100	-3.67724700	-0.64390600		
Н	0.79320400	-4.62168200	-0.61665500		

С	2.62355600	-3.64721400	-1.12266900	н	-5.99517500	5.67170000	-2.80746200
C	3.30586600	-2.41558400	-1.24684800	С	-6.94141200	3.74335000	-2.96624000
C	2 69957500	-1 23458600	-0.85886300	C	-6 83579600	2 36102500	-2 74731900
н	3 20536900	-0 28848700	-1 02734600	н	-7 65061900	1 69490600	-3 01045100
C C	-4 73480800	-4 06582300	2 06894600	C	-5 670/1/00	1 82889300	-2 18351300
C C	-4.73480800 5 99207900	4.00382300	2.00894000	L L	5 50606200	0.75622000	2.10551500
	-3.88337800	-4.00430900	2.02402400	п С	-3.39090300	0.73023000	-2.01090800
H C	-5.99507500	-5.6/1/5100	2.80750400	C	-4.62050200	2.67934400	-1.84480100
C	-6.94139300	-3.74343100	2.96612400	C	4.73480900	4.06581700	2.06891600
C	-6.83580100	-2.36110000	2.74715700	C	5.88399400	4.60431500	2.62455100
Н	-7.65065000	-1.69499000	3.01022800	Н	5.9950/000	5.6/1/5300	2.80/45/00
С	-5.67041700	-1.82896800	2.18336700	C	6.94144400	3.74345300	2.96598100
Н	-5.59696800	-0.75631500	2.01670900	С	6.83587400	2.36112900	2.74697500
С	-4.62048900	-2.67942000	1.84468400	Н	7.65074400	1.69502700	3.01000000
С	4.73485600	-4.06576000	-2.06898800	С	5.67047500	1.82898300	2.18322800
С	5.88403500	-4.60425600	-2.62460900	Н	5.59704600	0.75633200	2.01655400
Н	5.99516200	-5.67170700	-2.80742100	С	4.62051200	2.67941800	1.84461400
С	6.94145200	-3.74337600	-2.96612200	С	-3.47652400	4.79976100	-1.62933700
С	6.83585300	-2.36105500	-2.74718600	С	3.47638100	4.79977700	1.62946200
н	7.65068500	-1.69494200	-3.01030300	С	-3.77901700	5.80730200	-0.50833400
С	5.67046300	-1.82890800	-2.18340600	н	-2.85107400	6.27919700	-0.16267800
Н	5.59703100	-0.75624400	-2.01680200	н	-4.25701200	5.31331900	0.34479800
C	4.62052200	-2.67934100	-1.84474100	н	-4.44835600	6.59518200	-0.87492900
C C	-3 47644600	-4 79980100	1 62932700	C	-2 80703300	5 51842600	-2 81140000
C	3 47646600	-/ 7997/000	-1 629/5100	н	-2 58372600	1 81586900	-3 62181500
C C	-3 77880000	-5 80737500	0 50833000	ц	-1 86973500	5 988/0100	-2 / 89/3500
L L	2 85004000	6 27026200	0.16271500	н Ц	2 46507800	5.38840100	2 20176200
	4 256994000	E 21241000	0.10271300	C II	2 20620100	0.30300200	2 91177500
	-4.25066200	-5.51541900	-0.54461400		2.60069100	3.51605400	2.81177500
H C	-4.44823400	-6.59525600	0.87494100	н	2.58377600	4.81525800	3.62203600
L 	-2.80696500	-5.51842500	2.81141700	н	1.86948400	5.98795400	2.49002000
н	-2.58368300	-4.81584600	3.62182000	Н	3.465/5500	6.30323400	3.20226100
н	-1.86965400	-5.98839200	2.48948000	C	3.//863600	5.80763900	0.50869800
Н	-3.46590200	-6.30360400	3.201/8600	н	2.85060200	6.27954400	0.16329500
С	2.80696500	-5.51809900	-2.81170900	н	4.25656200	5.31393700	-0.34463600
Н	2.58381800	-4.81535200	-3.62200400	Н	4.44794500	6.59548800	0.87541400
Н	1.86957500	-5.98800100	-2.48990800	0	-8.03950100	4.33938600	-3.50910300
Н	3.46583900	-6.30328500	-3.20216800	0	-8.03954500	-4.33949300	3.50888500
С	3.77878300	-5.80753300	-0.50864400	0	8.03955500	-4.33941400	-3.50893800
Н	2.85077800	-6.27946100	-0.16319900	0	8.03964900	4.33953300	3.50860500
Н	4.25670500	-5.31377200	0.34465800	С	9.13705000	3.52228500	3.87880700
Н	4.44811800	-6.59537400	-0.87533200	н	9.54810100	2.99429100	3.00948200
С	1.39217700	1.24734700	0.31088100	н	9.89542000	4.19034300	4.28748800
С	0.68867400	2.48213800	0.23774600	н	8.84569800	2.79167900	4.64351200
С	-0.68873900	2.48213300	-0.23775200	С	9.13741800	-3.52226000	-3.87791500
С	-1.39220500	1.24732800	-0.31096200	н	9.54761700	-2.99447600	-3.00806400
С	-1.33248600	3.67725800	-0.64387900	н	9.89608500	-4.19035500	-4.28598000
Н	-0.79321900	4.62169200	-0.61661900	н	8.84697600	-2.79146600	-4.64279900
C	-2 62356700	3 64722800	-1 12265700	C	-9 13722300	3 52221100	-3 87846500
C	-3 30586000	2 41559300	-1 24688700	н	-9 54753700	2 99420300	-3 00880500
C	-2 69956700	1 23459000	-0.85891800	н	-9 89587500	4 19032700	-4 28652200
ц	-3 20533600	0.288/0300	-1 02747500	ц	-8 84657800	2 70161100	-4 64345500
C	1 22220200	3 67725000	0 6/301200	Ċ	-9 13627200	-3 52222100	3 87926000
с ц	1.33239200	A 62167000	0.04331000	с ц	-9.1300/000	2.22222100	3.07920000
C	0.73303000	0210/300	1 12264600	и Ц	-9.04000000 0 00E10000	4 1002000	1 20005000
	2.02349200	3.04/25000	1.12204000		-9.89519200	-4.19028000	4.2000000
	3.30584200	2.41003/00	1.240/5000	п	-8.84539900	-2.19102000	4.04391800
	2.09958000	1.23463100	0.858/4400				
н	3.20541800	0.28854700	1.02/1/300	<i>т</i> -н (о	cation radical)		
L C	-4./3485800	4.065/6500	-2.06901300	Zero-po	oint correction=	0	.907444
L	-5.88402800	4.60424800	-2.62466600	(Hartre	e/Particle)		

Thermal correction Thermal correction	to Energy to Enthal	y= lpy=	0.957482 0.958426		H C	-1.10053100 -3.80308800	-4.53260100 -4.42617500	0.62921600 1.64903800
Thermal correction	n to Gibbs	Free Ener	gy= 0.824	741	С	-3.69805900	-5.81967700	1.71971000
Sum of electronic	and zero-p	oint Energ	gies= -		Н	-2.79994800	-6.33207800	1.38283000
2387.768082			_		С	-4.77727100	-6.54053900	2.23087300
Sum of electronic	and therm	al Energie	s= -		н	-4.72150700	-7.62358900	2.29532000
2387.718044		-			С	-5.93755200	-5.87997000	2.66278600
Sum of electronic	and therm	al Enthalp	ies= -		н	-6.76710100	-6.46050300	3.05739100
2387.717099					С	-6.03966600	-4.48592200	2.59222200
Sum of electronic	and therm	al Free En	ergies= -		н	-6.94316900	-3.98141400	2.92999000
2387.850785			-		С	-4.96576300	-3.76162700	2.08382000
C 1.46864	700 1.12	2987100	0.36029700		С	2.61164500	-1.37074000	-0.89807100
C 0.8482	1800 2.4	1277100	0.27312500		н	3.16475100	-0.45078400	-1.07250100
C -0.5226	1300 2.5	0266000	-0.24887500		С	3.13897300	-2.57934900	-1.29030900
C -1.3064	8800 1.3	1228400	-0.33432200		С	2.37920000	-3.76223300	-1.15334500
C -1.4685	6700 -1.1	12985800	0.36026400		С	1.07755600	-3.72211000	-0.65497700
C -0.8481	5700 -2.4	1276700	0.27320800		н	0.49313300	-4.63643100	-0.61386400
C 0.5226	6800 -2.5	0267600	-0.24881400		С	3.17786200	-4.88119000	-1.65038300
C 1.3065	9700 -1.3	1233400	-0.33415600		С	2.88683800	-6.24760000	-1.72658300
C 0.7133	2500 -0.0	4704800	0.01499400		H	1.93020500	-6.63636000	-1.38530300
C -0.7132	0700 0.0	4704800	0.01490600		С	3.85647100	-7.10332900	-2.24907800
C 2.7730	0000 1.0	1794700	0.91743600		H	3.65647300	-8.16892900	-2.31796900
H 3.2008	8000 0.0	3372100	1.09324600		С	5.09124300	-6.60078900	-2.68717400
C 3.4578	4700 2.1	4823700	1.29972800		Н	5.83308800	-7.28451800	-3.09099500
C 2.8595	7400 3.4	2060500	1.16272200		C	5.37889700	-5.23311600	-2.61187900
C 1.5606	1200 3.5	4994900	0.67232300		Н	6.33870000	-4.85265300	-2.95643800
H 1.1007	3900 4.5	3266800	0.62879200		C	4.41531400	-4.37453500	-2.09148100
C 3.8031	5800 4.4	2630200	1.64876300		C	4.83940800	2.25675700	1.91861600
C 3.6980	7600 5.8	1980300	1.71938000		C	5.91894800	1.69353500	0.98012600
H 2 7999	6700 63	3216000	1 38242900		н	5 76728600	0.61663500	0.83266900
C 4 7772	4100 65	4072200	2 23055500		н	6 91383000	1 83949800	1 41695900
Н 47214	3800 76	2377200	2 29497200		н	5 89045000	2 18869100	0.00342300
C 5 9375	3500 5.8	8020800	2 66252300		C	4 89983900	1 54021500	3 27840500
H 6 7670	5800 64	6078500	3 05712200		н	4 13170200	1 92270600	3 95910200
C 6.0397	0000 44	8616400	2 59201900		н	5 88234600	1 69298600	3 74005100
н 69/32	1200	8170700	2 92982800		н	4 74793600	0.46204900	3 1/792800
C 4 9658	1200 3.3 3100 3.7	6180800	2.02362000		C	-4 48901100	2 86596100	-1 92238600
C -2 6115	2400 13	7061500	-0.89830200		C	-4 62842600	2 16065300	-3 28248100
L _2.0115	1200 I.J	15058800	-1 0727/1900		ц	-3 815/0000	2.10005500	-3 95870600
C _3 1389	3300 25	7918900	-1 290/19300		н	-5 58235900	2.44004400	-3 75030600
C _2 3792	1300 2.5	6211600	-1 15336100		н	-/ 60918900	1 07220000	-3 15119300
C _1 0776	3500 3.7	2211000	-0 65/91000		C	-5 64147600	2 44922500	-0.99/2/100
Н -0.4933	8100 J.A	2200400	-0 61361100		н	-5 63474000	1 361/1600	-0.8/1801700
C _3 1779	1200 4.0 1200 12	8106100	-1 65035700		н	-6 60/93500	2 72545400	-1 / 3850900
C _2 8869	4000 4.0 8400 6.2	17/2000	-1 72648600		н	-5 55605600	2.72345400	-0.01608000
L -1.030/J	1800 0.2	3630300	-1.72048000		с С	-7.83034000	-2 25659800	1 01858300
C _3 8566	1000 0.0	0318100	-2 24906900		C C	-4 90017100	-1 53968500	3 27811600
с -3.8500 н -3.6566	5100 7.1 5100 81	6870300	-2.24900900		ц	-4.30017100	-1.03908500	3 92920200
C 5.000	9700 6.1	0050100	2.51785500		н ц	-4.13230100	1 60224700	2 72050200
L 5 00012	1200 0.0	000000000	2.08734400		 L	-3.88283300	-1.09224700	2 1 4 7 4 0 4 0 0
C 5.0331	1200 7.2 9200 5.2	22200100	-3.09123100		п С	-4.74814900 5 01972100	1 60270700	0.07062700
L -5.5766	1100 J.Z	25220200	2.01211000		L L	5 76702400	-1.09370700	0.97903700
C 4 41E2	1100 4.d	7426200	2.93083800		н ц	-3.70702400	1 92055100	1 41620000
C -4.4153	∠700 4.3 0000 1.0	1790200	-2.09100300		н	-0.91202000	-1.0020000	1.41023300
	1100 0.00	12265100	1 00215100		н С	-7.0026292200	-5.10251000	0.00512100
-3.2008	7E00 -0.0	1015600	1 20081000			4.40500000	-2.00013100	-1.92231200
C -3.45//	2300 -2.1 7000 -2.4	13053600	1 16305000		с u	4.02/09400	-2.10103200	-3.20201300
C -2.8594	7000 -3.4 0700 25	1001200	1.10293000		и ц	5.01401900	-2.44050400	2 75072200
u -1.5604	3/00 -3.5	04991300	0.07256400		п	2.2010200	-2.4311/900	-3./50/3/00

н	4.60863900	-1.07255800	-3.15149200
С	5.64169900	-2.44914700	-0.99464200
Н	5.63501300	-1.36130500	-0.84867800
н	6.60503300	-2.72546200	-1.43912600
н	5.55660700	-2.93446500	-0.01632800
m-Me (c	ation radica	al)	
Zoro point	correction-	• • /	015625
/Hartroo/P	articlo)	1	.013023
Thormal c	article)	oorau-	1 072602
Thormal c	orrection to Er	nei gy-	1.073502
Thormal c	orrection to Li	itilaipy–	1.074540
Sum of old	offection to d	ious riee Lilei	gy- 0.919449
2E 4 4 7202	27	ero-point Energ	gies
2344.7303	21 Antropic and th	ormal Energia	
		iermai Energie:	5= -
2544.0723	49 otropic and th	ormal Enthalm	ion-
		iermai Enthaip	ies= -
2544.0714	UD Antwa wita a wadata		
Sum of ele	and th	iermai Free En	ergies= -
2544.8265	1 71041200	0 71205 400	0.25011200
C	-1./1041300	-0.71395400	-0.35011200
C	-2.51550400	0.46199800	-0.26511900
C	-1.91348000	1.69594800	0.25845300
C	-0.49107600	1.78581200	0.34226400
C	1.70961200	0./128/900	-0.35061700
C	2.51459800	-0.46326300	-0.26713900
С	1.91297800	-1.69/35500	0.25656500
C	0.49065600	-1.78703500	0.34173000
C	-0.31351000	-0.64292700	-0.00472000
С	0.31290700	0.64185800	-0.00469200
С	-2.26227600	-1.90088400	-0.90951700
Н	-1.62170100	-2.76268900	-1.08210600
С	-3.58066800	-1.93087000	-1.29957900
С	-4.38719200	-0.77734200	-1.16838900
С	-3.85443400	0.41176500	-0.67161400
Н	-4.47715900	1.30056100	-0.63108500
С	-5.72253300	-1.09285000	-1.66707200
С	-6.88088500	-0.31138000	-1.75937900
Н	-6.88578900	0.72517500	-1.43001600
С	-8.03253400	-0.89053800	-2.28411700
Н	-8.94260300	-0.29951800	-2.36552700
С	-8.05379000	-2.23173700	-2.71804700
С	-6.88349700	-2.99907600	-2.62347500
Н	-6.88898100	-4.03495700	-2.96236900
С	-5.72623000	-2.43048700	-2.10109100
С	0.10465600	2.95113000	0.90216800
Н	1.17828700	2.97682300	1.07401500
С	-0.68310500	4.00793200	1.29435100
С	-2.08878700	3.93253000	1.16518100
С	-2.69800900	2.78118300	0.66730600
Н	-3.78179300	2.72417000	0.62855500
С	-2.66245700	5.17751500	1.66741500
С	-3.99154900	5.60943700	1.75826000
Н	-4.81085900	4.97676700	1.42455700
С	-4.24449400	6.87324700	2.28306300
Н	-5.27028500	7.22826100	2.35975700
С	-3.20106500	7.71437800	2.72069500
С	-1.87558200	7.26633200	2.62324400

н	-1 06267600	7 91057100	2 95821700
C C	1 61072900	6 00406000	2.00021700
C C	-1.01072800	1.0000000	2.10120000
	2.26179000	1.90033600	-0.90848300
H	1.62160500	2.76262700	-1.08022800
C	3.58025500	1.93065100	-1.29813400
С	4.38635900	0.77656500	-1.16965900
С	3.85326600	-0.41307900	-0.67445300
Н	4.47542500	-1.30234500	-0.63549500
С	5.72144700	1.09257100	-1.66864700
С	6.88008900	0.31124400	-1.76152600
Н	6.88519000	-0.72534700	-1.43229000
С	8.03187900	0.89125800	-2.28439400
H	8,94268400	0.30104500	-2.36426200
C	8 05294700	2 23305800	-2 71727400
C C	6 88347000	3 00085600	-2 6197/300
L L	6 99004200	1 020252000	2.01374300
	0.88994500	4.05625500	-2.93400200
C	5.72562900	2.43112500	-2.09928700
C	-0.104/5900	-2.951/8000	0.90324800
Н	-1.17825000	-2.97703700	1.07595800
С	0.68330900	-4.00827400	1.29571000
С	2.08880200	-3.93335300	1.16440100
С	2.69776100	-2.78253300	0.66503800
Н	3.78153300	-2.72581400	0.62505900
С	2.66291500	-5.17817400	1.66649700
С	3.99189200	-5.61067400	1.75479900
н	4.81085100	-4.97852800	1.41926500
C	4,24525900	-6.87470400	2,27907100
C	3 20235500	-7 71531400	2 71870000
C	1 87678300	-7 26669900	2 62359200
L L	1.06412600	7.20003300	2.02359200
	1.00413000	-7.91073900	2.95966000
C	1.61158/00	-6.00424900	2.10241000
C	-4.36125100	-3.07418900	-1.92288300
С	-4.42234100	-4.28776100	-0.98142400
Н	-3.41578700	-4.69587800	-0.82499300
Н	-5.04409700	-5.07689100	-1.42030200
Н	-4.84350200	-4.01183000	-0.00855200
С	-3.76066100	-3.48954800	-3.27665500
Н	-3.70471100	-2.63572300	-3.96044900
Н	-4.37949600	-4.26725400	-3.73957200
Н	-2.75103000	-3.89433100	-3.13772600
С	-0.26265500	5.32666400	1.91826400
C	0.44040500	5,10843700	3,26873400
н	-0 19475100	4 53850400	3 95537900
н	0.13479100	6.07457500	3 73095400
	1 20017500	4 56175700	2 12502700
	1.56017500	4.50175700	5.12502700
C	0.65146100	6.12483900	0.97448400
Н	1.59419200	5.58602100	0.81584800
Н	0.88857000	7.10108700	1.41329900
Н	0.17201900	6.28579100	0.00278500
С	4.36167300	3.07579500	-1.91686700
С	3.76015000	3.50092300	-3.26688100
Н	3.70171900	2.65179300	-3.95627800
Н	4.37959200	4.28072600	-3.72543700
н	2.75143500	3.90657900	-3.12385800
С	4.42592100	4.28318000	-0.96734400
H	3 41981200	4 69018700	-0.80493100
н	5 0465/000	5 07512500	-1 40271000
н Ц	J.04034500	7.00040300	1.40271300
11	4.04221200	4.00040300	0.00232300

С	0.26357600	-5.32591800	1.92241300	
С	-0.43410700	-5.10470700	3.27527100	
Н	0.20438800	-4.53442900	3.95854100	
Н	-0.66792500	-6.06991600	3.73987200	
Н	-1.37378400	-4.55715000	3.13436300	
С	-0.65517600	-6.12440200	0.98355500	
Н	-1.59758300	-5.58430300	0.82751500	
Н	-0.89237500	-7.09935000	1.42520200	
Н	-0.17963300	-6.28806700	0.01039900	
С	-9.32642200	-2.82661200	-3.26385500	
Н	-9.14570700	-3.80829300	-3.71073300	
Н	-10.07081400	-2.94990300	-2.46835700	
Н	-9.77103300	-2.17680200	-4.02511900	
С	-3.51897100	9.07149700	3.29376500	
Н	-2.60784100	9.64770700	3.47739800	
Н	-4.15902000	9.64573600	2.61516000	
Н	-4.05726700	8.97708500	4.24406400	
С	9.32224400	2.82322600	-3.27572500	
Н	9.17514200	3.86294200	-3.58101900	
Н	10.12699300	2.79623900	-2.53233000	
Н	9.66813900	2.25638400	-4.14735200	
С	3.52050600	-9.07138400	3.29412000	
Н	2.61232000	-9.66232900	3.44208000	
Н	4.19333700	-9.63125400	2.63574300	
Н	4.02244300	-8.97499400	4.26404100	
н	5.27099000	-7.23035500	2.35339100	
<i>m</i> -OMe	cation radio	cal)		
Zero-point correction= 1.037783				
(Hartroo/D	articla)			

(Hartree/	Particle)						
Thermal correction to Energy= 1.098494							
Thermal correction to Enthalpy= 1.099438							
Thermal	correction to Gi	bbs Free Ener	gy= (0.942176			
Sum of e	electronic and ze	ro-point Energ	gies=	-			
2845.285	250						
Sum of e	electronic and th	ermal Energie	s=	-			
2845.224	539						
Sum of e	electronic and th	ermal Enthalp	ies=	-			
2845.223	595						
Sum of e	electronic and th	ermal Free En	ergies=	-			
2845.380)857						
0	6.88418800	-6.53583600	3.28385	5400			
0	6.88446200	6.53573400	-3.2836	8200			
0	-7.17023200	6.52477000	3.0527	8400			
0	-7.17016400	-6.52457900	-3.0531	7900			
С	1.15786400	-1.38486900	0.36373	1800			
С	2.39768400	-0.68357600	0.26954	4300			
С	2.39767500	0.68358000	-0.26968	3500			
С	1.15786700	1.38493800	-0.36375	5600			
С	-1.29199900	1.39507400	0.32209	9700			
С	-2.53229800	0.69133600	0.24909	9300			
С	-2.53229300	-0.69132100	-0.2490	2200			
С	-1.29198400	-1.39503800	-0.3220	6500			
С	-0.06760400	-0.71367000	0.0104	6000			
С	-0.06760500	0.71373500	-0.01049	9600			
С	1.13364800	-2.68453600	0.94364	4500			
Н	0.17991300	-3.17468100	1.1250	0000			
С	2.30431400	-3.28552300	1.34079	9200			

С	3.53752400	-2.60824400	1.19575500
C	3.57937300	-1.31196000	0.68258300
н	4 52881700	-0 78674700	0.63415000
C	2 /19935700	-4 64472200	1 98996400
C C	2.45555700	5 77064200	1.07017000
L L	2.00330000	-3.77904200 E 60088600	0.02046200
	0.92092000	-5.09988000	0.93040200
н	2.21438400	-6.75281900	1.53893600
н	2.496/1300	-5./42/6200	0.10082600
C	1.79056100	-4./1//4000	3.35305300
Н	2.12908000	-3.91371400	4.01542400
Н	2.00082500	-5.67931500	3.83589400
Н	0.70525900	-4.63059600	3.22271900
С	1.13370400	2.68464600	-0.94361700
Н	0.18000100	3.17491200	-1.12482400
С	2.30438700	3.28558200	-1.34079400
С	3.53757000	2.60823000	-1.19584100
С	3.57937400	1.31191900	-0.68275700
н	4.52879700	0.78666200	-0.63441900
C	2 /19950000	4 64477400	-1 98997300
C	2.45556666	5 77977800	-1 07934500
	0.00040500	5.77577800	0.02062400
	0.92099500	6.75280000	1 52025200
п 	2.21442000	6.75289900	-1.53925300
н	2.49677200	5.74307500	-0.10098900
С	1.79084700	4.71767900	-3.35315500
Н	2.12934700	3.91353300	-4.01538800
Н	2.00127800	5.67917500	-3.83608300
Н	0.70552500	4.63066100	-3.22293500
С	-1.26782200	2.71273900	0.86164200
Н	-0.31419700	3.20845900	1.02783800
С	-2.43825300	3.32477400	1.23971100
С	-3.67192400	2.64327900	1.11635900
С	-3.71407200	1.33182700	0.64245100
н	-4.66351000	0.80549800	0.60934200
С	-2.63679900	4,70287800	1.84474900
C	-2.14467600	5.80906900	0.89813400
ч	-1 06048100	5 72496000	0 75041400
н	-2 35290500	6 7963/700	1 22725600
u II	-2.33230300	0.79034700 E 74129000	0.07795600
	1 02029700	3.74128000	-0.07785000
L 	-1.92938700	4.82138900	3.20551000
н	-2.26344800	4.03581700	3.89181400
н	-2.14543600	5.79585500	3.65920400
Н	-0.84353000	4.73726800	3.07823400
С	-1.26782100	-2.71272300	-0.86157600
Н	-0.31419900	-3.20843100	-1.02784100
С	-2.43825500	-3.32479100	-1.23956000
С	-3.67193000	-2.64329500	-1.11620900
С	-3.71407800	-1.33183800	-0.64232100
Н	-4.66353400	-0.80553800	-0.60920200
С	-2.63682400	-4.70291700	-1.84453800
С	-1.92928600	-4.82158900	-3.20520400
Н	-2.26329200	-4.03615100	-3.89168400
н	-2.14526000	-5.79614500	-3.65873800
н	-0 8434/600	-4 73742500	-3 07781500
C C	-2 14488100	-5 80912600	-0.89783/00
ч	-1 06069000	-5 72515/00	-0 7/000500
н Ц	-1.00000500	-3.72313400	1 22700400
п 11	-2.35318000	-0./903/000	-1.32709400
	-2.03/64400	-5.74129000	0.07810400
L	4.00991300	-4.6/309600	2.15691600

С	4.78845500	-5.68810900	2.68318600		
Н	4.36187800	-6.62292900	3.04117600		
С	6.18113100	-5.50349100	2.75864800		
С	6.77419300	-4.30910100	2.30828600		
Н	7.84812900	-4.16980700	2.36749700		
С	5.97950400	-3.29234500	1.77817700		
н	6 44437600	-2 37311000	1 42970100		
C	4 59698800	-3 47336600	1 69989800		
C	9 20500500	6 41727100	2 20557800		
с u	0 E C 0 2 7 7 0 0	-0.41727100 E E 76E 7000	4.04202600		
	0.50057700	-5.57057900	4.04595000		
H	8.75772900	-6.28/31200	2.41023800		
н	8.64593700	-7.34782200	3.84099100		
C	4.01006800	4.6/309100	-2.15689600		
С	4.78865700	5.68809600	-2.68311900		
Н	4.36211000	6.62294700	-3.04106200		
С	6.18132000	5.50340700	-2.75857800		
С	6.77431200	4.30893400	-2.30832700		
Н	7.84823700	4.16958400	-2.36759500		
С	5.97957900	3.29219000	-1.77827500		
н	6.44440300	2.37290100	-1.42987700		
C	4.59707200	3.47330300	-1.69995900		
C	8 29527900	6 41707300	-3 39529700		
ч	8 64633800	7 34771400	-3 84042500		
и Ц	0.04033800 0.56063200	5 57652600	-3.84042300		
	0.30802300	5.57052000	-4.04385400		
	8.75789700	0.28079400	-2.40995200		
C	-4.14/2/900	4.73266400	2.00989300		
C	-4.92121500	5.77685300	2.50/82600		
Н	-4.45503200	6.70665800	2.82292500		
С	-6.30953600	5.58830000	2.58820300		
С	-6.89936000	4.37383400	2.17606400		
Н	-7.97804500	4.27786800	2.25902700		
С	-6.11921400	3.34133300	1.68026800		
Н	-6.58378400	2.41076500	1.36333600		
С	-4.73006400	3.52332700	1.59398900		
С	-6.64805000	7.77251600	3.48511900		
н	-7.50165900	8.36636200	3.81068800		
Н	-6.13555100	8.28831300	2.66452200		
н	-5 95515100	7 63806300	4 32415900		
Ċ	-4 14728500	-4 73264000	-2 00981000		
C C	4.14728500	5 77679700	2.00381000		
	-4.92119000	-5.77078700	-2.50789000		
	-4.45490800	-0.70050700	-2.82500000		
C	-6.30949400	-5.58818400	-2.58840500		
C	-6.89932800	-4.3/3/2900	-2.1/623400		
Н	-7.97800400	-4.2///3600	-2.25929500		
С	-6.11921100	-3.34127500	-1.68030100		
Н	-6.58377900	-2.41070900	-1.36335900		
С	-4.73007200	-3.52331300	-1.59389000		
С	-6.64793900	-7.77231100	-3.48549800		
Н	-5.95511800	-7.63783700	-4.32460000		
Н	-7.50152900	-8.36623700	-3.81096600		
Н	-6.13531900	-8.28802700	-2.66492600		
n_H (cat	tion radical)				
Zero-point correction= 0.907481					
(Hartree/	Particle)		0.05754.5		
Inermal	correction to Er	nergy=	0.95/514		
Thermal	correction to Er	nthalpy=	0.958458		
Thermal	correction to Gi	ibbs Free Ener	gy= 0.824906		

Sum of electronic and zero-point Energies= 2387.759430 Sum of electronic and thermal Energies= 2387.709397 Sum of electronic and thermal Enthalpies= 2387.708452 Sum of electronic and thermal Free Energies= 2387.842004 С 0.71670500 0.00009100 -0.00014700 С -0.71664600 -0.00009200 -0.00013900 С -1.39055800 -1.22318800 0.35665000 С -0.68182000 -2.45896000 0.26815400 С 0.68248200 -2.45882600 -0.26811500 С 1.39086900 -1.22285300 -0.35687900 С 1.31406400 -3.63984600 -0.68801000 Н 0.78753100 -4.59012300 -0.64800900 С 2.60542200 -3.59736100 -1.19414400 С 3.29496000 -2.37227700 -1.31905300 С 2.69383100 -1.19199900 -0.91807000 Н 3.18515600 -0.23883100 -1.09040200 С -1.31304800 -3.64001300 0.68847700 Н -0.78628900 -4.59016600 0.64877100 С -2.60438800 -3.59775300 1.19465300 С -3.29438500 -2.37289000 1.31896900 С -2.69354300 -1.19253500 0.91770500 Н -3.18508900 -0.23941200 1.08976500 С 4.69995800 -4.02078000 -2.16586700 С 5.84970000 -4.55727400 -2.73854500 Н 5.93505200 -5.62677900 -2.92328100 С 6.89925100 -3.69499700 -3.07653000 н 7.80356200 -4.09757000 -3.52494700 С 6.79828000 -2.31636500 -2.84360600 Н 7.62467400 -1.66446700 -3.11324300 С 5.64703900 -1.77412000 -2.26803700 Н 5.57001000 -0.70435200 -2.08676000 С 4.60198700 -2.63823100 -1.93292200 С -4.69916400 -4.02166000 2.16563200 С -5.84908800 -4.55836300 2.73775100 Н -5.93424800 -5.62783100 2.92276700 С -6.89916000 -3.69635700 3.07484700 Н -7.80361900 -4.09914400 3.52277200 С -6.79852400 -2.31776100 2.84161500 н -7.62529400 -1.66605600 3.11056400 С -5.64710800 -1.77529000 2.26660500 Н -5.57031200 -0.70555300 2.08507900 С -4.60157400 -2.63913600 1.93232600 С 3.43983000 -4.74738100 -1.72371400 С -3.43828500 -4.74784900 1.72489100 3.73239400 -5.77492800 -0.61673800 С 2.80188500 -6.24542200 -0.27714800 Н 4.22078900 -5.30200600 0.24190600 Н 4.39120700 -6.56147700 -1.00260200 Н С 2.74228000 -5.43656400 -2.90921400 2.51846300 -4.71899900 -3.70577900 Н Н 1.80552200 -5.90403400 -2.58346400 Н 3.39008500 -6.22045100 -3.31832700 С -2.74087200 -5.43465800 2.91194900 Н -2.51879000 -4.71576100 3.70779600

Н	-1.80316500	-5.90124600	2.58766200
Н	-3.38798700	-6.21891500	3.32144700
С	-3.72902000	-5.77727800	0.61927200
н	-2.79783200	-6.24762400	0.28129100
н	-4.21695700	-5.30610800	-0.24059700
н	-4.38756000	-6.56378100	1.00569600
C	-1 39083100	1 22283100	-0 35690700
C C	-0.68246900	2 45882200	-0.26815800
C	-0.08240900	2.43882200	0.20813800
C C	1 20060000	2.43897800	0.20811000
	1.39060000	1.22322100	0.35000500
C .	1.31301500	3.64006200	0.68841400
H	0.78617400	4.59017300	0.64873000
C	2.60436700	3.59786400	1.19455700
С	3.29441900	2.37301500	1.31884300
С	2.69360800	1.19263400	0.91762600
Н	3.18521200	0.23954500	1.08969000
С	-1.31408100	3.63980700	-0.68809700
Н	-0.78761800	4.59012700	-0.64809400
С	-2.60543300	3.59726200	-1.19425700
С	-3.29492300	2.37217000	-1.31915700
С	-2.69375400	1.19190600	-0.91812900
Н	-3.18503400	0.23871400	-1.09048300
С	4.69913800	4.02183500	2.16551500
C	5.84906800	4.55859800	2.73755700
н	5 93415800	5 62806500	2 92260400
C	6 89923700	3 69665300	3 07450000
ч	7 80370500	1 00018100	3 52236700
C C	6 70867400	2 21 205500	2 84122200
L L	7 62551200	2.51805500	2.84123300
	7.02551300	1.00039100	3.1100/100
C	5.64725000	1.77553100	2.26629700
н	5.57052900	0.70579700	2.084/1500
C	4.60162100	2.63931400	1.93215400
С	-4.69997800	4.02061600	-2.16596600
С	-5.84974400	4.55705600	-2.73864600
Н	-5.93516200	5.62655900	-2.92336500
С	-6.89924000	3.69472800	-3.07668400
Н	-7.80357300	4.09726300	-3.52509100
С	-6.79820300	2.31610000	-2.84377300
Н	-7.62456000	1.66417100	-3.11344800
С	-5.64694400	1.77390200	-2.26819700
Н	-5.56984700	0.70413500	-2.08694800
С	-4.60194800	2.63806500	-1.93303400
С	3.43816300	4.74796000	1.72493600
С	-3.43987000	4.74726500	-1.72384000
С	3.72872100	5.77771300	0.61959000
Н	2.79743600	6.24789700	0.28166100
н	4,21684300	5.30688000	-0.24035800
н	4 38702700	6 56430200	1 00624200
C	2 74068900	5 43436000	2 91220500
ч	2 51859200	4 71518800	3 70780200
н	1 80208500	5 90102600	2 58802600
н	2 28770000	6 21 8/ 9100	2,30002000
() ()	3.30//0500	0.21040100	3.32130/00
	-2.74233100	5.43031000	-2.90945200
н	-2.518/9/00	4./1868/00	-3.70604200
H	-1.80541400	5.90356600	-2.58385600
Н	-3.39001500	6.22034400	-3.31847700
C	-3.73236000	5.77491700	-0.61696500
Н	-2.80183300	6.24541500	-0.27742700

Н	-4.39114800	6.56145700	-1.00288900					
n Ma	(cation radical	h						
p-ivie	(cation radical)	045454					
Zero-po	oint correction=	1	.015151					
(Hartree	(Hartree/Particle)							
Inerma	al correction to Er	nergy=	1.073296					
Therma	al correction to Er	ithalpy=	1.0/4240					
I nerma	al correction to G	bbs Free Energ	gy= 0.919125					
	electronic and ze	ro-point Energ	gies= -					
2544.7J	LOU38 Coloctronic and th	ormal Enoraio						
		ermai Energie	5= -					
2544.05 Sum of	oloctronic and th	ormal Enthalm	ior-					
2544 65			163-					
2344.01 Sum of	electronic and th	ormal Eroo En	orgios-					
2544.81	12063		ergies-					
2344.01 C	-0 69462000	-0 00008600	0 00925200					
C C	0 69464000	-0.00010800	-0.00918400					
C	1 39713500	-1 23993600	-0 30924200					
C	0 68927200	-2 47485000	-0 23138400					
C	-0 68935000	-2 47483300	0 23137900					
C	-1 39715300	-1 23989200	0 30930900					
C	-1 34098500	-3 67366000	0.61631300					
н	-0.80500800	-4 61909100	0 58552700					
C	-2 63688400	-3 64511400	1 07791300					
C	-3.32157600	-2.41278000	1.20820500					
C	-2.71156000	-1.22865900	0.84111800					
Ĥ	-3.21975300	-0.28508100	1.01663500					
C	1.34085000	-3.67368500	-0.61638800					
Ĥ	0.80482600	-4.61909100	-0.58567300					
C	2.63675800	-3.64517900	-1.07796300					
C	3.32153300	-2.41287900	-1.20812700					
C	2.71156500	-1.22874700	-0.84099500					
н	3.21982300	-0.28519000	-1.01643700					
С	-4.76066600	-4.06820100	1.98956600					
C	-5.92523900	-4.60642500	2.52884900					
н	-6.01656500	-5.68089100	2.69114400					
С	-6.99168000	-3.76149200	2.87197800					
С	-6.85640100	-2.37600300	2.66705000					
н	-7.68212000	-1.72198200	2.94141700					
С	-5.69396100	-1.82677300	2.12584400					
н	-5.61069800	-0.75191400	1.97831100					
С	-4.64305300	-2.68337600	1.78608000					
С	4.76056600	-4.06834200	-1.98952300					
С	5.92513900	-4.60659800	-2.52875200					
н	6.01640200	-5.68105400	-2.69115000					
С	6.99168100	-3.76170500	-2.87170500					
С	6.85647300	-2.37623100	-2.66669900					
н	7.68225300	-1.72224300	-2.94095800					
С	5.69401600	-1.82696100	-2.12554600					
н	5.61080800	-0.75210700	-1.97795200					
С	4.64303300	-2.68351600	-1.78593100					
С	-3.49905000	-4.80062800	1.55850500					
С	3.49882800	-4.80070300	-1.55870500					
С	-3.78575500	-5.79212700	0.41864600					
Н	-2.85463900	-6.26488700	0.08309400					
н	-4.24763900	-5.28561500	-0.43594400					

-4.22075100 5.30210000 0.24173900

Н

Н	-4.46469100	-6.58073700	0.76466600
С	-2.84531300	-5.53597300	2.73946900
н	-2.62979600	-4.84491300	3.56171000
н	-1.90662000	-6.00686300	2.42330600
н	-3.51256700	-6.32283500	3.11121100
C	2 84508400	-5 53561700	-2 73994700
с ц	2.04500400	1 94429100	2.755554700
	2.02973200	-4.84428100	-3.30200400
п 	1.90028000	-0.00045000	-2.42400700
H	3.51225600	-6.32246900	-3.11185/00
C	3.78526000	-5./9255/00	-0.41909900
Н	2.85403700	-6.26527300	-0.08377800
Н	4.24712900	-5.28636100	0.43568600
н	4.46410700	-6.58118100	-0.76526200
С	1.38303600	1.25043900	0.30761700
С	0.67910400	2.50737200	0.21524500
С	-0.67901200	2.50738300	-0.21530100
С	-1.38298700	1.25046800	-0.30758100
С	-1.34888200	3.72130500	-0.57710100
н	-0.82523400	4 67058300	-0 51401900
C	-2 62599700	3 68747500	-1 05818500
C C	2 20700000	2 42561200	1 22801200
C	-3.28789000	1 22024200	-1.22801200
C	-2.66767100	1.23824300	-0.86396900
H	-3.16989100	0.29532300	-1.05331/00
C	1.34901500	3./2129500	0.57697300
н	0.82540600	4.67058800	0.51380300
С	2.62611500	3.68744800	1.05809300
С	3.28795600	2.43557100	1.22803500
С	2.66769800	1.23820000	0.86404900
н	3.16987800	0.29527200	1.05346900
С	-4.74053500	4.07420500	-1.98774100
С	-5.91298800	4.58746200	-2.52695400
н	-6.03979400	5.66037000	-2.66708600
C	-6 94667700	3 71287600	-2 89683500
C S	-6 77949600	2 32005000	-2 71255500
с ц	-7 58982100	1 65/80700	-3 00253000
с С	-7.38382100 E 61E37900	1 70270000	-3.00233000
	-5.01537800	1.79379900	-2.17401900
H	-5.50273800	0.72110200	-2.03/91100
C	-4.58/46400	2.68165800	-1.80940600
C	4.74063600	4.07415700	1.98768000
С	5.91309600	4.58742300	2.52689400
н	6.03992000	5.66033700	2.66694900
С	6.94673700	3.71283800	2.89686300
С	6.77950200	2.31998500	2.71270900
Н	7.58979500	1.65483700	3.00279000
С	5.61539400	1.79373800	2.17418100
н	5.50270100	0.72103600	2.03816000
С	4.58751800	2.68161200	1.80944900
C C	-3 50943200	4 83215400	-1 52165400
C S	3 50958000	4 83212500	1 52151000
C C	2 84515200	5 79227000	0.25050800
	-2.04212200	5.70227000	0.00042800
а 11	-2.93423500	0.2/454900	0.00043800
н	-4.30316000	5.24012/00	0.47462900
Н	-4.54237600	6.55/74500	-0.69697000
С	-2.86158100	5.61739200	-2.67351600
Н	-2.61171500	4.95707700	-3.51071200
Н	-1.94432700	6.10846400	-2.32796600
Н	-3.54767700	6.39323100	-3.03252500
С	2.86172500	5.61744900	2.67331600

Н	2.61179700	4.95718100	3.51053200
Н	1.94450700	6.10855000	2.32771000
Н	3.54784900	6.39326800	3.03231300
С	3.84537200	5.78216800	0.35932900
Н	2.93448700	6.27446800	-0.00066800
Н	4.30338100	5.23996800	-0.47477000
Н	4.54261700	6.55762900	0.69677500
С	-8.22568600	4.23672900	-3.48983000
Н	-9.09129300	3.89664200	-2.91060300
Н	-8.23472900	5.32935200	-3.51718700
Н	-8.35776000	3.86607500	-4.51293300
С	-8.27324500	-4.32581300	3.43251000
Н	-9.04517700	-4.38931100	2.65597100
Н	-8.12087200	-5.33304900	3.83160600
Н	-8.66882400	-3.69308300	4.23364700
С	8.27329100	-4.32613600	-3.43202400
Н	9.04431700	-4.39198100	-2.65477600
Н	8.12037800	-5.33243300	-3.83328500
Н	8.67034200	-3.69217900	-4.23145100
С	8.22579400	4.23667800	3.48976700
Н	9.09128200	3.89728200	2.90994800
Н	8.23450500	5.32928500	3.51786900
Н	8.35839600	3.86532900	4.51254400

p-OMe (cation radical)

Zero-po	int correction=	1	.037605	5		
(Hartree	e/Particle)					
Thermal correction to Energy= 1.098480						
Therma	al correction to Er	nthalpy=	1.0	99424		
Therma	al correction to G	ibbs Free Ener	gy=	0.940684		
Sum of	electronic and ze	ero-point Ener	gies=	-		
2845.27	1976					
Sum of	electronic and th	ermal Energie	s=	-		
2845.21	1102					
Sum of	electronic and th	ermal Enthalp	ies=	-		
2845.21	0158					
Sum of	electronic and th	ermal Free En	ergies=	-		
2845.36	58898					
С	0.69456900	0.00418300	-0.008	35500		
С	-0.69457400	0.00419600	0.008	74200		
С	-1.39661800	-1.23633200	0.310	24800		
С	-0.68929100	-2.47086500	0.231	81600		
С	0.68929200	-2.47085500	-0.232	08100		
С	1.39663500	-1.23631600	-0.310	36900		
С	1.34134500	-3.66917100	-0.618	19500		
Н	0.80599000	-4.61504300	-0.586	25600		
С	2.63653800	-3.64028000	-1.081	94500		
С	3.32083000	-2.40796800	-1.214	01400		
С	2.71013200	-1.22457400	-0.844	45500		
Н	3.21699600	-0.28026400	-1.020	04400		
С	-1.34133900	-3.66920800	0.617	86500		
Н	-0.80600200	-4.61508800	0.585	81500		
С	-2.63649800	-3.64034100	1.081	70200		
С	-3.32076400	-2.40803100	1.213	94900		
С	-2.71006500	-1.22461400	0.844	45400		
н	-3.21688000	-0.28030300	1.020	18200		
С	4.75780500	-4.06669300	-2.000	63500		
С	5,91286100	-4.61009400	-2.538	29600		

Н	6.02853800	-5.67933000	-2.70615100	Н	5.5055400	0.72861400	2.03789700
С	6.97140100	-3.75107800	-2.88179000	С	4.5847880	2.68352900	1.81515200
С	6.86089500	-2.36514800	-2.68317400	С	-4.7374500	4.08091300	-2.00257500
н	7.67658700	-1.70140400	-2.94914400	С	-5.8971490	4.59661800	-2.54229200
С	5.69028500	-1.82830400	-2.13745500	Н	-6.0471150	0 5.66232800	-2.69992800
н	5.61254600	-0.75353500	-1.98731400	С	-6.9288020	3.70575200	-2.90552000
С	4.63952400	-2.67752000	-1.79619900	С	-6.7850100	2.31128100	-2.72282700
C	-4.75769700	-4.06681900	2.00051600	Н	-7.5838990	0 1.63506000	-3.00552200
C	-5.91270200	-4.61026700	2.53821200	С	-5.6148830	0 1.80116900	-2.17728900
н	-6.02837600	-5.67952300	2.70594800	н	-5.5060090	0 0.72875800	-2.03690400
С	-6.97122300	-3.75128200	2.88187100	С	-4.5849790	2.68361800	-1.81484900
C	-6.86073900	-2.36533800	2.68334300	C	3.5019730	4.83480300	1.53892400
н	-7.67642700	-1.70161300	2.94937400	C	-3.5017340	4.83480200	-1.53959900
С	-5.69016400	-1.82844800	2.13758300	С	3.8341020	5.79329500	0.38302800
Н	-5.61245000	-0.75366500	1.98752000	Н	2.9200240	0 6.27983000	0.02327700
С	-4.63941700	-2.67762200	1.79619700	н	4.2979060	5.25866800	-0.45277900
C	3.49700200	-4.79747700	-1.56338000	н	4.5244230	0 6.57263600	0.72579000
C	-3.49693200	-4.79757600	1.56310300	C	2.8499040	5.60925900	2.69545800
C	3.78881500	-5.78623900	-0.42266700	н	2.6040010	0 4.94225200	3.52854100
H	2.85857100	-6.25675100	-0.08175500	Н	1.9293660	0 6.09585800	2.35244300
н	4.25486500	-5.27787100	0.42855100	н	3.5307860	6.38742100	3.05933000
н	4.46535900	-6.57643800	-0.76969700	C	-2.8498290	5.60828400	-2.69690800
C	2.84026900	-5.53535200	-2.74083900	н Н	-2.6045660	0 4.94064100	-3.52967300
н	2.62329900	-4.84630500	-3.56437000	н	-1.9289360	0 6.09469100	-2.35457700
н	1.90179400	-6.00383400	-2.42067100	н	-3.5305250	0 6.38651200	-3.06098500
н	3,50553800	-6.32411700	-3.11203200	C	-3.8330670	5.79414100	-0.38420800
C	-2 84011700	-5 53553200	2 74047000	ч н	-2 9186950	6 28070700	-0.02522500
н	-2 62316600	-4 84655600	3 56406400	н	-4 2965970	0 5 26019500	0.45218600
н	-1 90162300	-6 00392500	2 42022500	н	-4 5233490	0 6 57344100	-0 72714100
н	-3 50532800	-6 32437600	3 11160000	0	8 0312570	0 4 27215500	3 42763000
C	-3.78882500	-5.78626300	0.42235000	0	8.0742430	-4.35086300	-3.40535900
H	-2.85860400	-6.25674600	0.08133600	0	-8.0739720	0 -4.35111700	3.40553000
н	-4.25494500	-5.27784800	-0.42880100	0	-8.0318730	0 4.27228500	-3.42636000
н	-4.46533400	-6.57649200	0.76938300	C	-9.1232700	3.44677300	-3.82012900
С	-1.38367500	1.25477300	-0.30854900	Н	-9.5193670	0 2.89108100	-2.96324000
С	-0.67912900	2.50953900	-0.21868500	н	-9.8885990	0 4.11998000	-4.20399200
C	0.67925500	2.50955000	0.21823400	н	-8.8192830	0 2.74917200	-4.60812200
C	1.38369900	1.25476000	0.30838500	С	-9.1752600	-3.53846700	3.77702000
C	1.34648100	3.72141400	0.58615600	Н	-9.5769970	0 -2.99796900	2.91121900
Ĥ	0.82092400	4.67014900	0.52735800	Н	-9.9374410	0 -4.21257600	4.16787400
С	2.62390100	3.68806600	1.06825300	н	-8.8910090	0 -2.82004300	4.55558400
C	3.28934600	2.43764000	1.23267100	С	9.1224510	3.44666000	3.82202700
С	2.66945700	1.24156100	0.86330800	н	9.5188080	2.89072700	2.96541700
H	3.17191200	0.29789300	1.04864100	Н	9.8876900	0 4.11991300	4.20598500
С	-1.34627600	3.72138600	-0.58679400	н	8.8181250	2.74929200	4.61009100
H	-0.82060500	4.67007100	-0.52828600	C	9.1753630	-3.53809100	-3.77712200
С	-2.62377000	3.68807600	-1.06869400	Н	9.5772880	-2.99756200	-2.91142900
C	-3.28938700	2.43769000	-1.23268100	Н	9.9375230	0 -4.21211600	-4.16816700
C	-2.66955100	1.24162600	-0.86323600	Н	8.8908240	-2.81970000	-4.55560500
H	-3.17214900	0.29798800	-1.04831500				
C	4.73735300	4.08084600	2.00266800				
C	5.89690300	4.59653500	2.54270400				
H	6.04688800	5.66226300	2.70019900				
С	6.92835300	3,70563700	2.90644300				
c	6.78446700	2.31113100	2.72395900				
н	7,58317700	1.63487600	3.00707700				
C	5.61448500	1.80103900	2.17811500				
-							