Supporting Information for

Visible-Light-Promted Cross-Coupling Reaction of HypervalentBis-Catecholato Silicon Compounds with Selenosulfonates orThiosulfonates
Fei Wang, Shun-Yi Wang*
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, ChemicalEngineering and Materials Science \& Collaborative Innovation Center of Suzhou Nano Scienceand Technology, Soochow University, Suzhou, 215123, P. R. ChinaE-mail: shunyi@suda.edu.cn
Contents
I. General Information S2
II. Synthesis of Substrates S2
III. General Procedure and Product Characterization S3

1. General Procedure A S3
2. General Procedure B S4
3. Product Characterization S5
IV. References S16
V. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra S17

I . General Information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were analytical grade and used without further purification. Anhydrous DMF, was purchased from Beijing InnoChem Science \& Technology Co., Ltd. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 300-400 mesh silica gel was used. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR were recorded on a BRUKER 400 MHz spectrometer in CDCl_{3}. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or the CDCl_{3} residual peak ($\delta 7.26$) for ${ }^{1} \mathrm{H}$ NMR. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR are reported relative to $\mathrm{CDCl}_{3}(\delta 77.16)$. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption (cm^{-1}). HRMS spectra were obtained by using BRUKER micrOTOF-Q III instrument with ESI source. The starting materials were isolated by SepaBean machine Flash Chromatography, which purchased from Santai Technologies Inc.

II. Synthesis of Substrates

General procedure for the synthesis of alkylbis(catecholato)silicates. ${ }^{1}$

To an oven-dried, 100 mL round bottom flask equipped with a stir bar, reflux condenser, and gas inlet adapter was added catechol ($3.01 \mathrm{~g}, 27.3 \mathrm{mmol}, 1.95$ equiv) followed by anhydrous THF (28 mL) and anhydrous $i-\mathrm{Pr}_{2} \mathrm{NH}(1.70 \mathrm{~g}, 2.35 \mathrm{~mL}, 16.8$ mmol, 1.2 equiv). The mixture was placed under an argon atmosphere and was allowed to stir at rt for 5 min until the solution became a pale red. After this time, organotrimethoxysilane derivatives ($14 \mathrm{mmol}, 1.0$ equiv) was added. The solution immediately lightened to a golden yellow. The solution was then heated to reflux in an oil bath and allowed to stir overnight at this temperature. Once the reaction was judged to be complete by crude ${ }^{1} \mathrm{H}$ NMR analysis, the solvent was removed in vacuo by rotary evaporation. The resulting powder was collected via filtration through a medium porosity fritted funnel. The powder was washed with $\mathrm{Et}_{2} \mathrm{O}(\sim 100 \mathrm{~mL})$ and pentane ($\sim 150 \mathrm{~mL}$). The solid was collected and dried further in vacuo to give the desired silicate.

General Procedure for the synthesis of Selenium Sulfonate and

Thiosulfonate ${ }^{2}$.

Thiosulfonates and Selenium Sulfonates were prepared following the reported
procedures ${ }^{2}$.

III .General Procedure and Product Characterization

1. General Procedure \mathbf{A}

A representative procedure synthesis of (2-phenoxyethyl)(propyl)selane (3d) is shown below.

In glovebox, an oven-dried screw-capped 8 mL vial equipped with a magnetic stir bar was charged with diisopropylammonium bis(catecholato)propylsilicate 1a (129.6 $\mathrm{mg}, 0.34 \mathrm{mmol}$) and Se -(2-phenoxyethyl) benzenesulfonoselenoate 2d (68.4 mg 0.2 $\mathrm{mmol})$, cat ($1.4 \mathrm{mg}, 2.5 \mathrm{~mol} \%$), DMSO $(1.0 \mathrm{~mL})$ was added via syringe. The reaction mixture was stirred at r.t for 24 h with a 40 W LED lamp ($40 \mathrm{~W} ; \lambda=450-460 \mathrm{~nm}$; 5 cm away; made in TanLu. Ltd; borosilicate glass;). After 24h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water $(20 \mathrm{~mL} \times 3)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product $\mathbf{3 d}$.

A representative procedure synthesis of phenyl(propyl)selane (5a) is shown below.

In glovebox, an oven-dried screw-capped 8 mL vial equipped with a magnetic stir bar was charged with diisopropylammonium bis(catecholato)propylsilicate 1a (129.6 $\mathrm{mg}, 0.34 \mathrm{mmol}$) and Se -phenyl benzenesulfonoselenoate $\mathbf{4 a}(59.6 \mathrm{mg} 0.2 \mathrm{mmol}$), cat $(1.4 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$, DMSO (1.0 mL) was added via syringe. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h with a 40 W LED lamp ($40 \mathrm{~W} ; \lambda=450-460 \mathrm{~nm} ; 5 \mathrm{~cm}$ away; made in TanLu. Ltd; borosilicate glass;). After 24h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water ($20 \mathrm{~mL} \times 3$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product $\mathbf{5 a}$.

A representative procedure synthesis of cyclohexyl(phenyl)sulfane (7c) is shown below.

In glovebox, an oven-dried screw-capped 8 mL vial equipped with a magnetic stir bar was charged with bis(catechol)diisopropyl ammonium cyclohexyl silicate $\mathbf{1 f}$ (129.6 $\mathrm{mg}, 0.34 \mathrm{mmol}$) and S-phenyl benzenesulfonothioate $\mathbf{6 a}(50.0 \mathrm{mg} 0.2 \mathrm{mmol}$), cat (1.4 $\mathrm{mg}, 2.5 \mathrm{~mol} \%)$, DMSO (1.0 mL) was added via syringe. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h with a 40 W LED lamp ($40 \mathrm{~W} ; \lambda=450-460 \mathrm{~nm} ; 5 \mathrm{~cm}$ away; made in TanLu. Ltd; borosilicate glass;). After 24h, the crude reaction mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$ and washed with water $(20 \mathrm{~mL} \times 3)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product 7c.

2. General Procedure B

The procedure scale-up synthesis of $\mathbf{3 q}, \mathbf{5 h}$ and $\mathbf{7 c}$ is shown below.

In glovebox, An oven-dried screw-capped $50-\mathrm{mL}$ vial equipped with a magnetic stir bar was charged with bis(catechol)diisopropyl ammonium cyclohexyl silicate $\mathbf{1 f}$ and $S e$-(2-phenoxyethyl) benzenesulfonoselenoate 2d, $S e$-phenyl benzenesulfonoselenoate $\mathbf{4 a}$ and S-phenyl benzenesulfonothioate 6a, respectively. Cat ($2.5 \mathrm{~mol} \%$), DMSO was added via syringe. The reaction mixture was stirred for 24 h with a 40 W LED lamp ($40 \mathrm{~W} ; \lambda=450-460 \mathrm{~nm} ; 5 \mathrm{~cm}$ away; made in TanLu. Ltd; borosilicate glass;). After 24h, the crude reaction mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$ and washed with water ($20 \mathrm{~mL} \times 3$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product.

3. Product Characterization

phenethyl(propyl)selane (3a)

Yield: 78% (35.5 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2959, 2924, 1495, 1453, 749, 697. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.97$ (dd, $J=9.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.86-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~h}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.6,128.6,128.5,126.4$, 37.5, 26.5, 24.9, 24.0, 14.7. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}$: 229.0495, found 229.0496.

(3-phenylpropyl)(propyl)selane (3b)
Yield: 77% (68.0 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2959, 2926, 1495, 1453, 1208, 741, 697. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~m}, J=6.6,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~m}, J=$ $6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 2 \mathrm{H})$, $1.99(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,128.6,128.5,126.0,36.1,32.3,26.3,24.0,23.3,14.7$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 243.0652$, found 243.0652.

(4-phenylbutyl)(propyl)selane (3c)

Yield: $85 \%(43.4 \mathrm{mg})$. Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2958, 2926, 1496, 1453, 1206, 745, 697. ${ }^{1} \mathrm{H}$ NMR $\delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, J=7.3,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=$ $8.1,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{dt}, J=7.1,3.5$ $\mathrm{Hz}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,128.6,128.5,126.0,36.1,32.3,29.8,26.3,24.0,23.3,14.7$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 257.0808$, found 257.0809 .

$$
\sim_{O^{-}} \mathrm{Se}^{\mathrm{Ph}}
$$

(2-phenoxyethyl)(propyl)selane (3d)
Yield: $99 \%(48.5 \mathrm{mg})$. Pale yellow oil. IR (neat, $\mathrm{v}, \mathrm{cm}^{-1}$): 2960, 2926, 1599, 1495, 1462, 1238, 1029, 750, 690. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~m}, J$ $=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.64$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,129.6,121.0,114.7,68.5,27.0,24.1,22.0,14.6$. HRMS (ESI', $\mathrm{MeCN}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 245.0445$, found 245.0445.

ethyl 4-(propylselanyl)butanoate (3e)
Yield: 93\% (41.6mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2961, 2927, 1731, 1373, 1194, $1128,1032 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{dt}, J=13.2$, $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{dt}, J=14.6,7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 173.2,60.5,34.3,26.3,25.9,24.0,23.0,14.7,14.4$. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 239.0550$, found 239.0551 .

(4-methylbenzyl)(propyl)selane (3f)

Yield: 86% (39.3mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2959, 2922, 1512, 1453, 1181, 812 , 714. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.96$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.6,136.3,129.3,128.8,26.7$, 26.3, 23.7, 21.2, 14.7. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 229.0495$, found 229.0496 .

4-((propylselanyl)methyl)benzonitrile (3g)

Yield: 99% (47.4 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2960, 2928, 2227, 1605, 1177, 837, 608. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $(\mathrm{s}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 145.7, 132.4, 129.6, 119.0, 110.4, 26.7, 26.4, 23.5, 14.6. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NSe}(\mathrm{M}+\mathrm{H})^{+}: 240.0291$, found 240.0292.

(3-chlorobenzyl)(propyl)selane (3h)
Yield: 94% (42.9 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2960, 2927, 1596, 1573, 1428, 1076, 870, 780, 692. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,134.3,129.8,129.0,127.1,126.9$, 26.6, 26.3, 23.6, 14.7. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClSe}(\mathrm{M}+\mathrm{H})^{+}$:

(3-chloropropyl)(2-phenoxyethyl)selane (3i)

Yield: 84% (46.6 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2955, 2930, 1734, 1598, 1495, $1235,1171,751,690 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~m}, J=9.8,7.0,2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~m}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.4, 129.6, 121.1, 121.1, 114.7, 114.6, 68.444 .4 , 33.2, 22.4, 21.3. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClOSe}(\mathrm{M}+\mathrm{H})^{+}: 270.0055$, found 279.0052.

phenethyl(2-phenoxyethyl)selane (3j)
Yield: 81% (49.4mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 3026, 2927, 1598, 1494, 1237, $1171,749,690 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~m}, J=7.9$, $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.94(\mathrm{~m}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.05-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,141.1$, 129.6, 128.6, 128.5, 126.5, 121.1, 114.7, 68.5, 37.4, 25.7, 22.4. HRMS (ESI ${ }^{+}$, MeCN) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 307.0601$, found 307.0602.

(2-phenoxyethyl)(3,3,3-trifluoropropyl)selane (3k)

Yield: 60%. Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 3041, 2937, 1599, 1496, 1362, 1262, 1209, 1128, 1072, 751, 690. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.96$ ($\mathrm{m}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.85-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $158.2,129.5,121.1,114.4,68.5,36.3,36.0,35.7,35.4,22.7,14.6,14.5$. HRMS (ESI ${ }^{+}$, $\mathrm{MeCN}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 299.0162$, found 299.0162.

ethyl(2-phenoxyethyl)selane (31)
Yield: 99\%. Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$):2957, 2924, 1598, 1494, 1232, 1171, $749,689 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~m}, J=7.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,129.6,121.0$,
114.7, 68.4, 21.6, 18.0, 16.0. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}$: 231.0288, found 231.0288.

hexyl(2-phenoxyethyl)selane (3m)
Yield: 91% (52.3 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2955, 2924, 1599, 1495, 1238, 1029, 750, 690. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24$ (m, 2H), 6.94 (m, J=7.9, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71$ $-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{qd}, J=7.2,5.6,2.3$ $\mathrm{Hz}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,129.6,121.0$, $114.7,68.5,31.4,30.8,29.7,24.8,22.6,22.0,14.1$. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 287.0914$, found 287.0915 .

isobutyl(2-phenoxyethyl)selane (3n)
Yield: 86\%. Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2955, 2924, 1599, 1495, 1238, 1010, $750,690 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~m}, J=7.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J=7.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{dp}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,129.6,121.0,114.7,68.4,34.9,29.5,22.7,22.6$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 259.0601$, found 259.0602.

\mathbf{N}-(3-((2-phenoxyethyl)selanyl)propyl)aniline (30)
Yield: 61\%. Yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$):2926, 2857, 1599, 1494, 1237, 1028, 746, 689. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~m}$, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~m}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.55(\mathrm{~m}$, $2 \mathrm{H}), 4.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 158.5, 148.2, 129.6, 129.4, 121.1, 117.5, 114.7, 112.9, 68.4, 43.7, 30.2, 22.4, 22.0. HRMS ($\left.\mathrm{ESI}^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NOSe}(\mathrm{M}+\mathrm{H})^{+}: 336.0867$, found 336.0867.

cyclopentyl(2-phenoxyethyl)selane (3p)

Yield: 99% (53.5 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2951, 2865, 1598, 1494, 1237, 749, 689. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~m}, J=7.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.86(\mathrm{~m}$, $2 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (tddd, $J=8.8,6.9,3.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,129.5,120.9,114.6,68.4,38.1,34.7,25.0,22.1$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 271.0601$, found 271.0602.

cyclohexyl(2-phenoxyethyl)selane (3q)

Yield: 97% (55.2 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2924, 2850.0, 1598, 1495, 1237, 1171, 991, 749, 689. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.97-$ 6.91 (m, 1H), $6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{tt}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dq}, J=13.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{qd}, J=$ $5.9,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 158.5,129.5,120.9,114.6,68.6,39.3,34.7,34.7,26.9,25.8,20.6$ HRMS $\left(\mathrm{ESI}^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 285.0758$, found 285.0758.

phenyl(propyl)selane (5a)

Yield: 92% (36.6 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2955, 2852, 1464, 1079, 737, 688. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~h}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , CDCl_{3}) $\delta 132.6,130.7,129.1,126.7,30.2,23.6,14.6$. HRMS (ESI' MeCN) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 201.0182$, found 201.0183 .

hexyl(phenyl)selane (5b)
Yield: 93\% (44.8mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2955, 2853, 1579, 1477, 1073, 1022, $732{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H})$, $2.96-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{tt}, J=5.6,2.7 \mathrm{~Hz}$, $4 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.5,130.9,129.1,126.7$, 31.4, 30.3, 29.7, 28.1, 22.7, 14.2. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Se}$ $(\mathrm{M}+\mathrm{H})^{+}: 243.0652$ found 243.0652 .

isobutyl(phenyl)selane (5c)

Yield: $58 \%\left(24.9 \mathrm{mg}\right.$). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2956, 2923, 1579, 1477, 1437, $1214,1022,732 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, J=8.5$, $7.1,5.2,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dp}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 132.4,131.3,129.1,126.6,37.9,29.2$, 22.8. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 215.0339$ found 215.0336.

phenethyl(phenyl)selane (5d)
Yield: $88 \%\left(46.0 \mathrm{mg}\right.$). Pale yellow oil. IR (neat, $\mathrm{v}, \mathrm{cm}^{-1}$): 3025, 2929, 1578, 1436, 1022, 732, 689. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, J=15.6,7.4 \mathrm{~Hz}$, $6 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-2.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.1,132.7,130.3,129.2,128.6,128.5,127.0,126.5,36.7,28.8$. HRMS (ESI', MeCN) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 263.0339$ found 263.0339.

(3-chloropropyl)(phenyl)selane (5e)
Yield: $93 \%\left(43.5 \mathrm{mg}\right.$). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2955, 1578, 1477, 1436, 1262, 1022, 732, 654. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}$, $3 \mathrm{H}), 3.64(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.0,129.6,129.3,127.2,44.4,32.7,24.7$. HRMS (ESI', MeCN$) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClSe}(\mathrm{M}+\mathrm{H})^{+}$: 234.9793 , found 234.9790 .

\mathbf{N}-(3-(phenylselanyl)propyl)aniline (5f)

Yield: 58\% (31.0mg). yellow oil. IR (neat, v, cm^{-1}): 3050, 3018, 1600, 1504, 1435, 1251, 733, 689. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}$, $3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~m}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}$, $1 \mathrm{H}), 3.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.2,132.8,130.2,129.4,129.3,127.1,117.5,112.9,43.6$, 29.8, 25.4. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NSe}(\mathrm{M}+\mathrm{H})^{+}$: 292.0604 found 292.0605 .

cyclopentyl(phenyl)selane (5g)
Yield: 69\% (31.8mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2953, 2865, 1579, 1476, 1436, 1217, 1022, 732. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}$, $3 \mathrm{H}), 3.62$ (ddd, $J=13.1,7.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 4 \mathrm{H})$, 1.57 (tq, $J=6.9,3.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.6,131.2,129.0$, 126.9, 41.9, 34.2, 25.0. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}$: 227.0339 found 227.0339.

$$
\mathrm{Cy}^{-\mathrm{Se}_{-\mathrm{Ph}}}
$$

cyclohexyl(phenyl)selane (5h)
Yield: 77% (36.8 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2925, 2850, 1578, 1476, 1436, 1256, 992, 735. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}$, $3 \mathrm{H}), 3.25(\mathrm{tt}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.62-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{dt}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.8,129.5,129.0,127.3,43.4,34.4,27.0,25.9$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 241.0495$ found 241.0496.

(4-methoxyphenyl)(propyl)selane (5i)

Yield: 94% (43.0mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2959, 2929, 1590, 1489, 1282, 1028, 819. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.76(\mathrm{~m}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3$, 135.6, 120.3, 114.8, 55.4, 31.4, 23.6, 14.5. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{OSe}(\mathrm{M}+\mathrm{H})^{+}: 231.0288$ found 231.0288.

$\operatorname{propyl}(o$-tolyl)selane (5j)

Yield: 73% (31.2 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2961, 2926, 1455, 1377, 1036, 739, 658. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~m}, J=7.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.06(\mathrm{~m}$, $3 \mathrm{H}), 2.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.3,131.9,131.1,130.0,126.5,126.5,29.0$, 23.4, 22.4, 14.7. HRMS (ESI^{+}, MeCN) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}: 215.0339$ found 215.0336 .

naphthalen-1-yl(propyl)selane (5k)

Yield: 94\%. Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2959, 2926, 1560, 1453, 1197, 961, $787,767,650 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~m}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~m}, J$ $=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H})$, $2.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.5,134.1,132.0,130.0,128.7,128.1,127.7,126.6,126.2$, 125.8, 30.5, 23.6, 14.6. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Se}(\mathrm{M}+\mathrm{H})^{+}$: 251.0339 found 251.0339 .

(2-chlorophenyl)(propyl)selane (5l)
Yield: 76% (35.4 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2961, 2928, 1573, 1448, 1024, 740. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~m}, J=7.5,2.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.09(\mathrm{~m}$, $2 \mathrm{H}), 2.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 135.1, 131.9, 130.7, 129.6, 127.2, 127.1, 28.7, 23.0, 14.7. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClSe}(\mathrm{M}+\mathrm{H})^{+}: 234.9793$ found 234.9790.

3-(propylselanyl)pyridine (5m)

Yield: 58% (23.0mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2959, 2928, 1573, 1411, 1108, $750,699 .{ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~m}, J=5.0,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, J$ $=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~m}, J=7.4,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.9,150.1,135.9,125.5,120.2,28.1,23.7,14.7$. HRMS (ESI ${ }^{+}$, $\mathrm{MeCN}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NSe}(\mathrm{M}+\mathrm{H})^{+}: 202.0135$ found 202.0136.

(3-chloropropyl)(phenyl)sulfane (7a)
Yield: 78% (40.3 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2958, 2924, 1583, 1480, 1438, 1267, 1025, 736. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ - $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, 2H), $7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.03$
(m, 2H). ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,129.6,129.1,126.4,43.5,31.8,30.9$. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClS}(\mathrm{M}+\mathrm{H})^{+}$: 187.0348 found 187.0348 .

phenethyl(phenyl)sulfane (7b)
Yield: 41% (49.0mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 3026, 2923, 1730, 1583, 1479, $1438,1025,735,689 .^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, J$ $=6.4,5.6,3.5 \mathrm{~Hz}, 4 \mathrm{H}$), $7.23-7.16(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=9.3,6.5$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8140.3,136.5,132.6,129.3,129.0,128.6,126.6$, $126.1,35.7,35.2$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 215.0894$ found 215.0894 .

$$
\mathrm{Cy}^{-\mathrm{S}}-_{\mathrm{Ph}}
$$

cyclohexyl(phenyl)sulfane (7c)
Yield: 77% (42.1mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2926, 2851, 1583, 1438, 997, 734, 690. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23$ $-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{tt}, J=10.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{tdd}, J=7.1$, $4.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.23(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 135.3,132.0,128.9,126.7,46.7,33.5,26.2,25.9$. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 193.1051$ found 193.1051.

cyclopentyl(phenyl)sulfane (7d)
Yield: 74% (39.6mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2954, 2866, 1584, 1478, 1438, 1092, 1025, 735, 689. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ - 7.32 (m, 2H), 7.28 - 7.22 $(\mathrm{m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.70(\mathrm{~m}$, 2 H), 1.61 (tddd, $J=11.6,6.1,4.4,2.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.36$, 130.00, 128.82, 125.93, 33.64, 24.90. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 179.0894$ found 179.0894 .

cyclohexyl(p-tolyl)sulfane (7e)
Yield: 98% (40.6mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2925, 2851, 1491, 1447, 1262, 997, 808, 738. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}$,

2H), 3.01 (tt, $J=10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{ddt}, J=10.3,3.8,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.79-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.19(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.9,132.9$, 131.3, 129.6, 47.2, 33.5, 26.2, 25.9, 21.2. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 207.1207$ found 207.1207.

(4-chlorophenyl)(cyclohexyl)sulfane (7f)
Yield: 87% (39.4 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2927, 2852, 1474, 1447, 1389, 1094, 1012, 817, 745. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21$ $(\mathrm{m}, 2 \mathrm{H}), 3.05(\mathrm{ddt}, J=10.5,7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.76$ (ddt, $J=10.9$, $5.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.42-1.18(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.8,133.3$, $132.8,129.0,47.0,33.3,26.1,25.8$. HRMS (ESI ${ }^{+}, \mathrm{MeCN}$) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClS}$ $(\mathrm{M}+\mathrm{H})^{+}: 227.0661$ found 227.0661 .

cyclohexyl(3-nitrophenyl)sulfane (7g)

Yield: 78% (36.8 mg). Pale yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2928, 2852, 1522, 1344, 1265, $1127,749,670 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~m}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~m}, J=$ $8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~m}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dp}, J=10.1$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{dq}, J=7.7,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.42(\mathrm{dd}, J=16.5,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $148.5,138.7,136.4,129.5,124.9,121.0,46.4,33.2,26.0,25.7$. HRMS (ESI ${ }^{+}$, MeCN) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 238.0902$ found 238.0902.

4-(cyclohexylthio)phenol (7h)

Yield: 49% (20.4mg). Yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2925, 2850, 1708, 1598, 1582, 1426, 1201, 1094, 827, 523. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29$ (m, 2H), 6.82 - 6.73 (m, 2H), $5.64(\mathrm{~s}, 1 \mathrm{H}), 2.89$ (ddt, $J=10.6,7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.74(\mathrm{td}, J=6.0,5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.17$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,135.9,125.0,116.0,48.1,33.4,26.2$, 25.9. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}: 209.1000$ found 209.1003.

4-(cyclohexylthio)aniline (7i)

Yield: 52% (21.4 mg). Yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2924, 2850, 1724, 1619, 1493, $1263,1175,996,821,520 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.64-$ $6.56(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{tt}, J=10.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.71(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.3,136.1,121.9,115.4,48.2,33.5,26.3,25.9$. HRMS (ESI ${ }^{+}$, $\mathrm{MeCN}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NS}(\mathrm{M}+\mathrm{H})^{+}: 208.1160$ found 208.1161.

2-(cyclohexylthio)benzo[d]thiazole (7j)

Yield: 86% (43.0 mg). Yellow oil. IR (neat, $\mathrm{v}, \mathrm{cm}^{-1}$): 2926, 2851, 1455, 1424, 1236, $1076,985,752,724 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~m}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{m}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~m}, J=8.3,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 3.89$ $(\mathrm{tt}, J=10.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.59$ (dddd, $J=$ $26.8,13.1,9.8,4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,153.5,135.4,126.0,124.2,121.6,120.9,47.4,33.4,25.9,25.7$. HRMS (ESI $\left.{ }^{+}, \mathrm{MeCN}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NS}_{2}(\mathrm{M}+\mathrm{H})^{+}: 250.0724$ found 250.0724 .

(cyclohexylsulfinyl)benzene (8a) According to Bahrami's method ${ }^{3}$, in a roundbottomed flask (10 mL) equipped with a stir bar, a solution of $7 \mathbf{c}(57.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was prepared. Aqueous $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.6 \mathrm{mmol}, 0.8 \mathrm{~mL})$ and $\mathrm{Me}_{3} \mathrm{SiCl}$ $(0.30 \mathrm{mmol}, 38 \mu \mathrm{~L})$ were added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 min . After disappearance of the sulfide, the reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}(20$ mL), extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The product was purified by column chromatography on silica gel ($20 \rightarrow 100 \%$ ethyl acetate/Petroleum ether).
Yield: 88% (54.9 mg). Colorless oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2929, 2854, 1443, 1083, 1036, $1022,748,691,532 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~m}, J=7.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ $-7.45(\mathrm{~m}, 3 \mathrm{H}), 2.57(\mathrm{tt}, J=11.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.64$ (ddt, $J=9.7$, $4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.18(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 141.8,131.0,128.9,125.0,63.2,26.3,25.6,25.5,25.4,24.0$. HRMS $^{(E S I}{ }^{+}$, MeCN) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}: 209.1000$ found 209.1000.

(cyclohexylsulfonyl)benzene ($\mathbf{8 b}$) According to Fang's method ${ }^{4}$, in a round-bottomed flask (10 mL) equipped with a stir bar, a solution of $7 \mathbf{c}(57.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ was prepared. The solution was cooled to $0^{\circ} \mathrm{C}$. A solution of m-CPBA (purity: $85 \%, 207.1 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was added dropwise and the mixture was stirred at $25^{\circ} \mathrm{C}$. After disappearance of the sulfide, the reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The product was purified by column chromatography on silica gel $(10 \rightarrow 20 \%$ ethyl acetate/Petroleum ether).
Yield: 78\% (52.4mg). Colorless oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2932, 2856, 1446, 1302, 1142, $1084,821,689,599 .^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.84$ (m, 2H), $7.69-7.62$ $(\mathrm{m}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{tt}, J=12.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.86$ (dq, $J=12.7,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67 (dddd, $J=10.9,4.9,2.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (qd, $J=12.4$, $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.10(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,133.6,129.1$, 129.0, 63.5, 25.5, 25.1, 25.1. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{SNa}$ $(\mathrm{M}+\mathrm{Na})^{+}: 247.0769$ found 247.0772.

methyl (\boldsymbol{S})-2-((tert-butoxycarbonyl)amino)-3-(cyclohexylselanyl)propanoate (3r) Yield: 55\% (40.2mg). Yellow oil. IR (neat, $v, \mathrm{~cm}^{-1}$): 2926, 2851, 1745, 1713, 1495, $1347,1209,1160$, 1007. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (dt, $J=9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (ddd, $J=10.7,7.0$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}$, 9H), $1.34-1.24(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,155.1,80.0,53.5,52.5$, 39.5, 34.5, 34.4 ($J=3.5$), 28.3, 26.8, 25.7, 24.3. HRMS (ESI ${ }^{+}$, MeCN) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}_{\mathrm{e}}(\mathrm{M}+\mathrm{Na})^{+}: 388.1003$ found 388.0989 .

IV. References

(1) (a) Jouffory, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475.
(b) Corcé, V.; Chamoreau, L. M.; Derat, E.; Goddard, J. P.; Ollivier, C.; Fensterbank, L. Angew. Chem. Int. Ed. 2015, 54, 11414.
(2) (a) Li, J.; Rao, W.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2019, 84, 11542. (b) Fang, Y.; Rogge, T.; Ackermann, L.; Wang, S.-Y.; Ji, S.-J. Nat. Commun. 2018, 9, 2240.
(3) Bahrami, K., Khodaei, M. M., Yousefi, B. H., Arabi, M. S. Tetrahedron Lett. 2010, 51, 6939-6941.
(4) Fang, Y.; Rogge, T.; Ackermann, L.; Wang, S.-Y.; Ji, S.-J. Nat. Commun. 2018, 9, 2240.

V. Copies of ${ }^{\mathbf{1}} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Se

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{3 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\tilde{N}}{\underset{\sim}{~}}$

[^0]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

がステN

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\bullet}{0}$

Cl $\sim^{-}-\mathrm{Ph}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\square}{+}$	\cdots
$\stackrel{\infty}{6}$	-
।	।

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{3 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N	웅
	¢ ¢
।	,

[^1]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\substack{9 \\ \infty \\ \infty \\ i}}{\infty}$
\& ज ํo
ષ્તેંતંત્ર

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{3 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underset{\sim}{m}$
$\underset{\sim}{\infty}$
\vdots
1

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{3 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR Spectra of $\mathbf{3 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR Spectra of $\mathbf{5 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

r

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{5 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{Se}_{-\mathrm{Ph}}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{5 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\circ} \stackrel{\infty}{-}$
ヘิત્ર

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{5 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{5 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{5 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{5 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^3]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Cy}^{-\mathrm{Se}}-\mathrm{Ph}
$$

${ }^{13}$ C NMR Spectra of $\mathbf{5 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Cy}^{-\mathrm{Se}_{-} \mathrm{Ph}}
$$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{5 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

n	\bigcirc
-	$\stackrel{m}{\sim}$
I	I

$\underset{i}{n} \quad \underset{i}{n} \underset{i}{n} \underset{i}{n} \underset{i}{n} \underset{\sim}{n}$

[^4]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{5 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{5 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\bar{n} \stackrel{\infty}{n} \underset{\sim}{0}$
Nㅓㄴ

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 l}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{5 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

으ㅇㅕㅕㅊ
$\stackrel{\infty}{\infty} \underset{\sim}{~} \underset{\sim}{~}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $5 \mathrm{~m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $7 \mathbf{7 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $7 \mathbf{7 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $7 \mathbf{b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $7 \mathbf{c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathrm{Cy}^{-\mathrm{S}} \mathrm{Ph}
$$

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ (\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR Spectra of $7 \mathbf{d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $7 \mathbf{d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{cc}\dot{H} & 8 \\ \underset{i}{*} & \underset{\sim}{+} \\ i\end{array}$

[^6]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $7 \mathbf{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^7]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $7 \mathbf{f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^8]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{7 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^9] f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{7 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^10]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{7 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^11]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{7 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $7 \mathbf{i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^12]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{8 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{8 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{8 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{8 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^13]${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectra of $\mathbf{3 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\stackrel{0}{+}}{\stackrel{\infty}{+}} \stackrel{\stackrel{\infty}{i}}{\stackrel{n}{n}}$

\bigcirc	
$\stackrel{\circ}{\infty}$	

[^0]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \text { f1 (ppm) }\end{array}$

[^1]: $\begin{array}{llllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^2]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^4]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^5]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^6]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^7]:

[^8]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
 f1 (ppm)

[^9]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^10]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^11]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ (\mathrm{ppm})\end{array}$

[^12]: $\left.\begin{array}{lllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array}\right)$

[^13]: $\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

