Supplementary Information

Visible-light-promoted sulfonylation of thiols with aryldiazonium and sodium metabisulphite leading to unsymmetrical thiosulfonates

Yufen Lv,^a Jinyun Luo,^a Yuchuan Ma,^a Qi Dong,^{b*} Lin He^{a*}

 ^a School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China
 ^b Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
 * Corresponding author.

E-mail: helin@shzu.edu.cn; qdong@nwipb.cas.cn

Table of Contents

1. General information	
2. General procedure for visible-light-promoted su	ulfonylation of thiols with
aryldiazonium and sodium metabisulphite l	leading to unsymmetrical
thiosulfonates	
3. Preliminary mechanistic studies	S3-S6
4. Characterization data of products	
5. Copies of NMR spectra	

1. General information

All commercially available reagent grade chemicals were purchased from Adamas, Strem, MERYER, Alfa Aesar and Energy Chemical Company and used as received without further purification unless otherwise stated. ¹H NMR and ¹³C NMR were recorded in CDCl₃ on a Bruker Avance III 500MHz or 400 MHz spectrometer with TMS as internal standard at room temperature, the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Highresolution mass spectra (HRMS) were obtained on an LTQ Orbitrap XL mass spectrometry equipped with an ESI source. Column chromatography was performed on silica gel (200-300 mesh). 2. General procedure for visible-light-promoted sulfonylation of thiols with aryldiazonium and sodium metabisulphite leading to unsymmetrical thiosulfonates.

Ar-N₂BF₄ + Na₂S₂O₅ + R-SH
1 2 3
W white LED lamps
CH₃CN, r.t., 16 h, N₂
4

$$O_{X}O_{Ar}O_{Ar}O_{S}O_{Ar}O_{A$$

In a tube (25 mL), aryldiazonium tetrafluoroborate 1 (0.4 mmol), Na₂S₂O₅ 2(0.4 mmol), thiols 3 (0.2 mmol), Rhodamine 6G (1 mol%), and CH₃CN (2 mL) were added. The reaction mixture was stirred and irradiated by 3 W white LEDs at room temperature under nitrogen atmosphere for 16h. After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 4.

Gram-scale experiment

$$\begin{array}{c|c} PhN_2BF_4 &+ Na_2S_2O_5 &+ & 4-MePhSH \end{array} \begin{array}{c} \hline Rhodamine \ 6G \ (1 \ mol\%) \\ \hline 3 \ W \ white \ LED \ lamps \\ \hline CH_3CN, \ r.t. \ N_2, \ 24 \ h \\ \hline 4aa \ (0.92g, \ 70\%) \end{array}$$

In a tube (25 mL), phenyldiazonium tetrafluoroborate **1a** (10 mmol), Na₂S₂O₅ **2** (10 mmol), 4-methylbenzenethiol **3a** (5 mmol), Rhodamine 6G (1 mol%), and CH₃CN (5 mL) were added. The reaction mixture was stirred and irradiated by 3 W white LEDs at room temperature under nitrogen atmosphere for 24h. After completion of the reaction, 5 mL water was added. The mixture was extracted by ethyl acetate. The extracting solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **4aa** in 0.92g (70%).

3. Preliminary mechanistic studies

3.1 The addition of TEMPO in the model reaction system.

$$PhN_{2}BF_{4} + Na_{2}S_{2}O_{5} + 4-MePhSH \xrightarrow{\text{Standard conditions}}{\text{TEMPO (2 equiv)}} 4a (0\%) + \begin{pmatrix} Ph-O-N \\ 10a \end{pmatrix}$$

In a tube (25 mL), phenyldiazonium tetrafluoroborate **1a** (0.4 mmol), Na₂S₂O₅ **2a** (0.4 mmol), 4-methylbenzenethiol **3a** (0.2 mmol), Rhodamine 6G (1 mol%), TEMPO (0.4 mmol), and CH₃CN (2 mL) were added. The reaction mixture was stirred and irradiated by 3 W white LEDs at room temperature under nitrogen atmosphere for 16h. After completion of the reaction, the reaction mixture was concentrated in vacuum. None of the desired product **4aa** was detected and aryl-TEMPO adduct was detected by LC-MS.

3.2 The detection of disulfide in the reaction system

$$\begin{array}{c|c} PhN_2BF_4 + Na_2S_2O_5 + Ph-SH \xrightarrow{Standard conditions} 4ab + \left(Ph-S-S-Ph\right) \\ \hline 1b & 2a & 3 & detected by LC-MS \end{array}$$

In a tube (25 mL), phenyldiazonium tetrafluoroborate **1a** (0.4 mmol), $Na_2S_2O_5$ **2a** (0.4 mmol), 4-methylbenzenethiol **3a** (0.2 mmol) and CH₃CN (2 mL) were added. The reaction mixture was stirred and irradiated by 3 W white LEDs at room temperature under nitrogen atmosphere for 16h. After completion of the reaction, the reaction mixture was concentrated in vacuum. In addition to product **4ab**, 1,2-diphenyldisulfide **3b'** was detected.

$$\begin{array}{c|c} PhN_2BF_4 + Na_2S_2O_5 + PhSSPh & \xrightarrow{Standard conditions} & Ph \\ \hline 1b & 2a & 3b' & & \\ \hline 4ab \ (18\%) \end{array}$$

In a tube (25 mL), phenyldiazonium tetrafluoroborate **1a** (0.4 mmol), $Na_2S_2O_5$ **2a** (0.4 mmol), 1,2-diphenyldisulfide **3b'** (0.2 mmol) and CH₃CN (2 mL) were added. The reaction mixture was stirred and irradiated by 3 W white LEDs at room temperature under nitrogen atmosphere for 16h. After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product **4ab** in 18% yield.

4. Characterization data of products

S-p-tolyl benzenesulfonothioate Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.58-7.56 (m, 3H), 7.42 (t, *J* = 7.3 Hz, 2H), 7.22 (d, *J* = 7.7 Hz, 2H), 7.13(d, *J* = 7.8 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 143.1, 142.2, 136.5, 133.6, 130.2, 128.8, 127.6, 124.4, 21.5. ESI HRMS: calculated for C₁₃H₁₃O₂S₂ [M+H]⁺ 265.0357, found 265.0353.

S-phenyl benzenesulfonothioate Yellow oil.¹H NMR (400 MHz, CDCl₃): δ 7.59 - 7.55 (m, 3H), 7.48 - 7.45 (m, 1H), 7.43-7.40 (m, 2H), 7.34-7.31 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 136.6, 133.7, 131.5, 129.5, 128.8, 127.8, 127.6. ESI HRMS: calculated for C₁₂H₁₁O₂S₂ [M+H]⁺251.0200, found 251.0217.

S-m-tolyl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.54 (m, 3H), 7.40 (d, J = 7.2 Hz, 2H), 7.24 (s, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.12 - 7.10 (m, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 139.5, 137.2, 133.6, 133.6, 132.2, 129.2, 128.7, 127.7, 127.4, 21.2. ESI HRMS: calculated for C₁₃H₁₃O₂S₂ [M+H]⁺ 265.0357, found 265.0369.

S-4-methoxyphenyl benzenesulfonothioate Yellow solid, mp 56 - 57 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.59-7.56 (m, 3H), 7.43 (t, J = 7.4 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (125 MHz,CDCl₃): δ 162.4, 143.0, 138.4, 133.6, 128.8, 127.6, 118.5, 115.0, 55.5. ESI HRMS: calculated for C₁₃H₁₃O₃S₂ [M+H]⁺ 281.0306, found 281.0301.

S-4-tert-butylphenyl benzenesulfonothioate White solid, mp 60 - 61 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.59 - 7.55 (m, 3H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 8.4 Hz, 2H), 7.26 (t, *J* = 8.4 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 143.1, 136.3, 133.6, 128.8, 127.6, 126.6, 124.4, 35.0, 31.2. ESI HRMS: calculated for C₁₆H₁₉O₂S₂ [M+H]⁺ 307.0826, found 307.0811.

S-3,4-dimethoxyphenyl benzenesulfonothioate Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.61 - 7.57 (m, 3H), 7.44 (t, J = 7.8 Hz, 2H), 6.96 (dd, J_I = 1.8 Hz, J_2 = 8.4 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 1.8 Hz, 1H), 3.90 (s, 3H), 3.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 152.0, 149.1, 142.9, 133.5, 130.4, 128.8, 127.8, 118.7, 118.6, 111.4, 56.0, 55.9. ESI HRMS: calculated for C₁₄H₁₅O₄S₂ [M+H]⁺ 311.0412, found 311.0408.

S-4-fluorophenyl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.62 - 7.57 (m, 3H), 7.47 - 7.42 (m, 2H), 7.36 - 7.32 (m, 2H), 7.03 (t, J = 8.6 Hz, 2H), 3.98 (s, 3H); ¹³C NMR (100 MHz,CDCl₃): δ 164.8 (t, J = 252.5 Hz), 142.7, 138.9 (d, J = 9.1 Hz), 133.8, 128.9, 127.6, 123.4 (d, J = 3.3 Hz), 116.8 (d, J = 22.1 Hz). ESI HRMS: calculated for C₁₂H₉FNaO₂S₂ [M+H]⁺ 290.9926, found 290.9944.

S-4-chlorophenyl benzenesulfonothioate White solid, mp, 66 - 67 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.62 - 7.58 (m, 3H), 7.45 (t, *J* = 7.4 Hz, 2H), 7.33-7.27 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 138.3, 137.8, 133.9, 129.8, 129.0, 127.6, 126.3. ESI HRMS: calculated for C₁₂H₁₀ClO₂S₂ [M+H]⁺284.9811, found 284.9815.

S-3-chlorophenyl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.64 - 7.60 (m, 3H), 7.50 - 7.46 (m, 3H), 7.32 - 7.29 (m, 3H); ¹³C NMR (100 MHz,CDCl₃): δ 142.7, 136.1, 134.9, 134.7, 134.0, 131.6, 130.5, 129.5, 129.0, 127.6. ESI HRMS: calculated for C₁₂H₁₀ClO₂S₂ [M+H]⁺284.9811, found 284.9822.

S-4-bromophenyl benzenesulfonothioate White solid, mp, 72 - 73 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.58 (m, 3H), 7.49-7.44 (m, 4H), 7.20 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 142.8, 137.9, 133.9, 132.8, 129.0, 127.6, 126.9, 126.8. ESI HRMS: calculated for C₁₂H₉BrNaO₂S₂ [M+Na]⁺ 350.9125, found 350.9087.

S-3-bromophenyl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.64 - 7.58 (m, 4H), 7.47 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 1.8 Hz, 1H), 7.35-7.33 (m, 1H), 7.23 (t, J = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 138.9, 135.1, 134.5, 134.0, 130.7, 129.7, 129.0, 127.7, 122.7. ESI HRMS: calculated for C₁₂H₉BrNaO₂S₂ [M+Na]⁺ 350.9125, found 350.9125.

S-o-tolyl benzenesulfonothioate

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.54 (m, 3H), 7.42 (t, *J* = 7.9 Hz, 2H), 7.38-7.32(m, 2H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 143.3, 138.3, 133.7, 131.9, 131.0, 128.9, 127.5, 127.1, 126.9, 20.6. ESI HRMS: calculated for C₁₃H₁₃O₂S₂ [M+H]⁺ 265.0357, found 265.0336.

S-2-chlorophenyl benzenesulfonothioate White solid, mp, 63 - 64 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, J_1 = 1.6 Hz, J_2 = 7.8 Hz, 1H), 7.62 - 7.51 (m, 3H), 7.45 - 7.39 (m, 3H), 7.38-7.36 (m, 1H), 7.31 (t, J_1 = 1.7 Hz, J_2 = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 140.3, 139.6, 134.0, 133.0, 130.3, 129.1, 127.8, 127.5, 127.0. ESI HRMS: calculated for C₁₂H₁₀ClO₂S₂ [M+H]⁺ 284.9811, found 284.9826.

S-2,4-dichlorophenyl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.64 - 7.60 (m, 4H), 7.48 - 7.44 (m, 2H), 7.39 (d, J = 2.2 Hz, 1H), 7.31 (dd, $J_1 = 2.2$ Hz, $J_2 = 8.4$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 141.1, 140.2, 138.9, 134.1, 130.2, 129.2, 128.2, 127.5, 125.7. ESI HRMS: calculated for C₁₂H₉Cl₂O₂S₂ [M+H]⁺ 318.9421, found 318.9435.

naphthalen-2-yl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 7.8 Hz, 2H), 7.79 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.62-7.51 (m, 5H), 7.40-7.36 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 142.9, 137.7, 134.1, 133.7, 133.3, 131.8, 129.2, 128.9, 128.5, 128.3, 127.8, 127.6, 127.0, 124.9. ESI HRMS: calculated for C₁₆H₁₃O₂S₂ [M+H]⁺ 301.0357, found 301.0333.

S-benzo[d]thiazol-2-yl benzenesulfonothioate Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 7.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.53-7.46 (m, 3H), 7.42 (t, J = 8.6 Hz, 1H), 7.28-7.25 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 169.8, 154.0, 135.6, 135.4, 130.5, 130.0, 126.2, 124.4, 122.0, 120.8. ESI HRMS: calculated for C₁₃H₁₀NO₂S₃ [M+H]⁺ 307.9874, found 307.9883.

S-benzyl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.82 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.24-7.16 (m, 5H), 4.27 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 133.6, 133.5, 129.2, 129.1, 128.8, 128.1, 126.9, 40.4. ESI HRMS: calculated for C₁₃H₁₃O₂S₂ [M+H]⁺ 265.0357, found 265.0369.

S-phenethyl benzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 7.4 Hz, 2H), 7.74 (t, J = 7.4 Hz, 1H), 7.66 (t, J = 7.9 Hz, 2H), 7.40-7.30 (m, 3H), 7.19 (d, J = 7.0 Hz, 2H), 3.34 (t, J = 7.4 Hz, 2H), 3.00 (t, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 138.7, 133.8, 129.4, 128.7, 128.6, 127.0, 126.9, 37.2, 35.2. ESI HRMS: calculated for C₁₄H₁₅O₂S₂ [M+H]⁺279.0513, found 279.0497.

S-p-tolyl 4-methylbenzenesulfonothioate White solid, mp, 67 - 68 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 144.7, 142.1, 140.4, 136.5, 130.3, 129.4, 127.6, 124.6, 21.7, 21.5. ESI HRMS: calculated for C₁₄H₁₅O₂S₂ [M+H]⁺ 279.0513, found 279.0533.

S-p-tolyl 3-methylbenzenesulfonothioate Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.35 (m, 3H), 7.31-7.28 (m, 1H), 7.23 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 2.38 (s, 3H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 142.8, 142.2, 139.1, 136.6, 134.3, 130.2, 128.6, 127.9, 124.7, 124.5, 21.5, 21.2. ESI HRMS: calculated for C₁₄H₁₅O₂S₂ [M+H]⁺279.0513, found 279.0524.

S-p-tolyl 2-methylbenzenesulfonothioate Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.47 - 7.43 (m, 1H), 7.42-7.39 (m, 1H), 7.33 (d, J = 7.5 Hz, 2H), 7.15 - 7.11 (m, 3H), 7.07 (d, J = 8.1 Hz, 2H), 2.70 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 140.4, 137.8, 136.5, 133.7, 132.8, 130.3, 130.1, 125.7, 124.3, 21.5, 20.5. ESI HRMS: calculated for C₁₄H₁₅O₂S₂ [M+H]⁺279.0513, found 279.0507.

S-p-tolyl 4-methoxybenzenesulfonothioate White solid, mp, 61 - 62 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 9.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 163.5, 142.0, 136.5, 135.1, 130.2, 129.9, 124.7, 113.8, 55.7, 21.5. ESI HRMS: calculated for C₁₄H₁₅O₃S₂ [M+H]⁺295.0463, found 295.0462.

S-p-tolyl 3-methoxybenzenesulfonothioate Yellow solid, mp, 46 - 47 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (t, J = 8.0 Hz, 1H), 7.35-7.33 (m, 2H), 7.26-7.23 (m, 3H), 7.20-7.17 (m, 1H), 7.10 (t, J = 2.0 Hz, 1H), 3.81 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 144.0, 142.2, 136.6, 130.3, 129.8, 124.5, 120.6, 119.8, 111.5, 55.6, 21.5. ESI HRMS: calculated for C₁₄H₁₅O₃S₂ [M+H]⁺295.0463, found 295.0470.

S-p-tolyl 4-tert-butylbenzenesulfonothioate Yellow solid, mp, 87 - 88 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.13 (t, J = 8.0 Hz, 2H), 2.38 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 142.1, 140.3, 136.6, 130.2, 127.5, 125.8, 124.6, 35.3, 31.1, 21.5. ESI HRMS: calculated for C₁₇H₂₁O₂S₂ [M+H]⁺ 321.0983, found 321.0954.

S-p-tolyl 4-chlorobenzenesulfonothioate White solid, mp, 122 - 123 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm)

δ 142.5, 141.5, 140.2, 136.5, 130.4, 129.1, 129.0, 124.1, 21.6. ESI HRMS: calculated for C₁₃H₁₂ClO₂S₂ [M+H]⁺ 284.9811, found 284.9826.

S-p-tolyl 3-chlorobenzenesulfonothioate Yellow solid, mp, 70 - 71 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.53 (m, 1H), 7.48 (t, J = 1.7 Hz, 1H), 7.47-7.44 (m, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.24 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.3, 142.6, 136.5, 135.0, 133.6, 130.4, 130.0, 127.7, 125.6, 123.9, 21.5. ESI HRMS: calculated for C₁₃H₁₁ClNaO₂S₂ [M+Na]⁺ 320.9787, found 320.9794.

S-p-tolyl 4-bromobenzenesulfonothioate White solid, mp, 115 - 116 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.36 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 142.2, 136.6, 132.2, 130.5, 129.1, 128.9, 124.2, 21.6. ESI HRMS: calculated for C₁₃H₁₂BrO₂S₂ [M+H]⁺ 342.9462, found 342.9471.

S-p-tolyl 4-fluorobenzenesulfonothioate White solid, mp, 97 - 98 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.56 (m, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.09 (t, *J* = 8.2 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 165.6 (d, *J*_{C-F} = 255.1 Hz), 142.5, 139.1 (d, *J*_{C-F} = 3.0 Hz), 136.5, 130.4 (d, *J*_{C-F} = 9.6 Hz), 130.3, 124.2, 116.1 (d, *J*_{C-F} = 22.7 Hz), 21.5. ESI HRMS: calculated for C₁₃H₁₂FO₂S₂ [M+H]⁺ 283.0263, found 283.0277.

S-p-tolyl 3,4-dichlorobenzenesulfonothioate White solid, mp, 98 - 99 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 2.1 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.38 (dd, J = 2.1 Hz, J = 8.4 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 8.1 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 142.3, 138.5, 136.5, 133.5, 130.8, 130.6, 129.5, 126.4, 123.8, 21.5. ESI HRMS: calculated for C₁₃H₁₀Cl₂NaO₂S₂ [M+Na]⁺ 354.9397, found 354.9383.

S-p-tolyl 4-cyanobenzenesulfonothioate White solid, mp, 105 - 106 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.6 Hz, 2H), 7.66 (d, J = 8.6 Hz, 2H), 7.23 (d, J =

8.2 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 146.6, 142.9, 136.4, 132.7, 130.6, 128.1, 123.5, 117.1, 117.1, 21.6. ESI HRMS: calculated for C₁₄H₁₁NNaO₂S₂ [M+Na]⁺ 312.0129, found 312.0121.

methyl 4-(p-tolylthiosulfonyl)benzoate White solid, mp, 96 - 97 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.14 (d J = 7.9 Hz, 2H), 3.96 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 146.5, 142.6, 136.5, 134.4, 130.5, 130.0, 127.6, 123.9, 52.8, 21.5. ESI HRMS: calculated for C₁₅H₁₄NaO₄S₂ [M+Na]⁺ 345.0231, found 345.0220.

S-p-tolyl 4-acetylbenzenesulfonothioate White solid, mp, 79 - 80 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 2.64 (s, 3H), 2.38 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 196.7, 146.5, 142.6, 140.4, 136.4, 130.5, 128.7, 127.8, 123.9, 27.0, 21.5. ESI HRMS: calculated for C₁₅H₁₅O₃S₂ [M+H]⁺ 307.0463, found 307.0428.

S-p-tolyl 4-nitrobenzenesulfonothioate White solid, mp, 137 - 138 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, J = 8.8 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 150.3, 148.0, 143.0, 136.4, 130.7, 128.8, 124.1, 123.4, 21.6. MS (ESI); ESI HRMS: calculated for C₁₃H₁₁NNaO₄S₂ [M+Na]⁺ 332.0027, found 332.0022.

S-p-tolyl 4-(trifluoromethyl)benzenesulfonothioate White solid, mp, 85 - 86 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (s, 4H), 7.24 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 146.2, 142.7, 136.5, 135.1 (q, J = 32.9 Hz), 130.5, 128.0, 126.0 (q, J = 3.7 Hz), 123.8, 123.1 (q, J = 271.5 Hz), 21.5. ESI HRMS: calculated for C₁₄H₁₁F₃NaO₂S₂ [M+Na]⁺ 355.0050, found 355.0010.

S-p-tolyl 3-nitrobenzenesulfonothioate White solid, mp, 102 - 103 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.43-8.41 (m, 1H), 8.27 (t, J = 1.9 Hz, 2H), 7.90 (d, J = 7.9 Hz,

1H), 7.67 (t, J = 7.9 Hz, 1H), 7.23 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz,CDCl₃): δ 147.9, 144.6, 143.2, 136.4, 132.7, 130.7, 130.3, 127.9, 123.5, 122.9, 21.5. ESI HRMS: calculated for C₁₃H₁₁NNaO₄S₂ [M+Na]⁺ 332.0027, found 332.0012.

4aa

4ab

130 120 110 100 90 fl (ppm)

4ac

100 90 80 fl (ppm) 120 110

S18

4af

S19

4ag

S20

4ah

130 120 110 100 90 fl (ppm)

4aj

4ak

7,6384 7,6159 7,6159 7,6159 7,6158 7,587 7,787 7,587 7,787 7,787 7,787 7,787 7,787 7,787 7,787 7,787 7,787 7,787 7,747 7,787 7,747 7

4al

4am

7, 6821 7, 6581 7, 6583 7, 6588 7, 5588 7, 5588 7, 5588 7, 5588 7, 5588 7, 5588 7, 5588 7, 5588 7, 5588 7, 4228 7, 4421 7, 54417 7, 54417 7, 54417 7, 54417 7, 54417 7, 54417 7, 54417 7, 54417 7, 54417 7, 54417 7, 5

4an

7,6435 7,6406 7,6242 7,6242 7,6185 7,6185 7,6185 7,6185 7,6185 7,6185 7,4847 7,4847 7,4847 7,4847 7,4847 7,4487 7,4487 7,4487 7,4487 7,374 1,3374 1,3374 1,3374 1,3374 1,3374 1,3374 1,3374 1,3375 1,3373 1,3374 1,3375 1,3

140 130 120 110 100 90 fl (ppm) 70 10 200 80 60 50 30 20 0 190 180 170 160 150 40

4ao

7, 8068 7, 7, 7518 7,

0, 0 N S S Í μ.Δ.Ψ.Δ.Ψ.Ψ. 2 5 5 8 9 5 1 6 5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) $\mathcal{L}^{135,5650}_{135,4279}$ $\mathcal{L}^{130,5290}_{120,9760}$ $\mathcal{L}^{120,9760}_{124,3626}$ $\mathcal{L}^{121,9862}_{120,8271}$ 77.3271 77.0729 76.8188

L

4ap

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm) 4ar

110 100 90 fl (ppm)

4ba

120 110 100 90 fl (ppm) 140 130

S33

4ea

4fa

4ka

4la

S44

40a

& 2808 & 2587 7,7271 7,7271 7,2375 7,1944 7,1944

-2.3999

4pa

4qa

